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Abstract. This paper describes the study of a special class of 4-regular plane

graphs which are Hamiltonian. These graphs are of special interest in knot
theory. An algorithm is presented that randomly generates such graphs with

n vertices with a fixed (and oriented) Hamiltonian cycle in O(n) time. An
exact count of the number of such graphs with n vertices is obtained and the
asymptotic growth rate of this number is determined. Numerical evidence
is presented to show that the algorithm can be modified to generate these
graphs with a near uniform probability. This can be considered as a first step
in generating large random knots without bias.

1. Introduction

A plane map is a 2-cell decomposition of the oriented sphere into vertices (0-
cells), edges (1-cells) and faces (2-cells). A specified edge in a map with a given
orientation is called a root of the map and a map with a root is called a rooted
map. The study of rooted maps can be dated back to Tutte [17, 18], where the
number of Eulerian rooted plane maps were counted. In a more recent paper [13],
Schaeffer gave a different proof of the above mentioned count together with a way
that allows the uniform random generation of certain Eulerian plane maps with
restricted vertex degrees. (The degree of a vertex is the number of edges incident
to this vertex.) The special case of 4-regular rooted plane maps is studied in [15].
It is shown that if a(n) is the number of distinct 4-regular rooted plane maps with
n vertices, then

a(n) = 2
3n(2n)!

n!(n+ 2)!
∼ 2√

π

12n

n5/2
,

see [2, 15, 18].

The main question of this paper is: Is it possible to generate 4-regular Hamil-
tonian plane maps with an algorithm that has polynomial runtime with uniform or
near uniform probability distribution? This question is motivated by an important
problem in knot theory. Let K be a smooth knot (or link), that is, a smooth em-
bedding of the unit circle (or circles) into R3. The projection of K into a plane is
a closed curve (or curves if K is a link) that may contain self-intersecting points,
also called the crossings of the projection. The multiplicity of a crossing in the
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projection is the number of strands that pass through that point. A projection is
a regular projection if there are only finitely many crossings in the projection and
all of them are of multiplicity 2. Furthermore, at each crossing in a regular knot
projection, the strand that goes over and the strand that goes under are marked,
see Figure 1. A regular projection of a knot K with the least number of crossings
(among all regular projections of all knots that are topologically equivalent to K)
is called a minimum projection of K and the number of crossings in that minimum
projection is called the crossing number of K (which is often denoted by Cr(K)).
If the crossings in the regular projection of K are treated as vertices and the arcs
joining these crossings are treated as edges, then a regular projection of K can be
viewed as a 4-regular plane map.
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Figure 1. A regular projection of a nine crossing knot and its
corresponding 4-regular plane map.

If K is the collection of all (smooth) knots that are topologically equivalent to
a given knot K, then the ropelength of K can be thought of as the shortest length
of a rope of unit radius that can be used to tie a smooth knot that is a member of
K. The concept of ropelength and its study are important not only in knot theory
itself, but also in the applications of knot theory. See for example the collection
of articles in the book [16] edited by Stasiak, Katritch, and Kauffman. In a series
of papers [3, 4, 5, 6, 7, 8, 9], the authors have studied the ropelength of a knot
and established several important results with regard to the asymptotic behavior
of the ropelength of knots as a function of their crossing numbers. In particular, an
algorithm has been developed and implemented that computes an upper bound on
the ropelength of very large knots with thousands of crossings [7, 9]. These results
are based on an important observation that any knot K with a crossing number
n = Cr(K) has a regular projection with at most 4n crossings that is Hamiltonian
[7]. (Indeed, almost all 4-regular graphs are Hamiltonian [12]. Nonetheless, there
are examples of knots that do not admit any Hamiltonian minimum projections [7].)
It follows that numerical studies concerning large knots can be done by sampling
knots from this more restricted and structured class of 4-regular knot projections,
namely the 4-regular Hamiltonian plane graphs [8]. Thus it is necessary to develop
an algorithm to generate such plane graphs in polynomial runtime with a uniform
or near uniform probability distribution.

In this paper it is shown that such an algorithm exists with O(n) runtime
and near uniform distribution under the additional assumption that the graphs are
rooted Hamiltonian. (For a precise definition see the next section.) In addition, a
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precise formula for the number of such rooted 4-regular Hamiltonian plane graphs
and an asymptotic estimation of it is given.

The next section contains some basic definitions. This is followed by a section
devoted to the determination of the number X(n) of rooted 4-regular Hamiltonian
plane graphs (with n vertices). Section 4 proves a theorem that showsX(n) behaves

as O( 12
n

n3 ) asymptotically. Section 5 describes the development of an algorithm that
generates such 4-regular Hamiltonian plane graphs with linear run time and near
uniform distribution based on numerical evidence.

2. Definitions

Definition 2.1. A rooted Hamiltonian graph G consists of a pair (G,H) sat-
isfying the following conditions:

(i) G is a 4-regular plane graph embedded in S2 with a given Hamilton cycle H;
(ii) H contains a rooted edge, that is one edge of H has an orientation. This edge
defines an orientation on H, that can distinguish the two disks bounded by H on
S2 as a disk on the right hand side and a disk on the left hand side of H.

It is easy to see that the word “rooted” here is consistent with the original
meaning of a rooted graph.

Definition 2.2. Two rooted Hamiltonian graphs (G,H) and (G′, H ′) are
equivalent if there exists a function f : S2 → S2 such that:

(i) f is an orientation preserving homeomorphism;
(ii) f(G) = G′, f(H) = H ′ and f |G is an isomorphism between the rooted graphs
G and G′. That is f maps the rooted edge of G to the rooted edge of G′ while
preserving its direction.

Note that in [19] a similar definition of equivalence was used for 3-regular
Hamiltonian graphs. The goal is to create rooted Hamiltonian graphs algorithmi-
cally and to count the total number of such graphs. The conditions that preserve
the root and the Hamiltonian cycle in the definition of graph equivalence makes
this count possible. The rooted 4-regular Hamiltonian plane graphs are allowed to
have loop edges and multiple edges. Using the definition of equivalence, a standard
drawing of a rooted Hamiltonian graph is defined below. There is exactly one stan-
dard diagram (except for deformation of edges) for each equivalence class of rooted
4-regular Hamiltonian plane graphs. An example is shown in Figure 2.

Definition 2.3. A standard diagram of a rooted 4-regular Hamiltonian plane
graph G is a realization of G such that H is drawn as a circle with its vertices
numbered in clockwise order around H and its first vertex v1 on top of the circle.
The rooted edge is the edge from v1 to v2 along the Hamiltonian cyle.

Let G be a rooted 4-regular Hamiltonian plane graph with H being the given
Hamilton cycle. Since G is 4-regular, each vertex v of G is incident to two edges
of G that are not on H. It is possible that these two edges are the same, in other
words, it is possible for v to be incident to a loop edge that is not on H. For each
vertex v, there are the following three possibilities.
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Figure 2. A standard diagram with n=8, inside string (()(())),
and outside string ()((())). v7 is a double-outside vertex, v2 is a
transition vertex, and v5 is a double-inside vertex. The edge (v8,
v5) is an inside edge and the edge (v6, v3) is an outside edge.

(a) v is incident to two edges (or a loop edge) contained in the unbounded
region outside of H. In this case v is called a double-outside vertex, or a DOV for
short.

(b) v is incident to two edges (or a loop edge) contained in the disk bounded
by H. In this case v is called a double-inside vertex, or a DIV for short.

(c) v is incident to one edge contained in the disk bounded by H and one edge
contained in the unbounded region outside of H. In this case v is called a transition
vertex, or a TV for short.

Similarly, for an edge e of G that is not on H, it is either an inside edge (IE)
or an outside edge (OE), depending on whether or not it is in the disk bounded by
H.

3. The number of rooted 4-regular Hamiltonian plane graphs

In this section the exact number of the different rooted 4-regular Hamiltonian plane
graphs with n vertices is determined. In this process an algorithm is developed to
randomly generate standard diagrams of such rooted Hamiltonian graphs.

The following process can be used to (re-) draw a given standard diagram of a
rooted 4-regular Hamiltonian plane graph. First H (the circle) with all the vertices
is drawn. None of the edges not on H are added directly. Instead, two short line
segments are attached tentatively to each DOV so that the line segments are in the
outside region of H with an open end. These line segments are part of the edges
not on H incident to the vertex. Each such open end is called an outside edge end
point (OEEP). Similarly, two line segments bounded in the inside disk are attached
to each DIV with the two open ends called inside edge end points, or IEEPs. Two
line segments, one bounded in the inside disk and another bounded in the outside
region of H, will be attached to each TV. See Figure 3 below.

After all the line segments have been added to the vertices, the following obser-
vation can be made regarding the inside edges. Since the IEEPs are paired by the
inside edges (not yet drawn) that connect them, there is a natural order between
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Figure 3. An illustration of the edge end points from the graph
of Figure 2.

the two edge endpoints of each pair when traveling clockwise once around H start-
ing at v1. For each such pair, one assigns the first edge endpoint encountered an
open parenthesis ‘(’ and the second point encountered a closed parenthesis ‘)’. This
generates a balanced string of parentheses. In such a balanced string the number of
‘(’ equals the number of ‘)’ due to the pairing of endpoints. In addition the fact that
the inside edges do not intersect each other leads to a string where in every prefix
of the string, the number of ’)’ is never larger than the number of ’(’. Similarly a
string of balanced parentheses can be assigned to the outside edges, see Figure 2.

Conversely, for a given arrangement of IEEPs and OEEPs, a unique Hamilton-
ian graph G can be constructed from two such balanced strings of parentheses (of
the appropriate length), see Figure 4. In other words, there is a one-to-one corre-
spondence between pairs of balanced strings of parentheses and standard diagrams
of rooted 4-regular Hamiltonian plane graphs for a given arrangement of IEEPs and
OEEPs. These observations lead to the following algorithm for generating rooted
4-regular Hamiltonian plane graphs with n vertices.
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Figure 4. Given the balanced string (()(())) for the IEEPs, the
inside edges from the graph of Figure 2 are reconstructed.

1. Arrangements of vertex types: Starting with a Hamiltonian cycle Hn of n
vertices, determine (choose) the number of vertices of each vertex type (TV, DIV
or DOV) and pick a random arrangement of these vertices along the Hamiltonian
cycle.
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2. Arrangement of inside/outside edges: Assign non-Hamiltonian edges to the
inside and separately to the outside edge-endpoints using randomly chosen balanced
strings of the appropriate length.

The detailed descriptions of the algorithm follow.

Arrangements of vertex types.

The algorithm must first choose the number of vertices for each type and decide
where to put them on Hn.

First, choose the number of transition vertices. Note that the number of transition
vertices cannot be odd, since this would lead to an odd number of IEEPs and
OEEPs and that to an edge which has to cross a Hamiltonian edge. Let 2t be the
number of transition vertices. From the remaining n− 2t vertices, choose p DIVs.
The remaining j = n−2t−p vertices all become DOVs. Once t, p and j are chosen,
there are

(
n

2t

)(
n− 2t
p

)(
n− 2t− p

n− 2t− p

)

=

(
n

2t

)(
n− 2t
p

)

=
n!

(2t)!p!j!

different ways to arrange these vertices on Hn since the graph is rooted. Figure 2
is an example for the case n = 8, t = 1 and p = 3.

Arrangement of inside/outside edges.

An arrangement of IEs is achieved by selecting a balanced string of parentheses
of length 2t + 2p (which is equal to the number of IEEPs). This string is called
an inside string. Each parenthesis in an inside string corresponds to one unique
IEEP. Starting at v1 and traversing clockwise, the first IEEP encountered is called
the starting IEEP. The process of assigning the edges moves through the symbols
of the balanced inside string and through the IEEPs simultaneously, see Figure 4.
Beginning at the starting IEEP and coming across the other IEEPs in clockwise
order, if a ‘(’ is the next symbol in the balanced string an edge is started at the
current IEEP. If a ‘)’ is the next symbol in the balanced string an edge is closed at
the current IEEP with the most recently started but not-yet-closed edge, see Figure
4. The number of balanced strings of size 2x is 1

x+1

(
2x
x

)
, which is also commonly

called a Catalan number, see [13, 14, 15] for examples of this construction. There-
fore, there are 1

t+p+1

(
2t+2p
t+p

)
ways to choose the inside string. Similarly, the outside

edges are constructed using an outside string of size 2n− (2t+ 2p). It follows that
there are

1

t+ p+ 1

(
2t+ 2p

t+ p

)
1

n− t− p+ 1

(
2n− 2t− 2p
n− t− p

)

ways to connect all the edges. This leads to the following theorem.

Theorem 3.1. The number of non-equivalent rooted 4-regular Hamiltonian
plane graphs of n vertices is

X(n) =

n
2∑

t=0

n−2t∑

p=0

(
n

2t

)(
n− 2t
p

)(
2t+ 2p

t+ p

)(
2n− 2t− 2p
n− t− p

)
1

t+ p+ 1

1

n− t− p+ 1
.

The steps in the algorithm described above can be executed in linear time and
with linear memory resources. This is obviously true for constructing Hn. Once
t and p have been chosen, a unique arrangement of the vertices is selected by a
uniform random permutation of an arbitrary vector containing 2t TVs, p DIVs,
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and j = n − 2t − p DOVs. (Well developed linear permutation algorithms can be
easily found.) There are several different ways to generate random uniform balanced
strings in O(n) time, see for example [1]. 10, 000 graphs with 2000 crossings are
generated by the implementation of the algorithm in 24 seconds on a standard
desktop PC.

4. The asymptotic behavior of X(n)

Let

g(n, t, p) =

(
n

2t

)(
n− 2t
p

)(
2t+ 2p

t+ p

)(
2n− 2t− 2p
n− t− p

)
1

t+ p+ 1

1

n− t− p+ 1

so that

X(n) =

n
2∑

t=0

n−2t∑

p=0

g(n, t, p).

Because X(n) is strictly increasing, investigating the asymptotic behavior for values
of n that are divisible by 6 will suffice. The reason for this restriction on n is mainly
for the simplicity in analyzing the maximum of g(n, t, p). Let us start with the
following lemma.

Lemma 4.1. (i) g(n, t, n/2−t+x) = g(n, t, n/2−t−x) for x ∈ {0, 1, . . . , n/2−t}.
(ii) Let x be a nonnegative integer divisible by 3, then x!

( x3 )!( x3 )!( x3 )! ≥ x!
a!b!c! for

any nonnegative integers a, b, c such that a+ b+ c = x.

Proof. It can be seen that

g(n, t, n/2− t+ x)

=

(
n

2t

)(
n− 2t

n
2 − t+ x

)(
n+ 2x
n
2 + x

)(
n− 2x
n
2 − x

)
1

n
2 + x+ 1

1
n
2 − x+ 1

=

(
n

2t

)(
n− 2t

n
2 − t− x

)(
n+ 2x
n
2 + x

)(
n− 2x
n
2 − x

)
1

n
2 + x+ 1

1
n
2 − x+ 1

= g(n, t, n/2− t− x).

This proves (i). To avoid fractions (3x)!/a!b!c! is considered for nonnegative integers
a, b, c such that a + b + c = 3x. It suffices to show that x!x!x! ≤ a!b!c! for such
a, b, c. Notice that there are two cases: exactly one of a, b, c is greater than x or
two of a, b, c are greater than x. For the first case, x!x!x! ≤ a!b!c! is equivalent to
x!x!x! ≤ (x−k)!(x−l)!(x+k+l)! for nonnegative integers k, l such that 0 < k+l ≤ x.
For the second case, x!x!x! ≤ a!b!c! is equivalent to x!x!x! ≤ (x+k)!(x+l)!(x−k−l)!
for positive integers k, l such that k + l ≤ x. The second case is proven below and
the first case is left to the reader. This is equivalent to

x!

(x− k − l)!
≤ (x+ k)!

x!

(x+ l)!

x!
,

which reduces to

[x(x− 1) . . . (x− k)(x− k − 1) . . . (x− k − l + 1)]
︸ ︷︷ ︸

k + l factors

≤

[(x+ 1) . . . (x+ k)(x+ 1) . . . (x+ l)]
︸ ︷︷ ︸

k + l factors

.
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Both sides of the above contain k + l factors, where each factor on the right is
greater than any factor on the left. So the inequality holds. ¤

Theorem 4.2. If n(mod 6) ≡ 0, then for fixed t, g(n, t, p) is maximized at
p = n/2 − t. Moreover the absolute maximum of g(n, t, p) occurs at t = n/6 and
p = n/3.

Proof. By Lemma 4.1 (i), it suffices to show that for p′ = n
2 − t + x where

x ∈ {1, 2, . . . , n2 − t}, g(n, t, p′) < g(n, t, n2 − t). After some simplification, this
inequality reduces to

(
n− 2t

n
2 − t+ x

)(
n+ 2x
n
2 + x

)(
n− 2x
n
2 − x

)
1

n
2 + x+ 1

1
n
2 − x+ 1

<

(
n− 2t
n
2 − t

)(
n
n
2

)(
n
n
2

)
1

n
2 + 1

1
n
2 + 1

.

Writing the binomials as factorials and using the fact that all quantities are positive,
this inequality is further simplified to:

(n2 )!
2

(n2 + x)!2
(n2 )!

2

(n2 − x)!2
(n2 − t)!2

(n2 − t+ x)!(n2 − t− x)!

× (n+ 2x)!(n− 2x)!
n!n!

(n2 + 1)(
n
2 + 1)

(n2 + x+ 1)(n2 − x+ 1)
< 1.(4.1)

Inequality (4.1) is proven by induction on x. For x = 1, (4.1) simplifies to

(n2 )!
2

(n2 + 1)!
2

(n2 )!
2

(n2 − 1)!2
(n2 − t)!2

(n2 − t+ 1)!(n2 − t− 1)!
(n+ 2)!(n− 2)!

n!n!

(n2 + 1)(
n
2 + 1)

(n2 + 2)(
n
2 )

< 1,

or equivalently

n
2 (

n
2 − t)(n+ 1)(n+ 2)

(n2 + 2)(
n
2 − t+ 1)(n)(n− 1) =

n3 + 3n2 + 2n− 2n2t− 6nt− 4t
n3 + 5n2 + 2n− 2n2t− 6nt+ 8t− 8 < 1.

The denominator is always positive for n ≥ 6 and this inequality will be true
whenever

(4.2) n3 + 3n2 + 2n− 2n2t− 6nt− 4t < n3 + 5n2 + 2n− 2n2t− 6nt+ 8t− 8.
But (4.2) is equivalent to 0 < 2n2+12t−8, which is true for n ≥ 6, t = {0, 1, . . . , n2 }.
This proves the case x = 1. Assume now that the inequality is true for x = k ≥ 1
and consider the case x = k + 1 (where k ≤ n

2 − t− 1). It needs to be shown that

(n2 )!
2

(n2 + k + 1)!2
(n2 )!

2

(n2 − k − 1)!2
(n2 − t)!2

(n2 − t+ k + 1)!(n2 − t− k − 1)!

× (n+ 2k + 2)!(n− 2k − 2)!
n!n!

(n2 + 1)(
n
2 + 1)

(n2 + k + 2)(n2 − k)
< 1.

Rewrite the above inequality as

(n2 − k)2

(n2 + k + 1)2
(n2 − t− k)

(n2 − t+ k + 1)
︸ ︷︷ ︸

A

(n2 )!
2

(n2 + k)!2
(n2 )!

2

(n2 − k)!2
(n2 − t)!2

(n2 − t+ k)!(n2 − t− k)!
︸ ︷︷ ︸

B
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× (n+ 2k + 1)(n+ 2k + 2)
(n− 2k)(n− 2k − 1)

(n2 + k + 1)(n2 − k + 1)

(n2 + k + 2)(n2 − k)
︸ ︷︷ ︸

C

× (n+ 2k)!(n− 2k)!
n!n!

(n2 + 1)(
n
2 + 1)

(n2 + k + 1)(n2 − k + 1)
︸ ︷︷ ︸

D

< 1.

Now BD < 1 by the induction assumption, so it suffices to show that AC ≤ 1 since
it is easy to see that every factor in A and C is non-negative. After simplifying the
following equation is obtained for AC:

AC =
(n− 2t− 2k)

(n− 2t+ 2k + 2)
(n− 2k + 2)
(n− 2k − 1)

(n+ 2k + 1)

(n+ 2k + 4)

Furthermore, since (n+2k+1)
(n+2k+4) ≤ 1, it suffices to show that

(n− 2t− 2k)
(n− 2t+ 2k + 2)

(n− 2k + 2)
(n− 2k − 1) ≤ 1(4.3)

for n ≥ 6, t = {0, 1, . . . , n2 }, k = {1, 2, . . . , n2 − t−1}. Notice that (4.3) is equivalent
to n− 4nk+8k2 +2k− 6t+2 < 0. Since n− 4nk+ 8k2 + 2k− 6t+ 2 ≤ n− 4nk+
8k2+2k+2, it suffices to show that n−4nk+8k2+2k+2 < 0. The maximum value
of the quadratic function in the last inequality in terms of k for 1 ≤ k ≤ n/2− 1 is
at the end points of the interval, so either at k = 1 or at k = n/2− 1. The reader
can verify that both are negative (for n ≥ 6). Thus (4.3), and hence (4.1) hold.

Substituting p = n
2 − t into g(n, t, p) results in:

g(n, t,
n

2
− t) =

(
n

2t

)(
n− 2t
n
2 − t

)

︸ ︷︷ ︸

A

(
n
n
2

)

(n2 + 1)

(
n
n
2

)

(n2 + 1)
.

This is maximized if A is maximized. However

A =
n!

(2t)!(n2 − t)!(n2 − t)!
.

By Lemma 4.1 (ii), A achieves its maximum at 2t = n
2 − t = n

3 , i.e., t =
n
6 and

p = n
2 − t = n

3 . ¤

The above result about the maximum value of g(n, t, p) can be used to deter-
mine the asymptotic order of X(n). The graph of g(n, t, p) is single-peaked and
all terms for which t ≈ n/6 and p ≈ n/3 are of similar order. In the following, all
factorials are replaced with an approximation based on Stirling’s formula

n! =
√
2πn nne−neλn ,

(where 1
12n+1 < λn <

1
12n ,) which does not affect the asymptotic order of X(n).

Theorem 4.3. X(n) ∼ O( 12
n

n3 ).
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Proof. Substituting Stirling’s Formula for factorials and simplifying leads to:

g(n, t, p) =
n!(2t+ 2p)!(2n− 2t− 2p)!

(2t)!p!(n− 2t− p)!(t+ p)!2(n− t− p)!2
1

(t+ p+ 1)

1

(n− t− p+ 1)

.
=

√
2

4π2(t+ p+ 1)(n− t− p+ 1)

√
n

tp(n− 2t− p)(t+ p)(n− t− p)

× nn4n

(2t)2tpp(n− 2t− p)n−2t−p .(4.4)

For t ≈ n/6 and p ≈ n/3, the combined contribution of all factors in the second
line of formula (4.4) is of order O(1/n4) and thus g(n, t, p) is mainly determined by
the factors in the third line of (4.4). The behavior of those factors is investigated
first in terms of p. Define h(p) = pp(n− 2t− p)n−2t−p, then differentiating lnh(p)
yields

h′(p)

h(p)
= ln

p

n− 2t− p
.

This implies that h′(p) = 0 for p = n/2 − t, h′(p) > 0 if p > n/2 − t, and finally
h′(p) < 0 if p < n/2 − t. This is consistent with the earlier result that g(n, t, p)
has a maximum in p for p = n/2− t (since h(p) is in the denominator). Similarly,
the behavior in t is investigated. Define f(t) = (2t)2t(n − 2t − p)n−2t−p, then
differentiating ln f(t) yields

f ′(t)

f(t)
= 2 ln

2t

n− 2t− p
.

This implies that f ′(t) = 0 for t = (n− p)/4, f ′(t) > 0 if t > (n− p)/4, and finally
f ′(t) < 0 if t < (n− p)/4. Thus defining

ĝ(n, t, p) =
nn4n

(2t)2tpp(n− 2t− p)n−2t−p ,

means ĝ(n, t, p) is increasing for p < n
2 −t and decreasing for p > n

2 −t as a function
of p, and is increasing for t < n−p

4 and decreasing for t > n−p
4 as a function of t.

The asymptotic order of g(n, t, p) around (t = n/6, p = n/3) (where it achieves
its absolute maximum) is investigated next. Let t = n/6 + x and p = n/3− x+ y
for 0 ≤ |x| ≤ n3/4 and 0 ≤ |y| ≤ n3/4. Note that the minus sign of the x term arises
from the fact that for fixed t = n/6 + x, g(n, t, p) is maximized at p = n/2 − t =
n/3 − x, see Theorem 4.2. Varying this by y results in p = n/3 − x + y. Due to
earlier remarks it suffices to investigate ĝ(n, t, p). Considering one factor at a time
the following is obtained:

(2t)2t = (
n

3
+ 2x)n/3+2x = (

n

3
)n/3+2x((1 +

6x

n
)n/(6x))2x+12x2/n.

For large n, (1 + 6x
n )

n/(6x) is approximately e, since 0 ≤ |x| ≤ n3/4. So the
asymptotic order is:

(2t)2t ∼ (n
3
)n/3+2xe2x+12x2/n.

Using similar arguments leads to

(p)p = (
n

3
− x+ y)n/3−x+y ∼ (n

3
)n/3−x+ye−x+y+3(y−x)2/n
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and

(n− 2t− p)n−2t−p = (
n

3
− x− y)n/3−x−y ∼ (n

3
)n/3−x−ye−x−y+3(y+x)2/n.

Combining these three factors gives:

ĝ(n, t, p) =
nn4n

(2t)2tpp(n− 2t− p)n−2t−p ∼
nn4n

(n/3)ne(18x2+6y2)/n
=

12n

e(18x2+6y2)/n
.

Recall that the second line of formula 4.4 is of order O(1/n4). This results in the
asymptotic estimate:

g(n, t, p) ∼ 12
n

n4

1

e(18x2+6y2)/n

for t = n/6 + x and p = n/3 − x+ y with 0 ≤ |x|, |y| ≤ n3/4. The following leads
to a lower bound for X(n):

X(n) ≥
∑

|x|≤n3/4

∑

|y|≤n3/4

g(n, t, p)

∼ 12n

n4

∑

|x|≤n3/4

∑

|y|≤n3/4

1

e(18x2+6y2)/n

∼ 12n

n4

∫ ∞

−∞

∫ ∞

−∞
e−(18x2+6y2)/ndxdy

=
12n

n4

nπ

6
√
3
=

π12n

6
√
3n3

.

To show that X(n) is at most of the same order O( 12
n

n3 ), one observes that

X(n) =
∑

|x|≤n3/4 and |y|≤n3/4

g(n, t, p) +
∑

|x|>n3/4 or |y|>n3/4

g(n, t, p).

It suffices to show that the second sum in the above is of an order at most O( 12
n

n3 ).
∑

|x|>n3/4 or |y|>n3/4

g(n, t, p) ∼ 1

n4

∑

|x|>n3/4 or |y|>n3/4

ĝ(n, t, p).

Here an upper bound can be found by assuming that either x = n3/4 or y = n3/4,
since the earlier analysis of the behavior of ĝ(n, t, p) shows that the terms ĝ(n, t, p)
are maximized under this condition. Under this assumption,

ĝ(n, t, p) ∼ 12n

e(18x2+6y2)/n
≤ 12n

e6
√
n
.

Since there are at most n2 such terms, the second sum is bounded above by a term
of order

12n

n4

n2

e6
√
n
=

12n

n2e6
√
n
.

Therefore the asymptotic order of the upper bound is also 12n

n3 which completes the
proof. ¤

Remark 4.4. Numerical evidence indicates that

X(n) ≈ 1.2712
n

n3
.

For example, the quotient X(n)n3

12n equals 1.269 for n = 1000 and 1.272 for n = 2000.
Recall that in the introduction it is stated that the number of 4-regular rooted



12 O. ASCIGIL, Y. DIAO, C. ERNST, D. HIGH, AND U. ZIEGLER

planar graphs with n vertices is of the order 12n

n2.5 which is a larger order. This
makes perfect sense since each 4-regular rooted Hamiltonian graph gives rise to
a 4-regular rooted graph by simply considering the edge from v1 to v2 on the
Hamiltonian cycle as a root edge. However, a 4-regular rooted graph may not be
Hamiltonian.

In [19] it is shown that the number of cubic rooted Hamiltonian plane graphs

is of order 4n

n3 which is - of course - much smaller than the order of X(n).

5. Generating rooted 4-regular Hamiltonian graph with approximate
uniformity

10 20 30 40 50
t

0.025

0.05

0.075

0.1

0.125

0.15

frequency

Figure 5. A typical example of the distribution Tn(t) for n = 102
together with the fitted normal distribution with µ = 16.9565 and
σ = 2.3846.

Every rooted Hamiltonian graph has a non zero probability to be generated by
the algorithm described in section 3. However two such graphs are not created with
equal probability if the values of t and p are picked with uniform probability from
their respective intervals [0, n/2] and [0, n− 2t]. As was shown in the previous sec-
tion, the number of graphs which can be generated varies dramatically for different
t and p values. This section outlines steps that are based on numerical evidence
and seem to generate the different rooted 4-regular Hamiltonian graphs with ap-
proximate uniformity probability. The basic idea is to choose the parameters t and
p with a probability distribution that reflects the different numbers of graphs that
are possible for given values of t and p.

If one defines Tn(t) =
∑n−2t

p=0 g(n,t,p)

X(n) then the distribution generated over the in-

terval [0, n/2] can be approximated by a normal distribution fn(µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2

as shown in Figure 5. The quality of the non-linear fit of Tn to a normal distribu-
tion increases for increasing n, with an estimated variance of 2.810−9 for n = 600.
Tn was approximated by a normal distribution for values of n up to 850. The µ
and σ values of these approximations change with n as described by the functions
µ = n/6−0.0526 and σ = 0.2355√n+0.0063. The fit for both functions is obtained
with R2 ≥ .999. The Tn(t) with n ≡ 0mod 6 is maximal for t = n/6. The −0.0526
in the function for the µ is indicative of the fact that there are more graphs for
t < n/6 than for t > n/6. It is expected that the mean is n/6 asymptotically.

If one defines Pn,t(p) =
g(n,t,p)

∑n−2t
p=0 g(n,t,p)

then the distribution generated over the

interval [0, n−2t] can also be approximated by a normal distribution fn,t(µ, σ). The
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quality of the non-linear fit of Pn,t to a normal distribution increases for increasing
n, with an estimated variance of 6.610−11 for n = 600 and t = 200. Pn,t was
approximated by a normal distribution for values of n varying from 50 to 850 and
for each t in [0, n/2] for each n. The µ for all n fit the function µ = n/2 − t. The

σ fit functions of the type σ = c1
√

n/2− t + c2, where the constants c1 and c2
depend on n as shown in Figure 6. Based on the σ values of the approximations,
c1(n) = 0.7074− 5.31

n1.5 and c2(n) = 0.003 +
2.47
n3/4 were obtained with R

2 ≥ .999.

20 40 60 80 100p

0.05

0.1

0.15

0.2

frequency

100 200 300 400t
2
4
6
8
10
12
14

Σ

200 400 600 800 n

0.694
0.696
0.698

0.702
0.704
0.706

c1

200 400 600 800 n

0.02
0.04
0.06
0.08

0.12

c2

Figure 6. The left top graph shows Pn,t(p) for n = 102 and
for t values 5, 10, 15, . . . , 50. The top right graph shows the stan-
dard deviation data collected for n = 102, 200, 400, 600, and 800.
together with functions of the form σ = c1

√

n/2− t + c2. The
bottom graphs show the approximation of the c1 and c2 values
through their fitting functions both of which were obtained with
R2 ≥ .999.

If t and p are chosen according to the algorithm outlined above then the question
is how uniform is the distribution generated over the set of all rooted Hamiltonian
graphs of size n? One standard way to compare a sample distribution to a known
distribution is through a χ-square test. In the given situation this is not appro-
priate since the distribution obtained for the graphs is known to be not uniform
and thus the test failed - as expected - every time. In addition, for very large
sample spaces, the test will fail almost always [10]. However, two other tests were
conducted to answer this question which provide evidence that the distribution is
approximately uniform. Both tests compare the distribution obtained through the
described algorithm with a truly uniform distribution. Since the number X(n) of
graphs is growing very fast - for example X(7) = 85, 278 and X(8) = 720, 448 -
the tests were only conducted for small values of n due to the limits on computing
power.
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The first test analyzed the probability that a values appears more than once in
a sample. The function

p(k) =

(
M

k

)

(
k

M
)h(1 +

k−1∑

i=1

(−1)i
(
k

i

)

(
k − i

k
)h)

gives the theoretical probability of picking a sample of size h with uniform proba-
bility from a space of size M and obtaining exactly k different values. Note that
for larger values of n, the space M is very large and thus it is very difficult to
compute p(k) exactly and thus a small n value was picked. For 7-vertex standard
diagrams (M = 85, 278) a sample of size h = 1000 was used. Given the above
distribution, the probability that such the sample contains at least 991 different
numbers is calculated to be .928555. In 10 test runs with the described algorithm,
only one failed this test with 989 different graphs. For 8-vertex diagrams and a
sample of size h = 1000, the probability that such a sample contains at least 996
different numbers is .999263. In 5000 test runs 4 failed this test with 995 different
graphs.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 7. Comparing expected and actual cumulative probabil-
ities for 7 (gray triangles)and 8 (black squares) vertex graphs. The
difference between the points and the line x = y indicates that the
distribution is not quite uniform. Note that the maximal difference
between x- and y-coordinate is 0.048.

The second test compared the cumulative probabilities for the generated data
with the cumulative probabilities of data generated by a truly uniform distribution
in a probability-probability plot, see [10]. To generate a truly uniform distribu-
tion a random number generator was used to pick positive integers in the interval
[1, X(n) =M ]. All random numbers for the emperical explorations were generated
using an implementation of the Mersenner Twister random number generator which
has been shown to pass several important statistical test for good random number
generators [11].

As a total sample size for both distributions 10M was chosen. This again
only allows small values of n. For example, for n = 8 the sample of size 10M
consists of over 7.2 million generated graphs. Let N(i) and G(i) be the two sample
distributions where N(i) or G(i) indicate how often the i-th number or the i-th
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graph was generated where i ∈ {1, 2, . . . ,M}. (For the positive integer there is a
natural order and for the graphs a random order of all the graphs was chosen.) Let
YN (x) be the x-th smallest distinct value in N(i) and NG(x) be the x-th smallest
distinct value in G(i). Figure 7 shows the results of this analysis for n = 7 and
n = 8. Each data point in the plot compares cumulative probabilities. The x-
coordinate uses the uniform random number distribution and the y-coordinate uses
the distribution of random graphs generated by the described algorithm. To be more
precise the k-th data point in Figure 7 is obtained in the following manner: For the

x-coordinate compute number of N(i)≤YN (k)
10M − 0.5

10M and for the y-coordinate compute
number of G(i)≤YG(k)

10M − 0.5
10M (see [10]). If the actual graph distribution is a uniform

distribution, then all the data points will be on the line x = y. Figure 7 shows that
the distribution obtained through the described algorithm is not uniform, however
the data points are close to the line y = x.

6. Conclusion

We end this discussion with some open questions.

1. Is it possible to sample rooted 4-regular Hamiltonian graphs with uniform
probability? In order to do this one needs to understand analytically the distribu-
tions Tn(t) and Pn,t(p).

2. Can this be used to randomly sample large knots with only a small amount of
bias in the sampling method? If one is interested in sampling large knots randomly,
several additional problems arise. First, there is no unique way of changing a 4-
regular plane graph uniquely into a knot diagram. Many different assignments of
over- and under- information at each crossing are possible. Second, the number of
different Hamiltonian cycles in rooted Hamiltonian graphs varies greatly and thus
this sampling method may be biased towards plane graphs that have a large number
of Hamiltonian cycles. When considering these graphs as knot diagrams, this will
introduce a bias towards knots that have diagrams with lots of Hamiltonian cycles.

3. Is it possible to consider only 4-edge connected rooted Hamiltonian plane
graphs with uniform probability? In knot theory one is usually concerned with
prime knots or links. Without defining this concept, we just note that any minimal
diagram of a prime knot or link is a 4-regular plane graph that is also 4-edge
connected. Therefore sampling these graphs is of special interest in knot theory.
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