Math 5176 Numerical methods for Partial Differential Equations

Fall 2020

Main Textbook: Finite Difference Methods for Ordinary and Partial Differential Equations by Randall J. LeVeque;

Minor Textbook: Finite Difference Schemes and Partial Differential Equations by John C. Strikwerda.

Topics to be covered:

- 1. For elliptic PDEs;
 - Fundamental finite difference schemes (1D, 2D and different boundary conditions);
 - Consistency and stability analysis for 1D problems;
 - Iterative solvers and analysis;
 - Possible high order schemes;
- 2. For parabolic PDEs;
 - Fundamental schemes for first-order ODEs;
 - Consistency and stability analysis of linear multistep methods;
 - Fundamental schemes for Heat equations (Euler, backward Euler, Crank-Nicolson, etc);
 - Alternating direction implicit method for high dimensional problems;
 - Method of line discretization analysis;
 - Von Neumann analysis;
- 3. For hyperbolic PDEs;
 - Fundamental schemes for advection equations (Euler, Leap frog, Lax-Friedriches, Lax-Wendroff etc);
 - Upwind method;
 - Method of line discretization analysis;
 - Von Neumann analysis;
 - Initial boundary value problem;
 - Advection-Diffusion problem;
 - The Courant-Friedriches-Lewy (CFL) condition;