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ABSTRACT

QITONG LI. Inverse source problems for elliptic and parabolic equations. (Under
the direction of DR. LOC NGUYEN)

In this dissertation, we solve two inverse problems. The first one is the inverse

source problem for the Helmholtz equation that governs the wave propagating in

anisotropic media. The second one is to recover the initial condition for parabolic

equations from the lateral Cauchy data.

Regarding to the first problem, we propose a numerical method to compute a source

function from the external measurement of the wave field generated by that source.

We derive an equation which is independent of the unknown source. However, this

equation is not a standard partial differential equation. A method to solve it is not yet

available. By truncating the Fourier series of the wave field with respect to a special

basis, we can approximate that equation by a system of elliptic partial differential

equations. The solution to this “approximate” system directly yields the desired source

function. We solve that system of elliptic equations by the quasi-reversibility method.

The convergence of this method is proved in this dissertation via a new Carleman

estimate.

Regarding to the second problem, we find the initial condition for parabolic equa-

tions from the Cauchy lateral data of their solutions. We employ a technique similar

to the one mentioned in the previous paragraph. We split our method into two stages.

In the first stage, we establish an additional equation for the solution to the parabolic

equation. Solving this equation is challenging. The theory to solve it is not yet

available. Hence, in the second stage, we approximate this equation by an elliptic

system. This system is solved by the quasi-reversibility method. The convergence

of the quasi-reversibility method as the measurement noise goes to zero is proved.

We present the implementation of our algorithm in details and verify our method by
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showing some numerical examples.

The convergence of the quasi-reversibility method in both problems are proved

using Carlerman estimates. These estimates are discussed in this dissertation.
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CHAPTER 1: INTRODUCTION

This dissertation aims to solve two inverse problems. The �rst one is to reconstruct

a source term from the bondary measurement of the wave �eld, governed by the

Helmholtz equation. The second one is to recover the initial condition for parabolic

equations from the lateral Cauchy data. These two inverse problems have great

real world applications in electroencephalography, biomedical imaging, brain imag-

ine, photoacoustic tomography, seismic imaging, determine the spatially distributed

temperature, and identify the pollution on the surface of rivers or lakes, and etc. [1�5]

In the �rst problem, we propose a numerical method to solve an inverse source

problem for the Helmholtz equation in the multi-frequency regime. This is the prob-

lem of determining the unknown source from external measurement of the wave �eld.

Some similar inverse source problems for Helmholtz-like PDEs were studied both

analytically and numerically in [1, 6]. In particular, in works [6, 7] uniqueness and

stability results were proven for a special case and it was also shown that the sta-

bility estimate improves when the frequency grows. The uniqueness of this inverse

source problem was proven in [8] for non constant coe�cients. To the best of our

knowledge, past numerical methods for these problems are based on various methods

of the minimization of mismatched least squares functionals. Good quality numerical

solutions are obtained in [2,8,9] for high frequencies. However, convergence rates of

minimizers to the exact solution when the noise in the data tends to zero were not

studied in those papers. On the other hand, we refer here to the work [10], in which a

non-iterative method, based on a fresh idea, was proposed to solve the inverse source

problem for a homogenous medium. Uniqueness and stability results were proven

in [10] and good quality numerical results were presented. In this dissertation we
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solve the inverse source problem for inhomogeneous media. We introduce a new nu-

merical method based on the Quasi-Reversibility Method (QRM). The Lipschitz-like

convergence rate of the solution due to QRM to the exact solution, as long as the

noise in the data tends to zero, is proved.

The second inverse problem is a problem of recovering the initial condition of the

parabolic equation from the lateral Cauchy data. This problem has many real-world

applications ; for e.g., determine the spatially distributed temperature inside a solid

from the boundary measurement of the heat and heat �ux in the time domain [11];

identify the pollution on the surface of the rivers or lakes [12]; e�ectively monitor the

heat conductive processes in steel industries, glass and polymer forming and nuclear

power station [13]. Due to its realistic applications, this problem has been studied

intensively. The uniqueness of such similar problems is well-known, see [14]. Also, it

can be reduced from the logarithmic stability results in [11,13]. The natural approach

to solve this problem is the optimal control method; that means, minimize a mismatch

functional. The proof of the convergence of the optimal control method to the true

solution to these inverse problems is challenging and is omitted. In this dissertation,

we introduce an approximate model, as a coupled linear system of elliptic partial

di�erential equations. Solution to this model is the vector of Fourier coe�cients of

the solutions to the parabolic equation mentioned above. This approximate model

is solved by the quasi-reversibility method. We will prove the convergence for the

quasi-reversibility method as the measurement noise tends to 0. The convergent rate

is Lipschitz. We present the implementation of our algorithm in details and verify our

method by showing some numerical examples. More details can be found in section

1.2.
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1.1 The problem of reconstructing the source terms

Below x = ( x1; :::; xn� 1; z) 2 Rn ; n � 2. Let 
 be the cube(� R; R)n � Rn for

someR � 1, and

� + = f x 2 @
 : z = Rg: (1.1.1)

For i; j = 1; :::; n, let functions aij 2 C1(Rn ); bj 2 C(Rn ); c 2 C(Rn ) be such that:

1. For all x 2 Rn

aij (x) = aji (x) 1 � i; j � n: (1.1.2)

2. There exist two constants� 1 and � 2 such that 0 < � 1 � � 2 and

� 1j� j2 �
nX

i;j =1

aij (x) � i � j � � 2j� j2 for all x 2 Rn ; � 2 Rn : (1.1.3)

3. For all x 2 Rn n 


aij (x) =

8
><

>:

1 if i = j;

0 if i 6= j:
(1.1.4)

4. For all x 2 Rn n 
 ,

bj (x) = c(x) = 0 : (1.1.5)

We introduce the uniformly elliptic operator

Lu =
nX

i;j =1

aij (x)ux i x j +
nX

i =1

bi (x)ux i + c(x)u for u 2 H 2(Rn ): (1.1.6)

The principal part of this operator is

L0u =
nX

i;j =1

aij (x)ux i x j : (1.1.7)

Let k > 0 be the wave number andu = u(x; k) be the complex valued wave �eld
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of wave numberk, generated by the source function which has the form of separable

variables g(k)f (x); where functionsg 2 C1[0; 1 ) and f 2 C1 (Rn ). The wave �eld

u(x; k) 2 C2(Rn ); k > 0; satis�es the equation

Lu + k2n2(x)u(x; k) = g(k)f (x); x 2 Rn (1.1.8)

and the Sommerfeld radiation condition

@jx ju(x; k) � iku(x; k) = o(jxj(1� n)=2); jx j ! 1 : (1.1.9)

Here, the functionn 2 C1(Rn ) is the spatially distributed refractive index. We assume

that

n (x) = 1 for x 2 Rn n 
 : (1.1.10)

Condition (1.1.10) means that the refractive index of the background (air or vacuum)

is scaled to be1. See [15] for the well-posedness of problem (1.1.8)�(1.1.9) in the

caseL = � . The well-posedness for the general operatorL is an assumption in this

dissertation. Given numbersk and k such that 0 < k < k < 1 and assuming that

the function

g : [k; k] ! R

is known, we are interested in the following problem.

Problem 1 (Inverse source problem with Cauchy data). Reconstruct the functions

f (x), x 2 
 , given the following data

F (x; k) = u(x; k) x 2 @
 ; k 2 (k; k) (1.1.11)

and

G(x; k) = @� u(x; k) x 2 � + ; k 2 (k; k) (1.1.12)
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whereu is the solution of (1.1.8),(1.1.9).

Problem 1 is somewhat over-determined due to the additional dataG(x; k) mea-

sured on� + � [k; k]. We need this data for the convergence theorem. However, we

notice in our numerical experiments that our method works well without that ad-

ditional data. More precisely, in addition to Problem 1, we also solve the following

non-overdetermined problem.

Problem 2 (Inverse source problem with Dirichlet data). Reconstruct the functions

f (x), x 2 
 , given the following data

F (x; k) = u(x; k) x 2 @
 ; k 2 (k; k) (1.1.13)

whereu is the solution of (1.1.8),(1.1.9).

The Dirichlet boundary data (1.1.13) implicitly contain the Neumann boundary

data for the function u on the entire boundary@
 : Indeed, for eachk 2 (k; k) one

can uniquely solve equation (1.1.8) with the radiation condition (1.1.9) and boundary

condition (1.1.13) in the unbounded domainRn n 
 : The resulting solution provides

the Neumann boundary condition@� u(x; k) for x 2 @
 ; k 2 (k; k); where � is the

unit outward normal vector at @
 :

We propose a new numerical method which enables us to establish convergence

rate of minimizers of a certain functional of the Quasi-Reversibility Method (QRM)

to the exact solution, as long as the noise in the data tends to zero. Our method is

based on several ingredients:

1. Elimination of the unknown source functionf (x) from the original PDE via

the di�erentiation with respect to k of the function u(x; k)=g(k) :

2. The use of a newly published orthonormal basis inL2
�
k; k

�
, see [16], to obtain

an overdetermined boundary value problem for a system of coupled elliptic
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PDEs of the second order.

3. The use of the QRM to �nd an approximate solution of that boundary value

problem.

4. The formulation and the proof of a new Carleman estimate for the operatorL0

in (1.1.7).

5. In the case of Problem 1, the use of this Carleman estimate for establishing the

convergence rate of the minimizers of the QRM to the exact solution, as long

as the noise in the data tends to zero.

Recently a similar idea was applied to develop a new numerical method for the X-

ray computed tomography with a special case of incomplete data [17] as well as to the

development of a globally convergent numerical method for a 1D coe�cient inverse

problem [18]. The above items 1, 4 and 5 have roots in the Bukhgeim-Klibanov

method, which was originally introduced in [19]. Even though there exists now a

signi�cant number of publications on this method, we refer here only to a few of

them [20�23] since this thesis is not about that method. The original goal of [19] was

to prove uniqueness theorems for coe�cient inverse problems. Nowadays, however,

ideas of this method are applied for constructions of numerical methods for coe�cient

inverse problems and other ill-posed problems, see, e.g. [16,18,24,25].

Given N > 1, we approximate the wave �eld by itsN th partial sum of the Fourier

series with respect to a special orthonormal basis. Consider the Fourier coe�cients of

the wave �eld as new unknowns. We can derive from the partial di�erential equation

mentioned in the previous paragraph a system for such Fourier coe�cients. Our

numerical reconstruction is now based on a numerical solver for this system. Since

this �cut-o�" step is not rigorous, the obtained system is just an �approximate", rather

than exact, model. However, we still employ this technique since it is quite e�cient

in solving many linear and nonlinear inverse problems [17,18,24�28].
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Note that the system for Problem 1 is over-determined since the boundary data

involves both Dirichlet and Neumann information of the wave �eld. The over-

determined boundary value problem for the system of PDEs for Problem 1 by the

quasi-reversibility method. This method is well-known to be a perfect tool to solve

overdetermined boundary value problems for PDEs. The quasi-reversibility method

was �rst introduced by Lattès and Lions [29] for numerical solutions of ill-posed prob-

lems for PDEs. It has been studied intensively since then, see e.g., [23,30�36].

A survey on this method can be found in [37]. The solutions of the systems above

due to the quasi-reversibility method are called the regularized solutions. The conver-

gence of the regularized solutions to the true ones as the noise tends to0 was proved

in [24] using Carleman estimates for the case whenL = � for spherical domains.

In this thesis, we extend the Carleman estimate for the caseM is not necessarily

identical to Id and then use it to prove the convergence of the quasi-reversibility

method. In contrast, the well-posedness for Problem 2 is only studied numerically in

this dissertation.

We will prove a Carleman estimate in Section 2.2.1. We introduce the algorithms

and the quasi-reversibility method to solve Problems 1 and 2 in Section 3.1. In Section

3.3, we discuss about the convergence of the regularized solutions. Then, in Section

3.4, we describe the implementation leading to the numerical results and show several

numerical examples.

1.2 The problem to the parabolic equation

Let d � 2 be the spatial dimension and
 be a open and bounded domain inRd.

Assume that @
 is smooth. Let

A = ( aij )d
i;j =1 2 C2(Rd; Rd� d) (1.2.1)

satisfy the following conditions
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1. A is symmetric; i.e,AT (x) = A(x) for all x 2 Rd;

2. A is uniformly elliptic; i.e., there exists a positive number� such that

A(x)� � � � � j� j2 for all x; � = ( � 1; : : : ; � d) 2 Rd: (1.2.2)

Let b = ( b1; b2; : : : ; bd) 2 C1(Rd; Rd) and c 2 C1(Rd; R). Employ the operator L

(1.1.6) de�ned in the previous section, we have

Lv =
nX

i;j =1

aij (x)vx i x j +
nX

i =1

bi (x)vx i + c(x)v for v 2 C2(Rd): (1.2.3)

Consider the initial value problem

8
><

>:

ut (x; t) = Lu(x; t) x 2 Rd; t > 0

u(x; 0) = f (x) x 2 Rd
(1.2.4)

where f 2 L2(Rd) represents an initial source with support compactly contained in


 . We refer the reader to the books [38,39]. The second main aim of this dissertation

is to solve the following problem.

Problem 3. Let T > 0. Given the lateral Cauchy boundary data

F (x; t) = u(x; t) and G(x; t) = @� u(x; t) (1.2.5)

for x 2 @
 ; t 2 [0; T]; determine the functionf (x); x 2 
 :

Problem 3 is the problem of recovering the initial condition of the parabolic equa-

tion from the lateral Cauchy data. In this dissertation, we employ the technique de-

veloped by our own research group. The main point of this technique is to derive an

approximate model for the Fourier coe�cients of the solution to the governing partial

di�erential equation. This technique was �rst introduced in [16]. This approximate
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model is a system of elliptic equations. It, together with Cauchy boundary data, is

solved by the quasi-reversibility method. This approach was used to solve an inverse

source problem for Helmholtz equation [40] and to inverse the Radon transform with

incomplete data [17]. Especially, Klibanov, Li and Zhang [41] used the convexi�cation

method, a stronger version of this technique, to compute numerical solutions to the

nonlinear problem of electrical impedance tomography with restricted Dirichlet-to-

Neumann map data. It is remarkable mentioning that the numerical solutions in [41]

due to the convexi�cation method are impressive.

As mentioned in the previous paragraph, we employ the quasi-reversibility method

to solve an approximate model for Fourier coe�cients of the solution to (1.2.4). This

method was �rst introduced by Lattès and Lions [29]. It is used to computed nu-

merical solutions to ill-posed problems for partial di�erential equations. Due to its

strength, since then, the quasi-reversibility method attracts the great attention of

the scienti�c community see e.g., [23,30�35,42�44]. We refer the reader to [37] for a

survey on this method. The solution of the approximate model in the previous para-

graph due to the quasi-reversibility method is calledregularized solutionin the theory

of ill-posed problems [45]. A question arises immediately about the convergence of

the quasi-reversibility method: whether or not the regularized solutions obtained by

the quasi-reversibility method converges to the true solution of our system of partial

di�erential equations as the noise tends to0. The a�rmative answer to this question

is obtained using a general Carleman estimate. Moreover, we employ a Carleman esti-

mate (in section 2.2.2) to prove that the convergence rate is Lipschitz. It is important

mentioning that in the celebrate paper [19], Bukhgeim and Klibanov discovered the

use of Carleman estimate in studying inverse problems for all three main types of

partial di�erential equations.



CHAPTER 2: Prelimiraries

2.1 An orthonormal basis inL2(a; b)

For each n > 1, de�ne � n (k) = ( k � k0)n� 1 exp(k � k0), k 2 (a; b), where k0 =

(a + b)=2. The sequencef � ng1
n=1 is complete inL2(a; b). Using the Gram-Schmidt

orthonormalization for the sequencef � ng1
n=1 , we construct an orthonormal basis of

L2(a; b); named asf 	 ng1
n=1 . For eachn; the function 	 n (k) takes the form

	 n (k) = Pn� 1(k � k0) exp(k � k0)

wherePn� 1 is a polynomial of the(n � 1)th order.

Fix a positive integer N . We approximate the function u = u(x; k), x 2 
 ;

k 2 (k; k) by its N th partial sum of its Fourier series

u(x; k) =
NX

n=1

un (x)	 n (k) (2.1.1)

where

un (x) =
Z b

a
u(x; k)	 n (k)dk:

In the truncation context (2.1.1), the partial derivative with respect to k of u(x; k) is

approximated by

@ku(x; k) =
NX

n=1

un (x)	 0
n (k) (2.1.2)

for all x 2 
 and k 2 (a; b): To reconstruct the wave �eld u(x; k), we computeun (x),

1 � n � N , via (2.1.1), (2.1.2) and the knowledge of	 n and 	 0
n . We therefore require

that the function 	 0
n cannot be identically0. The �sin and cosine" basis of the usual
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Fourier transform does not meet this requirement while it is not hard to verify that

the basisf 	 ng1
n=1 does.

It is important to mention that the basis f 	 ng1
n=1 was �rst introduced in [16].

Then, it is successfully used to solve nonlinear coe�cient inverse problems [18, 24]

and the inverse X-ray tomographic problem with incomplete data [17].

The following result plays an important role in our analysis.

Proposition 2.1.1 (Theorem 2.1 [16]). For m; r � 1, we have

dmr =
Z k

k
	 m (k)	 0

r (k)dk =

8
><

>:

1 if r = m;

0 if r < m:
(2.1.3)

Consequently, letN > 1 be an integer. Then theN � N matrix

DN = ( dmr )N
m;r =1 (2.1.4)

has determinant1 and is invertible.

2.2 Carleman estimates

2.2.1 A Carleman estimate for general elliptic operators

The main aim of this section is to prove the following estimate 2.2.1.

For brevity, we assume that the functionu in Theorem 2.2.1 is a real valued one.

Indeed, this theorem holds true for complex valued functionu. This fact follows

directly from the theorem itself. Hence, in this section, we rede�ne the spaceH 2
0;# (
)

in (3.2.7) as the set of all real valued functions satisfying the same constraints. Recall

the operator the uniformly elliptic operator L0 in (1.1.7).

Theorem 2.2.1 (Carleman estimate). Let the numberb > R. Let the coe�cients

aij (x) of the uniformly elliptic operatorL0 de�ned in (1.1.7) satisfy conditions (1.1.2),
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(1.1.3) and alsoaij 2 C1(
) . Suppose that

ain (x) = 0 ; for x 2 @
 n f z = � Rg; i 6= n: (2.2.1)

Then there exist numbers

p0 = p0

�
� 1; � 2; b; n; R;max

ij
kaij kC1(
 )

�
> 1

and

� 0 = � 0

�
� 1; � 2; b; n; R;max

ij
kaij kC1(
 )

�
� 1;

both of which depend only on listed parameters, such that the following Carleman

estimate holds:

Z



(L0u)2 exp [2� (z + b)p] dx� C2�

Z




�
(r u)2 + � 2u2

�
exp [2� (z + b)p] dx; (2.2.2)

for all � � � 0; p � p0 and u 2 H 2
0;# (
) . Here, the constant

C2 = C2

�
� 1; � 2; b; p; n; R;max

ij
kaij kC1(
 )

�
> 0

depends only on listed parameters.

Proof. Below in this proof u 2 C2
�



�
\ H 2

0;# (
) : The caseu 2 H 2
0;# (
) can be

obtained via the density argument. In this proofC2 > 0 denotes di�erent positive

numbers depending only on above listed parameters. On the other hand, everywhere

below C3 = C3

�
� 1; � 2; b; R;maxij kaij kC1(
 )

�
> 0 also denotes di�erent positive

constants depending only on listed parameters but independent onp, unlike C2: Also,

in this proof O (1=� ) denotes di�erent functions belonging toC1
�



�
and satisfying

the estimate

kO (1=� )kC1(
 ) �
C2

�
for all �; p � 1: (2.2.3)



13

Below n� D vector functions Uk are such that

Z

@

Ur � �d� � 0 r 2 f 1; :::; 14g; (2.2.4)

whereUr � � means the scalar product of vectorsUr and � in Rn : recall that � is the

outward looking unit normal vector on@
 : In fact it follows from the proof that, the

integrals in (2.2.4) equal zero forr = 1; 2: But they are non-negative starting from

r = 3.

Introduce the new functionv (x) = u (x) exp [� (z + b)p] : Then

u (x) = v (x) exp [� � (z + b)p] :

Using straightforward calculations, we obtain

ux i x j = vx i x j exp [� � (z + b)p] for i; j = 1; : : : ; n � 1;

ux i z =
�
vx i z � �p (z + b)p� 1 vx i

�
exp [� � (z + b)p] ; for i; j = 1; : : : ; n � 1;

and

uzz =
�
vzz � 2�p (z + b)p� 1 vz + � 2p2 (z + b)2p� 2 (1 + O (1=� )) v

�
exp [� � (z + b)p] :

Hence, (1.1.7) implies that

(L0u) exp [� (z + b)p]

=

" 
n� 1X

i;j =1

aij vx i x j +
n� 1X

i =1

ain vx i z + ann vzz

!

+
�
� 2p2 (z + b)2p� 2 ann v

�
#

� 2�p (z + b)p� 1 ann vz � �p (z + b)p� 1
n� 1X

i =1

ain vx i : (2.2.5)
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Denote terms in the right hand side of (2.2.5) asy1; y2; y3; y4. More precisely,

y1 =
n� 1X

i;j =1

aij vx i x j +
n� 1X

i =1

ain vx i z + ann vzz; (2.2.6)

y2 = � 2p2 (z + b)2p� 2 ann v; (2.2.7)

y3 = � 2�p (z + b)p� 1 ann vz; (2.2.8)

y4 = � �p (z + b)p� 1
n� 1X

i =1

ain vx i : (2.2.9)

It follows from (2.2.5) that

(L0u)2 exp [2� (z + b)p] (z + b)2� p = ( y1 + y2 + y3 + y4)2 (z + b)2� p

= (( y1 + y2) + ( y3 + y4))2 (z + b)2� p :

Thus,

(L0u)2 exp [2� (z + b)p] (z + b)2� p

� 2y3 (y1 + y2) (z + b)2� p + 2y4 (y1 + y2) (z + b)2� p : (2.2.10)

We now estimate from the below each term in the right hand side of inequality (2.2.10)

separately. We do this in several steps.

Step 1 . Estimate from the below of the quantity2y1y3 (z + b)2� p : By (2.2.6) and

(2.2.7), we have

2y1y3 (z + b)2� p

= � 4�p (z + b) ann vz

 
1
2

n� 1X

i;j =1

�
aij vx i x j + aij vx j x i

�
+

n� 1X

i =1

ain vx i z + ann vzz

!

: (2.2.11)
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By the standard rules of the di�erentiation,

� 2�p (z + b)ann vz
�
aij vx i x j + aij vx j x i

�

= � 2�p
h
(z + b) ann aij (vzvx i )x j

� (z + b) ann aij vzx j vx i � (z + b) (ann aij )x j
vzvx i

i

� 2�p
h
(z + b) ann aij

�
vzvx j

�
x i

� (z + b) ann aij vzx i vx j � (z + b) (ann aij )x i
vzvx j

i

=
�
2�p (z + b) ann aij vx i vx j

�
z

� 2�p ((z + b) ann aij )z vx i vx j

+ ( � 2�p (z + b) ann aij vzvx i )x j
+ 4�p (z + b) (ann aij )x j

vzvx i

+
�
� 2�p (z + b) ann aij vzvx j

�
x i

+ 4�p (z + b) (ann aij )x i
vzvx j :

Hence,

� 2�p (z + b) ann vz
�
aij vx i x j + aij vx j x i

�
� � C3�p (r v)2 + divU1; (2.2.12)

see (2.2.4) forU1:

Next, we estimate the term

�
n� 1X

i =1

4�p (z + b) ann ain vzvx i z

=
n� 1X

i =1

�
� 2�p (z + b) ann ain v2

z

�
x i

+
n� 1X

i =1

�p (z + b) (ann ain )x i
v2

z :

Hence,

�
n� 1X

i =1

4�p (z + b) ann ain vzvx i z � � C3�pv 2
z + divU2: (2.2.13)

Now, U2 � � = 0 for x 2 @
 for two reasons: �rst, this is becausevz (x) = 0 for

x i = � R and, second, due to condition (2.2.1). Hence, due to the �rst reason, we do

not actually use here yet condition (2.2.1).
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Next, we estimate the term� 4�p (z + b) a2
nn vzvzz in (2.2.11),

� 4�p (z + b) a2
nn vzvzz =

�
� 2�p (z + b) a2

nn v2
z

�
z

+ 2�p
�
(z + b) a2

nn

�
z

v2
z : (2.2.14)

Combining this with (2.2.11)-(2.2.14), we conclude that

2y1y3 (z + b)2� p � � C3�p (r v)2 + divU3; (2.2.15)

see (2.2.4) forU3: Next,

� C3�pv 2
z = � C3�p

�
u2

z + 2�p (z + b)p� 1 uzu + � 2p2 (z + b)2p� 2 u2
�

exp [2� (z + b)p]

= � C3�pu 2
z exp [2� (z + b)p] � C3� 3p3 (z + b)2p� 2 u2 exp [2� (z + b)p]

+
�
� C3� 2p2 (z + b)p� 1 u2 exp [2� (z + b)p]

�
z

(2.2.16)

+ 2C3� 3p3 (z + b)2p� 2 (1 + O (1=� )) u2 exp [2� (z + b)p]

� � C3�pu 2
z exp [2� (z + b)p] + divU4;

see (2.2.4) forU4: It follows from (2.2.12)-(2.2.16) that

2y1y3 (z + b)2� p � � C3�p (r u)2 exp [2� (z + b)p] + divU5; (2.2.17)

see (2.2.4) forU5:

Step 2 . Estimate from the below the quantity 2y2y3 (z + b)2� p : By (2.2.7) and
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(2.2.8)

2y2y3 (z + b)2� p = � 4� 3p3 (z + b)2p� 1 a2
nn vzv

=
�
� 2� 3p3 (z + b)2p� 1 a2

nn v2
�

z
+ 2� 3p3 (2p � 1) (z + b)2p� 2 a2

nn v2

+ 2� 3p3 (z + b)2p� 1 �
a2

nn

�
z

v2

� 2� 3p3 (2p � 1) (z + b)2p� 2 � 2
1

�
1 +

(z + b) (a2
nn )z

(2p � 1) � 2
1

�
v2

+
�
� 2� 3p3 (z + b)2p� 1 a2

nn v2
�

z

� C3� 3p4 (z + b)2p� 2 u2 exp [2� (z + b)p] + divU6; (2.2.18)

see (2.2.4) forU6: There exists a su�ciently large number p0;

p0 = p0

�
� 1; � 2; b; n; R;max

ij
kaij kC1(
 )

�
> 1

such that

1 +
(z + b) (a2

nn )z

(2p � 1) � 2
1

�
1
2

; for all p � p0: (2.2.19)

Hence, (2.2.17)-(2.2.19) imply that forp � p0

2 (y1 + y2) y3 (z + b)2� p � � C3�p (r u)2 exp [2� (z + b)p]

+ C3� 3p4 (z + b)2p� 2 u2 exp [2� (z + b)p] + divU7; (2.2.20)

see (2.2.4) forU7:

Step 3. Estimate 2y1y4 (z + b)2� p ; see (2.2.10); i.e., estimate

 

� 2�p (z + b)
n� 1X

k=1

akn vxk

!  
n� 1X

i;j =1

aij vx i x j +
n� 1X

i =1

ain vx i z + ann vzz

!

: (2.2.21)
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First,

� �p (z + b) akn vxk

�
aij vx i x j + aji vx j x i

�

= � �p (z + b) akn aij
�
vxk vx i x j + vxk vx j x i

�

=
�
� �p (z + b) akn aij vxk vx j

�
x i

+ �p (z + b) akn aij vxk x i vx j

+ �p (z + b) (akn aij )x i
vxk vx j + ( � �p (z + b) akn aij vxk vx i )x j

+ �p (z + b) akn aij vxk x j vx i + �p (z + b) (akn aij )x j
vxk vxi :

(2.2.22)

Next,

�p (z + b) akn aij vxk x i vx j + �p (z + b) akn aij vxk x j vx i

=
�
�p (z + b) akn aij vx i vx j

�
xk

� �p (z + b) (akn aij )xk
vx i vx j : (2.2.23)

Hence, it follows from (2.2.22) and (2.2.23) that

 

� 2�p (z + b)
n� 1X

k=1

akn vxk

!  
n� 1X

i;j =1

aij vx i x j

!

� � C3�p (r v)2 + divU8: (2.2.24)

Considering in (2.2.22) and (2.2.23) explicit forms of coordinates of the vector function

U8 and using (2.2.1), we conclude thatU7 satis�es condition (2.2.4).

We now estimate the term

 

� 2�p (z + b)
n� 1X

k=1

akn vxk

!  
n� 1X

i =1

ain vx i z

!

: (2.2.25)

We have

 

� 2�p (z + b)
n� 1X

k=1

akn vxk

!  
n� 1X

i =1

ain vx i z

!

= � �p (z + b)
n� 1X

i;k =1

akn ain (vxk vx i z + vx i vxk z) :
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We have:

� �p (z + b) akn ain (vxk vx i z + vx i vxk z)

= ( � �p (z + b) akn ain vx i vxk )z + �p ((z + b) akn ain )z vx i vxk :

Hence, the term (2.2.25) can be estimated from the below as

 

� 2�p (z + b)
n� 1X

k=1

akn vxk

!  
n� 1X

i =1

ain vx i z

!

� � C3�p (r v)2 + divU9; (2.2.26)

whereU9 satis�es (2.2.4).

We now estimate  

� 2�p (z + b)
n� 1X

k=1

akn vxk

!

ann vzz: (2.2.27)

We have

� 2�p (z + b) akn ann vxk vzz = ( � 2�p (z + b) akn ann vxk vz)z + 2�p (z + b) akn ann vxk zvz

+ 2�p ((z + b) akn ann )z vxk vz

=
�
�p (z + b) akn ann v2

z

�
xk

� �p ((z + b) akn ann )xk
v2

z

+ 2�p ((z + b) akn ann )z vxk vz + ( � 2�p (z + b) akn ann vxk vz)z :

Hence, the expression in (2.2.27) can be estimated as

 

� 2�p (z + b)
n� 1X

k=1

akn vxk

!

ann vzz � � C3�p (r v)2 + divU10; (2.2.28)

where (2.2.4) is valid forU10: Summing up (2.2.24), (2.2.26) and (2.2.28), we obtain

2y1y4 (z + b)2� p � � C3�p (r v)2 + divU11; (2.2.29)

whereU11 satis�es (2.2.4).
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Step 4 . Estimate 2y2y4 (z + b)2� p ;

2y2y4 (z + b)2� p = � 2� 3p3 (z + b)2p� 1
n� 1X

i =1

ain ann vx i v

=

 

� 3p3 (z + b)2p� 1
n� 1X

i =1

ain ann v2

!

x i

+ � 3p3 (z + b)2p� 1

 
n� 1X

i =1

(ain ann )x i

!

v2:

Comparing this with (2.2.10), (2.2.16), (2.2.19), (2.2.20) and (2.2.29), we obtain

(L0u)2 exp [2� (z + b)p] (z + b)2� p � � C3�p (r u)2 exp [2� (z + b)p]

+ C3� 3p4 (z + b)2p� 2 u2 exp [2� (z + b)p] + divU12; 8p � p0; (2.2.30)

whereU12 satis�es (2.2.4).

In addition to the term div U12; the right hand side of (2.2.30) has one negative and

one positive term. But,except of divergence terms (div), one must have only positive

terms in the right hand side of any Carleman estimate. Therefore, we perform now

Step 5.
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Step 5 . Estimate from the below� (L0u) u exp [2� (z + b)p] : We have

� (L0u) u exp [2� (z + b)p] = �
n� 1X

i;j =1

aij ux i x j u exp [2� (z + b)p]

�
n� 1X

i =1

ain ux i zu exp [2� (z + b)p] � ann uzzu exp [2� (z + b)p]

=
n� 1X

i;j =1

�
� aij ux j u exp [2� (z + b)p]

�
x i

+
n� 1X

i;j =1

aij ux i ux j exp [2� (z + b)p]

+
n� 1X

i;j =1

(aij )x i
ux j u exp [2� (z + b)p] +

n� 1X

i =1

(� ain uzu exp [2� (z + b)p])x i

+
n� 1X

i =1

(ain )x i
uzu exp [2� (z + b)p] +

n� 1X

i =1

ain uzux i exp [2� (z + b)p]

+ ( � ann uzu exp [2� (z + b)p])z + ann u2
z exp [2� (z + b)p]

+ 2�p (z + b)p� 1 ann uzu exp [2� (z + b)p] + ( ann )z uzu exp [2� (z + b)p] : (2.2.31)

Next,

2�p (z + b)p� 1 ann uzu exp [2� (z + b)p] =
�
�p (z + b)p� 1 ann u2 exp [2� (z + b)p]

�
z

� 2� 2p2 (z + b)2p� 2 ann u2 (1 + O (1=� )) exp [2� (z + b)p] : (2.2.32)

Combining (2.2.31) with (2.2.32) and taking into account (1.1.3) as well as inequalities

like ux i u � � u2
x i

=(2� ) � �u 2=2, we obtain for � � � 0

� (L0u) u exp [2� (z + b)p] �
� 1

2
(r u)2 exp [2� (z + b)p]

� 3� 2p2 (z + b)2p� 2 ann u2 exp [2� (z + b)p] + divU13; (2.2.33)

see (2.2.4) forU13:

Step 6 . This is the �nal step. Multiply estimate (2.2.33) by 4C3�p=� 1 and sum
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up with (2.2.30). We obtain

� 4C3�p� � 1
1 (L0u) u exp [2� (z + b)p] + ( L0u)2 exp [2� (z + b)p] (z + b)2� p

� C3�p (r u)2 exp [2� (z + b)p]

+ C3� 3p4 (z + b)2p� 2
�

1 �
12ann

p� 1

�
u2 exp [2� (z + b)p] + divU14; (2.2.34)

see (2.2.4) forU14: We can choosep0 so large that, in addition to (2.2.19),

1 �
12ann (x)

p� 1
�

1
2

; 8p � p0: (2.2.35)

We estimate the left hand side of (2.2.34) from the above as

� 4C3�p� � 1
1 (L0u) u exp [2� (z + b)p] + ( L0u)2 exp [2� (z + b)p] (z + b)2� p

� C2 (L0u)2 exp [2� (z + b)p] + C2� 2u2 exp [2� (z + b)p] :

Combining this with the right hand side of (2.2.34), integrating the obtained pointwise

inequality over the domain 
 and taking into account (2.2.4), (2.2.35) and Gauss'

formula, we obtain the target estimate (2.2.2).

Corollary 2.2.1. Assume that conditions of Theorem 2.2.1 are satis�ed. Since we

should have in Theorem 2.2.1b > R, we choose in (2.2.2)b = 3R. Let p0 > 1

and � 0 > 1 be the numbers of Theorem 2.2.1. Consider theN � D complex valued

vector functionsW (x) 2 H 2
0;# (
) : Then there exists a su�ciently large number� 1;

depending only on� 1, � 2, n, R, maxij , kaij kC1(
 ), maxj kbj kC(
 ), kckC(
 ) ; knkC(
 )

k; k, N such that the following Carleman estimate holds

Z




�
�L (W (x)) + D � 1

N SN n2(x)W(x)
�
�2

exp [2� (z + 3R)p0 ] dx

� C3�
Z




�
jr Wj2 + � 2 jWj2

�
exp [2� (z + 3R)p0 ] dx (2.2.36)
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for all � � � 1 and W in H 2
0;# (
) :

This Corollary follows immediately from Theorem 2.2.1 as well as from the well

known fact (see, e.g. lemma 2.1 in [23]) that the Carleman estimate depends only on

the principal part of a PDE operator while the lower order terms of this operator can

be absorbed in this estimate.

2.2.2 A Carleman estimate on parabolic operators

Let the matrix A be as in (1.2.1). The main aim of this section is to prove a Car-

leman estimate in a general domain
 . Similar versions of Carleman estimate can be

found in [41, Theorem 3.1] and [46, Lemma 5] when
 is an annulus and [40, The-

orem 4.1] and when
 is a cube. In this dissertation, we will use the following esti-

mate to derive the convergence of the quasi-reversibility method. It can be deduced

from [14, Lemma 3, Chapter 4, Ÿ1].

Without lost of generality, we can assume that


 �

(

x = ( x1; x2; : : : ; xd) : 0 < x 1 + X � 2
dX

i =2

x2
i < 1

)

(2.2.37)

for some0 < X < 1. De�ne the function

 (x) = x1 +
1

2X 2

dX

i =1

x2
i + �; 0 < � < 1=2: (2.2.38)

Using Lemma 3 in [30, Chapter 4, Ÿ1] for the functionu 2 C2(
) that is independent

of the time variable, we can �nd a constant� 0 and a constant � 1 (depending only

on � and the entriesaij , 1 � i; j � d, of the matrix A) such that for all � � � 0 and

p > � 1

�p
X 2

e2� � p (x ) jr uj2 + � 3p4 � 2p� 2e2� � p (x ) juj2 � �
C�p
X 2

e2� � p (x )uDiv( Ar u)

+ C p+2 e2� � p (x ) jDiv( Ar u)j2 + Div U (2.2.39)
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for all x 2 
 where the vectorU satis�es

jUj � Ce2� � p (x )

�
�p
X

jr uj2 +
� 3p3

X 3
 � 2p� 2u2

�
: (2.2.40)

Applying (2.2.39) and (2.2.40), we have the lemma.

Lemma 2.2.1 (Carleman estimate). Let u 2 C2(
) satisfying

uj@
 = Ar u � � = 0 on @
 (2.2.41)

where � the outward unit normal vector of@
 : Then, there exist a positive number

� 0 and � 1, depending only on� and A, such that

�p
X 2

Z



e2� � p (x ) jr uj2dx + � 3p4

Z



 � 2p� 2e2� � p (x ) juj2dx

� C
Z



 p+2 e2� � p (x ) jDiv( Ar u)j2dx (2.2.42)

for � > � 0 and p > � 1.

Proof. We claim that

r u(x) = 0 for all x 2 @
 : (2.2.43)

In fact, assume thatr u(x) 6= 0 at some pointsx 2 @
 : Sinceu(x) = 0 on @
 , see

(2.2.41), r u(x) � � (x) = 0 where � (x) is any tangent vector to @
 at the point x.

Thus, r u(x) is perpendicular to@
 at x. In other words, r u(x) = �� (x) for some

nonzero scalar� . We have 0 = A(x)r u(x) � � (x) = �A (x)� (x) � � (x), which is a

contradiction to (1.2.2).
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Integrating both sides of (2.2.39), we have

�p
X 2

Z



e2� � p (x ) jr uj2dx + � 3p4

Z



 � 2p� 2e2� � p (x ) juj2dx

� �
C�p
X 2

Z



e2� � p (x )uDiv( Ar u)dx + C

Z



 p+2 e2� � p (x ) jDiv( Ar u)j2dx: (2.2.44)

Here, the term
Z



DivUdx is dropped because it vanishes due the the divergence

theorem, (2.2.41) and (2.2.43) Using the inequalityjabj � �pa 2 + 1
2�p b2

�
C�p
X 2

Z



e2� � p (x )uDiv( Ar u)dx

�
C� 2p2

X 2

Z



e2� � p (x )u2dx +

C
X 2

Z



e2� � p (x ) jDiv( Ar u)j2dx: (2.2.45)

Combining (2.2.44) and (2.2.45), we obtain

�p
X 2

Z



e2� � p (x ) jr uj2dx+ � 3p4

Z



 � 2p� 2e2� � p (x ) juj2dx � C

Z



 p+2 e2� � p (x ) jDiv( Ar u)j2dx:

The proof is complete.



CHAPTER 3: THE INVERSE SOURCE PROBLEM FOR THE HELMHOLTZ

EQUATION

3.1 The numerical method to solve Problems 1 and 2

Assume that in (1.1.8)g(k) 6= 0; 8k 2 [k; k]. Introduce the function v(x; k);

v(x; k) =
u(x; k)
g(k)

; x 2 
 ; k 2 [k; k]: (3.1.1)

Let L be the elliptic operator de�ned in (1.1.6). By (1.1.8)

L (v(x; k)) + k2n2 (x) v(x; k) = f (x); x 2 
 ; k 2 [k; k]: (3.1.2)

To eliminate the unknown right hand sidef (x) from equation (3.1.2), we di�erentiate

it with respect to k and obtain

L (@kv(x; k)) + k2n2(x)@kv(x; k) + 2 kn2(x)v(x; k) = 0 ; x 2 
 ; k 2 [k; k]: (3.1.3)

It follows from (1.1.11), (1.1.12) and (3.1.1) that in the case of Problem 1 the function

v satis�es the following boundary conditions

v(x; k) =
F (x; k)

g(k)
; x 2 @
 ; k 2 [k; k]; (3.1.4)

@zv(x; k) =
G(x; k)

g(k)
; x 2 � + ; k 2 [k; k]: (3.1.5)

In Problem 2 only condition (3.1.4) holds.

Fix an integer N � 1. Recalling the orthonormal basisf 	 r g1
r =1 of L2(k; k) in
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Section 2.1, we approximate

v(x; k) =
NX

m=1

vm (x)	 m (k) x 2 
 ; k 2 [k; k]; (3.1.6)

@kv(x; k) =
NX

m=1

vm (x)	 0
m (k) x 2 
 ; k 2 [k; k]; (3.1.7)

where

vm (x) =
Z k

k
v(x; k)	 m (k)dk x 2 
 ; m = 1; 2; : : : ; N: (3.1.8)

Remark 3.1.1. Similarly with [16�18,24], we assume here that the truncated Fourier

series (3.1.6) satis�es equation (3.1.2) and that truncated Fourier series(3.1.6) and

(3.1.7), taken together, satisfy equation(3.1.3). This is our approximate mathe-

matical model . Since we work with a numerical method, we accept this approxima-

tion scheme. Our main goal below is to �nd numerically Fourier coe�cientsvm (x);

m = 1; 2; : : : ; N; of v(x; k), see (3.1.8). If those Fourier coe�cients are approxi-

mated, the target unknown functionf (x) can be approximated as the right hand side

of (3.1.2).

Remark 3.1.2. The numberN is chosen numerically. Proving convergence of our

method asN ! 1 is very challenging and such proofs are very rare in the �eld of

ill-posed problems. Indeed, the intrinsic reason of this is the ill-posedness of those

problems. Therefore, we omit the proof of convergence of our method asN ! 1 :

Nevertheless, a rich numerical experience of a number of previous publications, see,

e.g. [16�18,24�28] indicates that this truncation technique still leads to good numerical

results.

We now compare numerically the true functionv(x; k) with its approximation

(3.1.6). and observe that their di�erence is small, see Figure 3.1 for the illustration.
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(a) The real parts of the true and test
functions

(b) The imaginary parts of the true and
test functions

Figure 3.1: The comparison of the true functionv(�; k = 1:5) =
P 1

m=1 um (x)	 m (k)
and the test function

P 10
m=1 vm (�)	 n (k) in Test 5, see Section 2.2.1. In this test, we

consider the casen = 2 and 
 = ( � 2; 2)2. On 
 ; we arrange a uniform grid of
121� 121 points in 
 . Those points are numbered from1 to 1212. In (a) and (b),
we respectively show the real and imaginary parts of the two functions at 300 points
numbered from 7170 to 7470. It is evident that reconstructing the �rst 10 terms of
the Fourier coe�cients of v(x; k) is su�cient to solve our inverse source problems.

Plugging (3.1.6) and (3.1.7) in equation (3.1.3), we obtain

NX

r =1

(Lv r (x)) 	 0
r (k) +

NX

r =1

�
n2(x)vr (x)

� �
k2	 0

r (k) + 2 k	 r (k)
�

= 0; x 2 
 : (3.1.9)

For eachm = 1; :::; N , we multiply both sides of (3.1.9) by the function	 m (k) and

then integrate the resulting equation with respect tok 2
�
k; k

�
: We obtain

NX

r =1

(Lv r (x))
Z k

k
	 0

r (k)	 m (k)dk

+
NX

r =1

�
n2(x)vr (x)

� Z k

k

�
k2	 0

r (k) + 2 k	 r (k)
�

	 m (k)dk = 0 (3.1.10)

for all x 2 
 , m = 1; 2; : : : ; N: Denote

V(x) = ( v1(x); v2(x); � � � ; vN (x))T x 2 
 ; (3.1.11)
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SN = ( smr )N
m;r =1 ; with smr =

Z k

k

�
k2	 0

r (k) + 2 k	 r (k)
�

	 m (k)dk: (3.1.12)

Then, (2.1.4), (3.1.10)-(3.1.12) imply

DN L (V (x)) + SN n2(x)V(x) = 0 ; x 2 
 ; (3.1.13)

Denote

eF (x) =

 Z k

k

F (x; k)
g(k)

	 1(k)dk; : : : ;
Z k

k

F (x; k)
g(k)

	 N (k)dk

! T

; x 2 @
 ; (3.1.14)

eG(x) =

 Z k

k

G(x; k)
g(k)

	 1(k)dk; : : : ;
Z k

k

G(x; k)
g(k)

	 N (k)dk

! T

; x 2 � + : (3.1.15)

It follows from (3.1.4) and (3.1.5) that in the case of 1 the vector functionV(x)

satis�es the following two boundary conditions:

V (x) = eF (x); x 2 @
 ; (3.1.16)

and

@� V (x) = eG(x); x 2 � + : (3.1.17)

And in the case of 2 only boundary condition (3.1.16) takes place.

These arguments lead to Algorithms 1 and 2 to solve Problems 1 and 2 respectively.

Algorithm 1 The procedure to solve Problem 1

1: Choose a numberN . Construct the functions 	 m , 1 � m � N; in Section 2.1
and compute the matrix DN as in Proposition 2.1.1.

2: Calculate the boundary data eF and eG for the vector valued function V via
(3.1.14) and (3.1.15) respectively.

3: Find an approximate solution of the system (3.1.13), (3.1.16) and (3.1.17) via
the quasi-reversibility method.

4: Having V = ( v1; v2; : : : ; vN )T in hand, calculatevcomp(x; k) via (3.1.8).
5: Compute the reconstructed functionf by (3.1.2).
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Algorithm 2 The procedure to solve Problem 2

1: Choose a numberN . Construct the functions 	 m , 1 � m � N; in Section 2.1
and compute the matrix DN as in Proposition 2.1.1.

2: Calculate the boundary data eF for the vector valued functionV via (3.1.14).
3: Solve the elliptic Dirichlet boundary value problem (3.1.13), (3.1.16).
4: Having V = ( v1; v2; : : : ; vN )T in hand, calculatevcomp(x; k) via (3.1.8).
5: Compute the reconstructed functionf by (3.1.2).

In the next section, we brie�y discuss the QRM used in Step 3 of Algorithm 1. We

mention that the QRM is an e�cient approach to solve partial di�erential equations

with over-determined boundary data.

3.2 The quasi-reversibility method

In this section, we present the QRM for the numerical solution of Problem 1. By

saying below that a vector valued function belongs to a Hilbert space, we mean that

each of its components belongs to this space. The norm of this vector valued function

in that Hilbert space is naturally de�ned as the square root of the sum of squares of

norms of components. Recall that by Proposition 2.1.1 the matrixDN is invertible.

Therefore, by (3.1.13), (3.1.16) and (3.1.17) we need to �nd an approximate solution

of the following over-determined boundary value problem with respect to the vector

function V(x)

L (V (x)) + D � 1
N SN n2(x)V(x) = 0 ; x 2 
 ; (3.2.1)

V (x) = eF (x); x 2 @
 ; (3.2.2)

@� V (x) = eG(x); x 2 � + : (3.2.3)

To do this, we consider the following minimization problem:

Problem 4 (Minimization Problem). Let � 2 (0; 1)
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be the regularization parameter. Minimize the functionalJ� (V);

J� (V) =
Z




�
�L (V (x)) + D � 1

N SN n2(x)V(x)
�
�2

dx+ � kVk2
H 2 (
) ; (3.2.4)

on the set ofN � D vector valued functionsV 2 H 2 (
) satisfying boundary conditions

(3.2.2) and (3.2.3).

We assume that the set of vector functions indicated in the formulation of this

problem is non empty; i.e., we assume that there exists anN � D vector valued function

� such that the set

n
� 2 H 2 (
) ; � j@
 = eF (x); @� � j � + = eG(x)

o
: (3.2.5)

Theorem 3.2.1. Assume that there exists anN � D vector valued function� satis-

fying (3.2.5). Then for each� > 0; there exists a unique minimizerVmin ;� 2 H 2(
) of

the functional J� in (3.2.4) that satis�es boundary conditions(3.2.2) and (3.2.3).

Proof. The proof of Theorem 3.2.1 is based on the variational principle and Riesz

theorem. Let (�; �) and [�; �] denote scalar products in Hilbert spacesL2 (
) and

H 2 (
) respectively ofN � D vector valued functions. For any vector valued function

V 2 H 2 (
) satisfying boundary conditions (3.2.2) and (3.2.3), set

W(x) = V(x) � �( x); x 2 
 : (3.2.6)

By (3.2.5) W 2 H 2
0;# (
) ; where

H 2
0;# (
) =

�
w 2 H 2 (
) : w j@
 = 0; @� w j � + = 0

	
: (3.2.7)

Clearly H 2
0;# (
) is a closed subspace of the spaceH 2 (
) : Let Vmin ;� be any minimizer
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of the functional (3.2.4), if it exists. Denote

Wmin ;� = Vmin ;� � � : (3.2.8)

By the variational principle the following identity holds

�
L (Wmin ;� (x)) + D � 1

N SN n2(x)Wmin ;� (x); L (P (x)) + D � 1
N SN n2(x)P(x)

�

+ � [Wmin ;� ; P] =
�
L (� ( x)) + D � 1

N SN n2(x)�( x); L (P (x)) + D � 1
N SN n2(x)P(x)

�

+ � [� ; P] ; (3.2.9)

for all P 2 H 2
0;# (
) : The left hand side of the identity (3.2.9) generates a new scalar

product f� ; �g in the spaceH 2
0;# (
) : The corresponding normf�g is equivalent to the

standard norm k�kH 2 (
) : Hence, (3.2.9) is equivalent to

f Wmin ;� ; Pg =
�
L (� ( x)) + D � 1

N SN n2(x)�( x); L (P (x)) + D � 1
N SN n2(x)P(x)

�

+ � [� ; P] (3.2.10)

for all P 2 H 2
0;# (
) : On the other hand, the right hand side of (3.2.10) can be

estimated as

�
�� L (� ( x)) + D � 1

N SN n2(x)�( x); L (P (x)) + D � 1
N SN n2(x)P(x)

�
+ � [� ; P]

�
�

� C1 f � g f Pg;

where the numberC1 = C1
�
L; D � 1

N SN ; n2; �
�

> 0 depends only on listed parameters.

Hence, the right hand side of (3.2.10) can be considered as a bounded linear functional

l � (P) : H 2
0 (
) ! C: By Riesz theorem there exists unique vector functionQ 2
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H 2
0;# (
) such that

f Wmin ;� ; Pg = f Q; Pg; for all P 2 H 2
0;# (
) ;

directly yielding the identity (3.2.10). As a consequence,Wmin ;� exists and; indeed,

Wmin ;� = Q: Finally, by (3.2.8) Vmin ;� = Wmin ;� + � :

The minimizer Vmin ;� of J� ; subject to the constraints (3.2.2) and (3.2.3) is called

the regularized solutionof the problem (3.2.1), (3.2.2) and (3.2.3). In the theory

of Ill-Posed Problems, it is important to prove convergence of regularized solutions

to the true one as the noise in the data tends to zero [45]. In the next section, we

establish a Carleman estimate for general elliptic operators. This estimate is essential

for the proof of that convergence result in our problem, see Section 2.2.1.

3.3 Convergence Analysis

While Theorem 3.2.1 ensures the existence and uniqueness of the solution of the

Minimization Problem (Problem 4), it does not claim convergence of minimizers, i.e.

regularized solutions, to the exact solution as noise in the data tends to zero. At the

same time such a convergence result is obviously important. However, this theorem is

much harder to prove than Theorem 3.2.1. Indeed, while only the variational principle

and Riesz theorem are used in the proof of Theorem 3.2.1, a di�erent apparatus

is required in the convergence analysis. This apparatus is based on the Carleman

estimate of Theorem 2.2.1. Then we establish the convergence rate of minimizers.

Following one of the main principles of the regularization theory [45], we assume

now that vector functions eF (x) and eG(x) in (3.2.2) and (3.2.3) are given with a noise.

More precisely, let� ( x) 2 H 2 (
) be the function de�ned in (3.2.5). We assume that

this is given with a noise of the level� 2 (0; 1) ; i.e.

k� � � � kH 2 (
) � �; (3.3.1)
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where the vector function� � 2 H 2 (
) corresponds to the noiseless data. In the case

of noiseless data, we assume the existence of the solutionV � 2 H 2 (
) of the following

analog of the problem (3.2.1)-(3.2.3):

L (V � (x)) + D � 1
N SN n2(x)V � (x) = 0 ; x 2 
 ; (3.3.2)

V � (x) = eF � (x); x 2 @
 ; (3.3.3)

@� V � (x) = eG� (x); x 2 � + : (3.3.4)

Similarly to (3.2.5), we assume the existence of the vector valued function function

� � such that

� � 2 H 2 (
) ; � � (x) j@
 = eF � (x); @� � � (x) j � + = eG� (x): (3.3.5)

Similarly to (3.2.6), let

W � = V � � � � : (3.3.6)

Then (3.2.7), (3.3.5) and (3.3.6) imply thatW � 2 H 2
0 (
) : Also, using (3.3.2)-(3.3.5),

we obtain

L (W � (x)) + D � 1
N SN n2(x) (W � (x))

= � L (� � (x)) � D � 1
N SN n2(x) (� � (x)) ; x 2 
 : (3.3.7)

Theorem 3.3.1 (The convergence rate). Assume that conditions of Theorem 3.2.1

as well as conditions (3.3.1)-(3.3.6) hold. Let� 1 be the number of Corollary 2.2.1.

De�ne the number � as

� = 2 (4R)p0 : (3.3.8)



35

Assume that the number� 0 2 (0; 1) is so small thatln � � 1=�
0 > � 1. Let � 2 (0; � 0) : Set

� = � (� ) = � 2: Let Vmin ;� (� ) 2 H 2 (
) be the unique minimizer of the functional (3.2.4)

which is found in Theorem 3.2.1. Then the following convergence rate of regularized

solutions holds




 Vmin ;� (� ) � V �






H 1 (
)
� C4

�
1 + kW � kH 2 (
)

� p
�; (3.3.9)

where theC4 > 0 depends on� 1, � 2, n, R, maxij , kaij kC1(
 ), maxj kbj kC(
 ), kckC(
 ) ;

knkC(
 ) k; k, N .

Proof . We use in this proof the Carleman estimate of Corollary 2.2.1. Similarly

with (3.2.8) let Vmin ;� (� ) � � = Wmin ;� (� ) 2 H 2
0;# (
) . We now rewrite (3.2.9) as

�
L

�
Wmin ;� (� ) (x)

�
+ D � 1

N SN n2(x)Wmin ;� (� )(x); L (P (x)) + D � 1
N SN n2(x)P(x)

�

+ � (� )
�
Wmin ;� (� ) ; P

�
=

�
L (� ( x)) + D � 1

N SN n2(x)�( x); L (P (x)) + D � 1
N SN n2(x)P(x)

�

+ � (� ) [� ; P] ; (3.3.10)

for all P 2 H 2
0;# (
) : Also, we rewrite (3.3.7) in an equivalent form,

�
L (W � (x)) + D � 1

N SN n2(x)W � (x); L (P (x)) + D � 1
N SN n2(x)P(x)

�
+ � (� ) [W � ; P]

=
�
L (� � (x)) + D � 1

N SN n2(x)� � (x); L (P (x)) + D � 1
N SN n2(x)P(x)

�

+ � (� ) [W � ; P] ; (3.3.11)

for all P 2 H 2
0;# (
) : Denote

fW = Wmin ;� (� ) � W � 2 H 2
0;# (
) ; e� = � � � � :
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Subtracting (3.3.11) from (3.3.10), we obtain

��
L

�
fW (x)

�
+ D � 1

N SN n2(x)fW(x); L (P (x)) + D � 1
N SN n2(x)P(x)

�
+ � (� )

h
fW; P

i�

=
�

L
�

e� ( x)
�

+ D � 1
N SN n2(x)e�( x); L (P (x)) + D � 1

N SN n2(x)P(x)
�

+ � (� ) [W � ; P] ;

for all P 2 H 2
0;# (
) : Setting hereP = fW and using Cauchy-Schwarz inequality and

(3.3.1), we obtain

Z




�
�
�L

�
fW (x)

�
+ D � 1

N SN n2(x)fW(x)
�
�
�
2

dx � C4� 2
�

1 + kW � k2
H 2 (
)

�
: (3.3.12)

We now want to apply Corollary 2.2.1. We have

Z




�
�
�L

�
fW (x)

�
+ D � 1

N SN n2(x)fW(x)
�
�
�
2

dx

=
Z




�
�
�L

�
fW (x)

�
+ D � 1

N SN n2(x)fW(x)
�
�
�
2

exp (2� (z + 3R)p0 ) exp (� 2� (z + 3R)p0 ) dx

� exp (� 2� (4R)p0 )
Z




�
�
�L

�
fW (x)

�
+ D � 1

N SN n2(x)fW(x)
�
�
�
2

exp (2� (z + 3R)p0 ) dx:

Substituting this into (3.3.12), we obtain

Z




�
�
�L

�
fW (x)

�
+ D � 1

N SN n2(x)fW(x)
�
�
�
2

exp (2� (z + 3R)p0 ) dx

� C4� 2
�

1 + kW � k2
H 2 (
)

�
exp (2� (4R)p0 ) : (3.3.13)

By Corollary 2.2.1 the left hand side of inequality (3.3.13) can be estimated for any
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� � � 1 as

Z




�
�L

�
fW (x)

�
+ D � 1

N SN n2(x)fW(x)
�
�2

exp (2� (z + 3R)p0 ) dx

� C3�
Z




� �
�
�r fW

�
�
�
2

+ � 2
�
�
� fW

�
�
�
2
�

exp [2� (z + 3R)p0 ] dx

� C4 exp [2� (2R)p0 ] kWk2
H 1 (
) :

Comparing this with (3.3.13), we obtain

kfWk2
H 1 (
) � C4� 2

�
1 + kW � k2

H 2 (
)

�
exp (2� (4R)p0 ) : (3.3.14)

Set � = � 2. Next, choose� = � (� ) such that exp (2� (4R)p0 ) = 1 =�: Hence,

� = � (� ) = ln � � 1=� ; (3.3.15)

where the number� is de�ned in (3.3.8). This choice is possible since� 2 (0; � 0) and

ln � � 1=�
0 > � 1; implying that � (� ) > � 1: Thus, (3.3.14) and (3.3.15) imply that

kfWkH 1 (
) � C4

�
1 + kW � kH 2 (
)

� p
�: (3.3.16)

Next, using triangle inequality, (3.3.16) and (3.3.1), we obtain

C4
�
1 + kW � kH 2 (
)

� p
� � k fWkH 1 (
) =




 �

Vmin ;� (� ) � V �
�

� (� � � � )





H 1 (
)

�



 Vmin ;� (� ) � V �






H 1 (
)
� k � � � � kH 1 (
) �




 Vmin ;� (� ) � V �






H 1 (
)
� �:

Hence,




 Vmin ;� (� ) � V �






H 1 (
)
� � + C4

�
1 + kW � kH 2 (
)

� p
� � C4

�
1 + kW � kH 2 (
)

� p
�:

(3.3.17)
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Numbers C4 in middle and right inequalities (3.3.17) are di�erent and depend only

on � 1, � 2, n, R, maxij , kaij kC1(
 ), maxj kbj kC(
 ), kckC(
 ) ; knkC(
 ) k; k, N . The

target estimate (3.3.9) of this theorem follows from (3.3.17) immediately.�

3.4 Numerical illustrations

In this section, we test our method in the 2-D case. The domain
 is set to be the

square


 = ( � R; R)2

where R = 2: Let M x = 120 and hx = 2R=Mx . We arrange a uniform grid of

(M x + 1) � (M x + 1) points f x ij gM x +1
i;j =1 � 
 where

x ij = ( � R + ( i � 1)hx ; � R + ( j � 1)hx ): (3.4.1)

In this section, we setk = 1:5 and k = 4:5: The interval [k; k] is uniformly divided

into M k = 150 sub-intervals whose end points are given by

k1 = k < k 2 < k 3 < � � � < k M k +1 = k (3.4.2)

whereki = k1 + ( i � 1)hk and hk = ( k � k)=Mk .

In all numerical tests of this section we computationally simulate the data for the

inverse problem via solving equation (1.1.8) in the square
 and with the boundary

condition at @
 generated by (1.1.9), i.e.

@� u (x; k) � iku (x; k) = 0 for x 2 @
 :

Hence, we do not specify in this section the operatorL and the function n2(x) outside

of 
 : For brevity, we consider only the isotropic case, i.e.L = � for x 2 
 . To show

that our method is applicable for the case of non homogeneous media, we choose the
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function n2(x) in all numerical tests below as:

n2(x) = 1 +
0:1 sin(3jxj2)

3jxj2 + 1
for all x 2 
 :

We chooseN = 10 in (3.1.8) by a trial and error procedure. If, for exampleN = 5,

then our reconstructed functionsf (x) are not satisfactory. ChoosingN > 10 does

not help us to enhance the accuracy of computed functions. We also refer here to

Figure 3.1.

Remark 3.4.1 (The choice for the interval of wave numbers). The length of each side

of the square
 is 2R = 4 units. We choose the longest wavelengthe� long = 2�=k =

2�= 1:5 = 4:19 which is about4 units. The upper bound of the wave numberk = 4:5

is set so that the shortest wavelengthe� short = 1:39 is in the range that is compatible

to the maximal lmax and minimal lmin sizes of the tested inclusions. More precisely,

we choosee� short 2 (0:7lmax ; 1:45lmin ) and e� long =e� short � 3:

3.4.1 The forward problem

To generate the computationally simulated data (1.1.11), (1.1.12), we need to solve

numerically the forward problem (1.1.8), (1.1.9). To avoid solving this problem in

the entire spaceR2; we solve the following boundary value problem:

8
><

>:

� u(x; k) + k2n2(x)u(x; k) = g(k)f (x) x 2 
 ;

@nu(x; k) � iku(x; k) = 0 x 2 @
 ;
(3.4.3)

assuming that it has unique solutionu(x; k) 2 C2
�



�
for all k 2 [k; k]: We solve prob-

lem (3.4.3) by the �nite di�erence method. Having computed the functionu(x; k),

we extract the noisy data,

F (x; k) = u(x; k)(1 + � (� 1 + 2rand) + i � (� 1 + 2rand)); x 2 @
 ; (3.4.4)
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G(x; k) = @zu(x; k)(1 + � (� 1 + 2rand) + i � (� 1 + 2rand)); x 2 � + ; (3.4.5)

see (1.1.11), (1.1.12). Here� 2 (0; 1) is the noise level and �rand" is the function

taking uniformly distributed random numbers in [0; 1]: In this dissertation, we test

our method with the noise level� = 0:05; which means 5% noise.

Remark 3.4.2. Recall that while in Problem 1 we use both functionsF (x; k) and

G(x; k) in (3.4.4), (3.4.5), in Problem 2 we use only the Dirichlet boundary condition

F (x; k); see (1.1.11)-(1.1.13). However, it follows from boundary condition (3.4.3)

that the Neumann boundary condition is@� u(x; k) j@
 = ikF (x; k). This explains why

we computationally observe the uniqueness of our numerical solution of Problem 2.

3.4.2 The inverse problem

In this section we describe the numerical implementation of the minimization pro-

cedure for the functionalJ� . We use the following form of the functionalsJ� :

J� (V) =
Z



jDN � V + SN n2 (x) V j2dx + � kVk2

L 2 (
) : (3.4.6)

This functional J� in (3.4.6) is slightly di�erent from the one in (3.2.4). First, we

do not use here the matrixD � 1
N : Indeed, this matrix is convenient to use for the

above theoretical results. However, it is inconvenient to use in computations since

it contains large numbers atN = 10. Second, we replace the termkVk2
H 2 (
) in

(3.2.4) by the term kVk2
L 2 (
) : This is because theL2(
) � norm is easier to work with

computationally than the H 2(
) � norm. On the other hand, we have not observed

any instabilities probably because the number121� 121of grid points we use is not

too large and all norms in �nite dimensional spaces are equivalent. The regularization

parameter � in our computations was found by a trial and error procedure,� = 10� 5:

We write derivatives involved in (3.4.6) via �nite di�erences. Next, we minimize
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the resulting functional with respect to values of the vector valued function

V (x) = ( v1(x); v2(x); : : : ; vN (x))T

at grid points. The �nite di�erence approximation of the functional J� (V) is

J� (V) = h2
x

M xX

i;j =2

NX

m=1

�
�
�

NX

r =1

n dmr

h2
x

�
vr (x i � 1; yj ) + vr (x i +1 ; yj )

+ vr (x i ; yj � 1) + vr (x i ; yj +1 ) � 4vr (x i ; yj )
�

+ n2(x i ; yj )smr vr (x i ; yj )
o �

�
�
2

+ �h 2
x

M x +1X

i;j =1

NX

m=1

jvm (x i ; yj )j2;

where dmn and smn are elements of matricesDN and SN in (2.1.3) and (3.1.12)

respectively. Introduce the �line up" version of the setf vn (x i ; yj ) : 1 � i; j � M x +

1; 1 � n � N g as the(M x + 1) 2N dimensional vectorV with

Vm = vm (x i ; yj ) 1 � i; j � M x + 1; 1 � m � N; (3.4.7)

where

m = ( i � 1)(M x + 1) N + ( j � 1)N + m: (3.4.8)

It is not hard to check that the map

f 1; : : : ; Mx + 1g � f 1; : : : ; Mx + 1g � f 1; : : : ; Ng ! f 1; : : : ; (M x + 1) 2N g

that sends(i; j; m ) to m as in (3.4.8) is onto and one-to-one. The functionalJ� (V) is

rewritten in terms of the line up vectorV as

J � (V) = h2
x jLVj 2 + �h 2

x jVj2

whereL is the (M x + 1) 2N � (M x + 1) 2N matrix de�ned as follows. For eachm =
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(i � 1)(M x + 1) N + ( j � 1)N + m, 2 � i; j � M x , 1 � m � N ,

1. setL mn = � 4dmn
h2

x
+ n2(x i ; yj )bmn ; if n = ( i � 1)(M x + 1) N + ( j � 1)N + n; 1 �

n � N ;

2. setL mn = 1
h2

x
if n = ( i � 1 � 1)(M x + 1) N + ( j � 1)N + n or n = ( i � 1)(M x +

1)N + ( j � 1 � 1)N + n, 1 � n � N:

It is obvious that the minimizer of J � satis�es the equation

(L � L + � Id)V = ~0: (3.4.9)

Here,~0 is the (M x + 1) 2N dimensional zero vector.

Next, we consider the �line up" version of the �rst condition in (3.1.16). The

following information is available

Vm = ~FN (x i ; yj ; m);

where m is as in (3.4.8). Hence, letD be the (M x + 1) 2N � (M x + 1) 2N diagonal

matrix with such mth diagonal entries taking value1 while the others are0. This

Dirichlet boundary constraint of the vector V become

DV = ~F : (3.4.10)

Here, the vector ~F is the �line up" vector of the data FN in the same manner when

we de�ned V, see (3.4.8).

We implement the constraint ofV in (3.1.17). This constraint allows us to collect

the following information

Vm � V m0

hx
= ~GN (x i ; yj ; m) (3.4.11)
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wherem is as in (3.4.8) and

m0 = ( i � 1)(M x + 1) N + ( j � 2)N + m (3.4.12)

for 1 � i � M x + 1 and j = M x + 1: We rewrite (3.4.11) as

N V = ~G (3.4.13)

where ~G is the �line up" version of ~GN and the matrix N is de�ned as

1. Nmm = 1=hx and Nmm0 = � 1=hx for m and m0 given by (3.4.8) and (3.4.12)

respectively,1 � i � M x + 1; j = M x + 1:

2. Other entries ofN are 0.

In practice, we computeV by solving
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in the case of Problem 1 and we solve
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5 (3.4.15)

for Problem 2. Having the vectorV, we can compute the vectorVN via (3.4.7). Then,

we follow Steps 4 and 5 of Algorithms 1 and Algorithms 2 to compute the functions

vcomp via (3.1.6) and thenf comp by taking the real part of (3.1.2) whenk = 1:5.

Remark 3.4.3 (Remark on Problem 2). We use (3.4.15) only for the convenience,

since we do not want to have a signi�cant extra programming e�ort, given that we
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have the computer code for solving(3.4.14).

3.4.3 Tests

In the cases of Test 1 and Test 2, we apply below our method for Problem 1. And

in the cases of Tests 3-5 we apply our method for Problem 2. Whenever we say below

about the accuracy of values of positive and negative parts of inclusions, we compare

maximal positive values and minimal negative values of computed ones with true

ones. Postprocessing was not applied in all tests presented below.

1. Test 1. Problem 1. Two inclusions with di�erent shapes.The function f true is

given by

f true =

8
>>>><

>>>>:

2:5 if maxf 0:6jx � 0:75j; jyjg < 1:1;

� 2 if (x + 0:75)2 + y2 < 0:552;

0 otherwise,

and gtrue (k) = i k for k 2 [k; k]: We test the reconstructions of the locations,

shapes and positive/negative values of the functionf for two di�erent inclusions.

One of them is a rectangle and the other one is a disk. In this case, the function

f true attains both positive and negative values. The numerical solution for this

case is displayed on Figure 3.2.

It is evident that, for this test, our method for 1 provides good numerical results.

The reconstructed locations, shapes as well as the positive/negative values of

the function f comp are of a good quality.

2. Test 2.Problem 1. Four circular inclusions. We consider the case when the

function f true is given by

f true =

8
>>>><

>>>>:

1; if(x � 0:8)2 + ( y � 0:8)2 < 0:552 or (x + 0:8)2 + ( y � 0:8)2 < 0:552;

� 1; if(x � 0:8)2 + ( y + 0:8)2 < 0:552 or (x + 0:8)2 + ( y + 0:8)2 < 0:552;

0; otherwise,
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(a) The function f true (b) The real part of the func-
tion vtrue (�; k = 1 :5)

(c) The imaginary part of the
function vtrue (�; k = 1 :5)

(d) The real part of the func-
tion vcomp (�; k = 1 :5)

(e) The imaginary part of the
function vcomp (�; k = 1 :5)

(f) The function f comp

Figure 3.2: Test 1. The true and reconstructed source functions and the true and
reconstructed functionsv(x; k) = u(x; k)=g(k) when k = 1:5: The reconstructed
positive value of the source function is 2.76 (relative error 10.5%). The reconstructed
negative value of the source function is -2.17 (relative error 8.5%).

and gtrue (k) = 1 for all k 2 [k; k]: We test the model with four circular inclusions.

The source functionf = 1 in the two �upper" inclusion and f = � 1 in the two

�lower" inclusions.

The reconstruction is displayed in Figure 3.3. The source function is recon-

structed well in the sense of locations, shapes and values.

3. Test 3. Problem 2. A void in the square. We consider the case when the

negative part of the true source functionf is surrounded by a square andf is
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(a) The function f true (b) The real part of the func-
tion vtrue (�; k = 1 :5)

(c) The imaginary part of the
function vtrue (�; k = 1 :5)

(d) The real part of the func-
tion vcomp (�; k = 1 :5)

(e) The imaginary part of the
function vcomp (�; k = 1 :5)

(f) The function f comp

Figure 3.3: Test 2. The true and reconstructed source functions and the true and
reconstructed functionsv(x; k) = u(x; k)=g(k) when k = 1:5: The reconstructed
positive value of the source function is 1.11 (relative error 11.1%). The reconstructed
negative value of the source function is -1.11 (relative error 11.1%).

positive in this square. More precisely,

f true =

8
>>>><

>>>>:

1 if maxfj xj; jyjg < 1:2 and x2 + y2 � 0:482;

� 1 if x2 + y2 < 0:482;

0 otherwise,

and gtrue (k) = k for all k 2 [k; k]:

The true f true and computedf comp source functions are displayed in Figure 3.4.

We can see computed shapes of the �positive" square and the �negative" disk

are quite acceptable. Given that the noise in the data is 5%, errors in values of

the function f comp are also of an acceptable.

4. Test 4. Problem 2. Ring. We consider a model that is similar to that in the
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