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ABSTRACT

ELHAM SOHRABI. Option Valuation Under A Regime-Switching Model Using the
Fast Fourier Transform. (Under the direction of Dr. Adriana Ocejo Monge)

The global financial crisis had severe implications on the real economy. For the

US alone, Luttrell et al. [55] estimate output losses in the range of 6 to 14 trillion

USD. It is hence not surprising that policy makers are keen to develop models which

can issue warning signals ideally sufficiently early to implement policies that increase

the resilience of financial institutions and ultimately mitigate at least some of the

risks and costs associated with financial crises. Hence regime-switching models have

been used extensively to identify business cycle turning points. Specifically, regime-

switching models have the capability to incorporate the changes of the model dynam-

ics brought by the changing macroeconomics conditions. Regime-switching models

typically use the states of a modulating Markov chain to represent the states of an

economy, depicted by some macroeconomics indicators. By adopting this method-

ology, regime-switching models can incorporate the impacts of structural changes in

macroeconomics conditions on asset price dynamics and the stochastic evolution of

investment opportunity sets, for example. Consequently, it is practical to consider

the valuation of financial derivatives under regime-switching models.

In this thesis, we consider valuation of different types of options where the under-

lying asset price or commodity spot price is governed by a regime-switching model.

We adopt an observable, continuous-time, finite-state Markov chain. We mostly focus

on obtaining analytical formula of the so-called characteristic function for logarithm

of commodity spot price, futures price and stock price.

Chapter 1 is organized as follows. Section 1 describe options and its pricing model.

Section 2 provides a literature review for regime-switching model, stochastic interest

rate models and fast Fourier transform. Section 3 presents a brief introduction of the
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basic definitions and mathematical tools to be used in this thesis such as Markov chain

setup model and fast Fourier transform (FFT). We describe how to obtain analytical

pricing formula using inverse Fourier transform and discretize the pricing formula via

FFT.

The outline of Chapter 2 is as follows. In Section 1, we first briefly introduce the

motivation behind developing a fast Fourier transform approach for option pricing

when the underlying asset process is governed by a regime-switching model. Section

2 describes the risk-neutral world and the asset price dynamics where under risk-

neutral probability measure follows a regime-switching geometric Brownian motion.

Section 3 presents the derivation for obtaining an analytical pricing formula for the

two-state case and general case via the inverse Fourier transform. Then Section 4

calculates the inverse Fourier transform via the fast Fourier transform, providing an

easier and faster way to calculate options prices. Section 5 introduces other numerical

methods to compare with FFT results. As usual, we try to implement Monte Carlo

simulation, as frequently serves as a benchmark for testing other numerical methods.

A novel semi-Monte Carlo simulation algorithm is presented by Liu el. at [1] that

can be also used as benchmark values in numerical experiments. To price our path

dependent European call options, we require the stock price trajectory {St}t∈[0,T ].

Furthermore, we reported numerical results in Section 6 & 7 and provide further

remarks and conclutions about the chapter in section 8. All of our proofs and Python

programming are placed in the Appendix. It is our hope that this information when

combined with some familiarity with the language, or at least an error checking IDE,

that any reader will be able to replicate our results with little trouble.

In Chapter 3, we first state our motivation in section 1. Section 2 presents the

Markovian regime-switching Ornstein-Uhlenbeck model. In this section, we discuss a

Markovian regime-switching extension to the Ornstein-Uhlenbeck model for evaluat-

ing European-style commodity options and futures options. The main feature of our
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model is that model parameters, the mean-reverting level and the volatility of the

commodity spot price, are governed by an observable continuous-time, finite-state,

Markov chain. In Section 3, we first consider the valuation of commodity options

and then the valuation of commodity futures options using inverse Fourier transform.

The final section provides concluding remarks. All proofs in this chapter are standard

and involve the use of standard mathematical techniques.

We also extend our work in chapter 4 to investigate the pricing of European-

style commodity options and futures options with a Markovian regime-switching

Hull–White stochastic interest rate model. The parameters of this model, includ-

ing the mean-reversion level, the volatility of the stochastic interest rate, and the

volatility of the commodity spot price are modulated by an observable, continuous-

time, finite-state Markov chain. We start with introducing a risk-neutral probability

measure. To take the zero-coupon bond value as the numéraire, a measure change

technique is applied to change the risk-neutral probability measure into a forward

measure. We then obtained a closed-form expression for the characteristic function

of the logarithmic commodity price and futures price. Eventually, chapter 5 shows

future directions and some potential future works.
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CHAPTER 1: INTRODUCTION

1.1 Overview

A ”derivative” is a contract between two or more parties whose value is based on

an agreed-upon underlying financial asset (like a security) or set of assets (like an

index). Common underlying instruments include bonds, commodities, currencies,

interest rates, market indexes and stocks. Derivatives have been about to be as the

virtually important monetary instruments for centuries. The valuation of derivatives

has been a long-lasting issue. There are many different types of derivatives. The

most common derivative types are futures contracts, forward contracts, options and

swaps. Amongst the different kinds of derivatives, options play a carrying a lot of

weight role in the financial market. Options contracts have been known for decades.

The Chicago Board Options Exchange was established in 1973, which set up a regime

using standardized forms and terms and trade through a guaranteed clearing house.

Trading activity and academic interest has increased since then (Brealey and Myers

[53]).

Today, many options are created in a standardized form and traded through clear-

ing houses on regulated options exchanges, while other over-the-counter options are

written as bilateral, customized contracts between a single buyer and seller, one or

both of which may be a dealer or market-maker. Hull [52] defines an option as follows:

”An option is a financial derivative that represents a contract sold by one party (the

option writer) to another party (the option holder). The contract offers the buyer the

right, but not the obligation, to buy (call) or sell (put) a security or other financial
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asset at an agreed-upon price (the strike price) during a certain period of time or on

a specific date (exercise date)”.

There are many different types of options that can be traded and these can be

categorized in a number of ways. In a very broad sense, there are two main types:

calls and puts. Calls give the buyer the right to buy the underlying asset, while

puts give the buyer the right to sell the underlying asset. Along with this clear

distinction, options are also usually classified based on whether they are American

style or European style. This has nothing to do with geographical location, but rather

when the contracts can be exercised.

Options can be further categorized based on the method in which they are traded,

their expiration cycle, and the underlying security they relate to. There are also other

specific types and a number of exotic options that exist. Options and financial prod-

ucts with embedded-option features have become so important that we can hardly

find an investment portfolio without these products. Consequently, the valuation of

such well known financial derivatives deserves in a superior way attention.

After the introduction of well-known Black and Scholes [22]’s work, option valu-

ation has played a vital role in the development of modern finance. The valuation

of options has been a theoretically and practically important topic in the area of

finance. In mathematical finance, the Black–Scholes equation is a partial differential

equation (PDE) governing the price evolution of a European call or European put un-

der the Black–Scholes model. The well-known Black-Scholes-Merton have attracted

a lot of attention for quite a while due to the easy implementation of the closed-form

option pricing formula. However, numerous empirical studies have revealed that the

Black-Scholes-Merton model doesn’t satisfy the ability to describe some vital fea-

tures of the underlying assets, like no dividends are paid out during the life of the

option, there are no transaction costs in buying the option, the risk-free rate and

volatility of the underlying are known and constant, the returns on the underlying



3

are normally distributed. In order to overcome the all mentioned shortcomings and

improve the efficiency of the Black-Scholes-Merton model, both academic researchers

and industry practitioners have dedicated efforts to extend the Black-Scholes-Merton

model in various possible directions, including jump-diffusion models (Merton [30]),

stochastic volatility models (Hull and White [31]; Wiggins [32]; Heston [33]; etc.),

regime-switching models, etc.

1.2 Literature review

In this dissertation, we investigate options valuation under Regime-Switching (RS)

model with stochastic interest rate using the fast Fourier transform (FFT). Therefore,

it’s beneficial to know about the background of Regime-Switching model, Stochastic

interest rate and fast Fourier transform in the following subsections. This section

presents a brief literature review of RS, Stochastic interest rate and FFT to be used

in the subsequent chapters.

1.2.1 Regime-Switching model

The global financial crisis had severe implications on the real economy. For the US

alone, Luttrell et al. [55] estimate output losses in the range of 6 to 14 trillion USD.

It is hence not surprising that policy makers are keen to develop models which can

issue warning signals ideally sufficiently early to implement policies that increase the

resilience of financial institutions and ultimately mitigate at least some of the risks and

costs associated with financial crises. Hence Regime-Switching models have been used

extensively to identify business cycle turning points. Specifically, regime-switching

models have the capability to incorporate the changes of the model dynamics brought

by the changing macroeconomics conditions. Consequently, regime-switching models

have attracted considerable interests and have been applied to various financial areas,

such as option pricing, bond pricing, stock returns, etc. The history of regime-
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switching models can be traced back to the works of Quandt [34] and Goldfeld and

Quandt [35]. The regime-switching model by Hamilton [26] is one of the most popular

nonlinear time series models in the literature.

1.2.2 Stochastic interest rate models

An interest rate is the rate at which interest is paid by a borrower for the use of

money that they borrow from a lender. Interest’s rates are fundamental to a capitalist

society. Interest rates are normally expressed as a percentage rate over the period

of one year. Interest rates are also a tool of monetary policy and are taken into

account when dealing with variables like investment, inflation, and unemployment.

In traditional actuarial investigations, the interest rate is assumed to be deterministic

and hence there is only one source of uncertainty, the mortality uncertainty, to be

considered. Concerns about the effects of including a stochastic interest rate in the

model have been growing during the last decade. The literature has tended to focus

on annuities and the model adopted to describe the interest rate uncertainty, in a

continuous framework, has usually involved the use of a Brownian motion. When

the market rates are high, volatility is expected to be high or when interest rates

are low, volatility will be low. Therefore, different stochastic interest rate models

have been proposed and helped to overcome the disadvantage of the constant interest

rate assumption under the Black-Scholes-Merton model. Some popular stochastic

interest rate models include those proposed by Vasicek [23], Cox et al. [24], Hull

and White [25], among others. One common feature of these models is the mean-

reverting property of the interest rate. The short-term effectiveness of these models

were justified by many empirical studies. Due to the advantages of regime-switching

models, it is reasonable to expect that regime-switching stochastic interest rate models

may improve the long-term effectiveness of the existing stochastic interest rate models.

Examples of regime-switching stochastic interest rate diffusion models can be found in
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Elliott and Mamon [27], Elliott and Wilson [28] and Elliott and Siu [18]. By adopting

the method of stochastic flows, Siu [19] considered the valuation of a bond under a

jump-augmented Vasicek model. A partial differential equation approach was applied

in Shen and Siu [21] to obtain an exponential affine formula for a zero-coupon bond.

1.2.3 The fast Fourier transform

Various techniques have been devised to determine the valuation of financial deriva-

tives. Among all, the Fourier transform has been widely applied to the valuation of

financial derivatives. The faster calculation speed of the discrete Fourier transform

against for example monte carlo simulation may be one of the main reasons why

the fast Fourier transform (FFT) method attracts so much attention from both aca-

demics and industry. The first of these Fourier methods is actually the application

of the Gil-Palaez inversion formula to finance. This idea originates from Heston [33].

However, singularities in the integrand prevent it to be an accurate method. The

second attempt, more recent technique, was first proposed by Carr & Madan [2] by

applying the FFT method to price European-style options under the variance gamma

(VG) model. Since then, the FFT method has been applied to the valuation of op-

tions under different models. For example, Benhamou [39] discussed the valuation of

discrete Asian options in non-lognormal density cases. Dempster and Hong [40] pre-

sented a two-dimensional FFT and considered the valuation of spread options under

a three-factor stochastic volatility model. Cérny [6] discussed applications of the FFT

in finance. By adopting the FFT technique, Liu et al. [1] investigated the valuation

of options under a regime-switching model and Wong and Guan [41] considered the

valuation of American options under a Lévy process.

FFT relys on the availability of the so-called characteristic function of the loga-

rithm of the stock price. Given any such characteristic function, one can develop a

simple analytic expression for the Fourier transform of the option value. Indeed, for a
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wide class of stock models characteristic functions have been obtained in closed form

even if the risk-neutral densities (or probability mass functions) themselves are not

available explicitly such as all the mentioned studies in the above paragraph. The

tremendous speed of the FFT allows option prices for a huge number of strikes to

be evaluated very rapidly. Although the FFT approach is significantly faster than

other numerical methods, such as finite difference method and Monte Carlo simula-

tion, it still has approximation errors when we adopt a discrete sum to approximate

the integral. To control the approximation errors, Carr and Madan [2] discussed the

selection of the upper limit of the integral and gave a sufficient condition to guar-

antee the square integrability property of the dampened pricing formula. Numerical

errors in discretizing the pricing formula were discussed in Lee [42]. Liu et al. [1] also

showed that the errors are small.

1.3 Preliminaries

This section presents a brief introduction of the basic definitions and tools to be used

in the subsequent chapters. The contents in this section are mainly based on Elliott

et al. [15] and Carr and Madan [2].

1.3.1 Markov chain

Let T = [0, T ] be the time horizon (T < ∞). Define (Ω,F , (F(t)t∈T ),P) to be a

filtered complete probability space, where F(t)t∈T is a right continuous P-complete

filtration. Let X = {X(t)|t ∈ T } denote a continuous-time, finite-state Markov chain

defined on (Ω,F ,P) with a finite state space S . Following Elliott et al. [15], without

loss of generality, the state space of the Markov chain can be identified as a finite set

of unit vectors ε = {e1, e2, ..., eN}, where ei = (0, ..., 1, ..., 0) ∈ RN with 1 at its i-th

position and 0 elsewhere.

Let Fx(t) denote the filtration generated by the Markov chain X. By adopting
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the canonical state space ε, Elliott et al. [15] in Appendix B Lemma 1.1 obtained the

following semi-martingale representation of the Markov chain:

X(t) = X(0) +

∫ t

0

AX(s)ds+ M(t)

where A = [aij]N×N is the generator of the Markov chain and {M(t)|t ∈ T } is a right

continuous martingale with respect to Fx(t).

1.3.2 The fast Fourier transform

The fast Fourier transform (FFT) was introduced in Carr and Madan [2]. For the sake

of completeness, we present a brief introduction of the application of FFT. Define by

S(T ) the value of the underlying asset at the maturity time T and K the strike price.

Suppose that the price of a T -maturity European-style call option at time 0 is given

by

C(0, T,K) = E
{

e−rT
(
S(T )−K

)+}
(1.1)

where E[.] denote the expectation under the risk-neutral probability measure.

Let s(T ) = lnS(T ) and κ = lnK denote the logarithmic of the asset price at time

T and the strike value, respectively. Then

C(0, T, κ) = E
{

e−rT
(
es(T ) − eκ

)+}
. (1.2)

Now let’s derive the Fourier transform of C(0, T, κ). Assume f(s) is the probability
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density function of s(T ):

Ĉ(0, T, u) =

∫ ∞
−∞

e−iuκC(0, T, κ)dκ

=

∫ ∞
−∞

e−iuκE
{

e−rT
(
es(T ) − eκ

)+}
dκ

= e−rT
∫ ∞
−∞

e−iuκ
∫ ∞
−∞

(
es − eκ

)+
f(s) ds dκ

= e−rT
∫ ∞
−∞

e−iuκ
∫ ∞
κ

(es − eκ)f(s) ds dκ

= e−rT
∫ ∞
−∞

∫ s

−∞
e−iuκ(es − eκ) dκ f(s) ds (1.3)

where we changed the order of integration by Fubini’s theorem and used the result∫∞
s

e−iuκ(es − eκ)+ dκ = 0. If we evaluate the inner integral of (1.3), we have

∫ s

−∞
e−iuκ(es − eκ) dκ =

∫ s

−∞
e−iuκ es dκ−

∫ s

−∞
e−iuκ eκ dκ

= es
e−iuκ

−iu
∣∣s
−∞ −

e(1−iu)κ

(1− iu)

∣∣s
−∞. (1.4)

As we can see, the first term of (1.4) is undetermined due to limκ→−∞ e−iuκ 6= 0,

while in second term of (1.4) limκ→−∞ e(1−iu)κ converges to zero.

To get around the ”undetermined” problem, Carr and Madan [2] introduced a

dampning parameter α to modify the call option price. The so-called dampened call

price is defined as

c(0, T, κ) = exp(ακ)C(0, T, κ).

The Fourier transform of the dampened call option price is given by

ĉ(0, T, u) =

∫ ∞
−∞

e−iuκ c(0, T, κ) dκ.

Next we are showing that the dampening prameter α can force convergence,
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thereby permitting a computable Fourier tranform.

ĉ(0, T, u) =

∫ ∞
−∞

e−iuκc(0, T, κ)dκ

=

∫ ∞
−∞

e−iuκeακE
{

e−rT
(
es(T ) − eκ

)+}
dκ

= e−rT
∫ ∞
−∞

e−iuκ
∫ ∞
−∞

eακ
(
es(T ) − eκ

)+
f(s(T )) ds dκ

= e−rT
∫ ∞
−∞

eακe−iuκ
∫ ∞
κ

(es − eκ)f(s) ds dκ

= e−rT
∫ ∞
−∞

∫ s

−∞
e(α−iu)κ(es − eκ) dκ f(s) ds (1.5)

Let’s compare the inner integral in (1.3) to (1.5). It can be seen that the term∫ s
−∞ e−iuκ(es − eκ) dκ has been changed to

∫ s
−∞ e(α−iu)κ(es − eκ) dκ.

Now if we evaluate the inner integral of (1.5), we have

∫ s

−∞
e(α−iu)κ(es − eκ) dκ =

∫ s

−∞
e(α−iu)κ es dκ−

∫ s

−∞
e(α−iu)κ eκ dκ

= es
e(α−iu)κ

(α− iu)

∣∣s
−∞ −

e(α+1−iu)κ

(α + 1− iu)

∣∣s
−∞

= es
e(α−iu)s

(α− iu)
− e(α+1−iu)s

(α + 1− iu)

=
e(α+1−iu)s

(α− iu)(α + 1− iu)
. (1.6)

Given α > 0, the exponential terms vanish for κ = −∞:

lim
κ→−∞

e(α−iu)s = lim
κ→−∞

e(α+1−iu)s = 0. (1.7)

One can easily prove that α > 0 is to ensure the square integrability for call

options and α < 0 is to ensure the square integrability for put options.

The pricing formula for the European-style call option can be obtained via the
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inverse Fourier transform as follows:

C(0, T, κ) =
e−ακ

2π

∫ ∞
−∞

eiuκ ĉ(0, T, u) du =
e−ακ

π

∫ ∞
0

eiuκ ĉ(0, T, u) du. (1.8)

where the second term comes from the fact that call option is a real number. This

implies the Fourier transform ĉ(0, T, u) is odd in its imaginary part so that

Im{ĉ(0, T, u)} = −Im{ĉ(0, T,−u)} (1.9)

and even in its real part so that

Re{ĉ(0, T, u)} = Re{ĉ(0, T,−u)}. (1.10)

Thus this allows to rewrite the pricing integral as the second term in (1.8).

To derive the Fourier transform of the dampened call option price, one standard

way is to utilize the relationship between the Fourier transform of the dampened call

option price and the characteristic function of the logarithmic asset price. In this

thesis, under regime-switching models, the conditional characteristic function of the

logarithmic asset price given FX(t) has to be derived first. To illustrate the method,

we present the details in the present context.

Let Fs(T )|FX(T )(s) denote the conditional density function of s(T ) given FX(T ).

Then for each t ∈ [0, T ] and u ∈ R

ĉ(0, T, u) =

∫ ∞
−∞

e−iuκc(0, T, κ)dκ

=

∫ ∞
−∞

e−iuκeακE
{

e−rT (es(T ) − eκ)+
}

dκ

= E
{∫ ∞

−∞
e−iuκeακE

{
e−rT (es(T ) − eκ)+|FX(T )

}
dκ

}
= E

{∫ ∞
−∞

e−iuκeακe−rT
∫ ∞
κ

(
es − eκ

)
Fs(T )|FX(T )(s)dsdκ

}
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= E
{∫ ∞

−∞
e−rTFs(T )|FX(T )(s)

∫ s

−∞

(
ese(α−iu)κ − e(1+α−iu)κ

)
dκds

}
= E

{∫ ∞
−∞

e−rTFs(T )|FX(T )(s)

(
e(1+α−iu)s

(α− iu)
− e(1+α−iu)s

(1 + α− iu)

)
ds

}
= E

{
e−rT

(
φFT (−i(1 + α)− u)

(α− iu)
− φFT (−i(1 + α)− u)

(1 + α− iu)

)}

=

e−rTE
{
φFT (−i(1 + α)− u)

}
(α− iu)(1 + α− iu)

(1.11)

where

φFT (ν) = E{eius(T )|FX(T )} =

∫ ∞
−∞

eiν sFs(T )|FX(T )(s) ds (1.12)

is the conditional characteristic function of s(T ) given FX(T ).

The third equality in (1.11) holds by the well-known property of conditional

expectations(E{E{X|Y }} = E{X}), and fifth equality holds by Fubini’s theorem

since the modified call price is bounded.

There are many ways to define the discrete Fourier transform (DFT), varying

in the sign of the exponent, normalization, etc. Since we are going to use Python

implementation, therfore we are following the same definition for DFT given in Python

package numpy. The DFT is defined in Python is

Ak =
n−1∑
m=0

amexp

{
− 2πi

mk

n

}
, k = 0, ..., n− 1. (1.13)

The inverse DFT is defined as

am =
1

n

n−1∑
k=0

Akexp

{
2πi

mk

n

}
m = 0, ..., n− 1.

It differs from the Fourier transform by the sign of the exponential argument and

the default normalization by
1

n
.

Given the Fourier transform function ĉ(0, T, u), the modified call option price
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c(0, T, κ) can be obtained by the inverse Fourier transform as described in (1.8)

c(0, T, κ) =
exp(−ακ)

π

∫ ∞
0

eiuκĉ(0, T, u)du, ∀ −∞ < κ <∞. (1.14)

Set uj = j4u, j = 0, 1, ..., N−1, where 4u is the grid size in the variable u. Then

(1.14) can be approximated by the following summation:

c(0, T, κ) ≈ 1

π

N−1∑
j=0

eiujκĉ(0, T, uj)4u. (1.15)

Next, let4κ be the grid size in κ and choose a grid along the log strike κ as below:

κl = (l − N

2
)4κ, l = 0, 1, ..., N − 1. (1.16)

Then

c(0, T, κl) ≈
1

π

N−1∑
j=0

eiujκl ĉ(0, T, uj)4u, l = 0, 1, ..., N − 1

=
1

π

N−1∑
j=0

eij4u(l−
N
2
)4κ ĉ(0, T, uj)4u, l = 0, 1, ..., N − 1

=
1

π

N−1∑
j=0

eijl4u4κe−ij
N
2
4u4κ ĉ(0, T, uj)4u, l = 0, 1, ..., N − 1. (1.17)

If we set

4u4κ =
2π

N
, (1.18)

then we have

c(0, T, κl) ≈
1

π

N−1∑
j=0

eijl
2π
N e−ijπ ĉ(0, T, uj)4u, l = 0, 1, ..., N − 1. (1.19)
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Using Simpson’s rule for numerical integration, define a sequence of weighting

factors by

w(j) =



1

3
, if j = 0,

4

3
, if j is odd,

2

3
, if j is even.

Then

c(kl) ≈
4u

πN

N−1∑
j=0

eijl
2π
N e−ijπ ĉ(0, T, uj)w(j)N, l = 0, 1, ..., N − 1. (1.20)

Comparing (1.20) with (1.13), it is easily seen that c(0, T, κ) can be obtained

by taking the Fourier transform of the sequence
{

e−ijπ ĉ(0, T, uj)w(j)N
}

, for j =

0, 1, ..., N − 1.

The fast Fourier transform algorithm developed by Cooley and Tukey [54] and

later extended by many others provide a more efficient algorithm for calculating DFT

or inverse DFT with sample points that are powers of two. That is, N = 2p, p ∈

{1, 2, ...}. The Cooley-Tukey FFT algorithm can reduce the number of multiplications

from N2 to N logN .



CHAPTER 2: FFT APPROACH FOR PRICING A EUROPEAN CALL OPTION

UNDER A REGIME-SWITCHING MODEL

In this chapter, we introduce the fast Fourier transform (FFT) approach to option val-

uation, where the underlying asset price is governed by a regime-switching geometric

Brownian motion.

2.1 Motivation

The fast Fourier transform (FFT) is a numerical approach for pricing options which

utilizes the characteristic function of the underlying instrument’s price process. The

fast Fourier transform is a significant computational method in scientific computing

and it has been widely applied to financial engineering, specifically in options pricing.

FFT approach makes use of the characteristic function of the underlying asset price.

The use of the fast Fourier transform method is motivated by the following reasons:

the algorithm has speed advantage ( especially over Monte Carlo Simulation and

PDE). This enables the Fourier transform algorithm to calculate prices accurately

for a whole range of strikes. The characteristic function of the log-price is known

and has a simple form for many models considered in literature while the density

is often not known in the closed form. The models meet this requirement include

the stochastic volatility models, the affine jump diffusions, and the exponential Lévy

models, among others; see Carr and Madan [2], Carr and Wu [3], and Duffie et al. [4]

for detailed discussions of these models. However, FFT approach is only applicable

to problems for which the characteristic functions of the underlying price process can

be obtained analytically. Because of its prevalence, increasing research efforts have
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been devoted to the FFT approach in option pricing. For example, Carr and Madan

[2] illustrated the fundamental idea of using FFT for valuing European options based

on the Black-Scholes setting and applied it to the variance gamma (VG) model (see

Madan et al. [5]). Ĉerný [6] presented a detailed discussion on the implementation

of FFT to option pricing.

Along another line, considerable attention has been focused on the regime-switching

diffusion models for asset prices recently. In this setting, model parameters (rate of

return, volatility, and risk-free interest rate) are assumed to depend on a finite-state,

observable Markov chain, whose states represent different ”states of the world” or

regimes, which can describe various randomly changing economical factors. By in-

corporating an observable Markov chain into the formulation, the regime-switching

framework can capture the effect of those less frequent but significant events that

have impact on the individual asset price behavior (especially for long-term dynam-

ics). This is a major advantage compared with other models, see Yao et al. [7], and

Zhang [8], among others for discussions on considerations leading to this modelling

approach.

In this chapter, the fast Fourier transform (FFT) approach is applied for pricing

European-style call options, where the underlying asset price is governed by a regime-

switching geometric Brownian motion (RSGBM). An FFT method for the regime-

switching model is developed. For the two states case, numerical result is provided,

however, for the general case where the number of states is more than two (m > 2), the

fundamental matrix sulotion is not known explicitly. We use monte-carlo simulation

as well as a novel method called semi-MC simulation to compare with our FFT

results for the two case. We also use analytical sulotion for the case where the drift

and interest rate don’t depend on time and compare the results with what obtained

by FFT, MCS and Semi-MCS.
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2.2 Regime-switching model and risk-neutral option pricing

We consider a continuous-time economy with a finite time horizon [0, T ] where T <∞.

Suppose that (Ω,F ,P) is a complete probability space, where P is a risk-neutral

probability measure. Let α(t) be a finite-state, continuous time, observable Markov

chain with a finite state space M = {1, ...,m}, which may represent general market

trends. For example, when m = 2, α(t) = 1 may denote a bull market and α(t) = 2

a bear market.

Let’s assume that under the risk-neutral measure P , the dynamics of the under-

lying asset value, St, is given by

dSt = µ(α(t))St dt+ σ(α(t))St dWt, t ≥ 0 (2.1)

where S(0) = S0 > 0 is the initial underlying asset price, Wt is a standard Brownian

motion independent of α(t), and µ(α(t)) and σ(α(t)) are the risk-free drift rate and

volatility of the underlying asset, respectively. We assume that µ(j) and σ(j) are

positive constant, for each j ∈M.

Under the risk-neutral probability measure P , the price of T -maturity European-

style call options at time 0 with strike K > 0 is given as follows:

C(K) = E
{

exp

(
−
∫ T

0

r(α(t))dt

)
(ST −K)+

}
. (2.2)

where the instantaneous risk-free interest rate, r(α(t)) also depends on α(t) with

r(j) > 0, for each j ∈M.

Following the notation in Lui, Zhang and Yin [1], let k = ln

(
K

S0

)
and ST = S0e

XT .

Note that k = 0 ( when K = S0) will be always corresponding to the at-the-money

case.
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Then (2.2) can be written as

C(k) = S0E
{

exp

(
−
∫ T

0

r(α(t))dt

)
(eXT − ek)+

}
. (2.3)

2.3 Fourier transform of the option price

In this section, we would like to apply Fourier transform to European-style call option

price given by equation (2.3). Let’s first recall the definition of Fourier transform (FT)

and inverse Fourier transform (IFT) for continuous functions. The Fourier transform

of the function f is traditionally denoted by f̂ . There are several common conventions

for defining the Fourier transform of an integrable function f : R 7→ C. Here we will

use the following definition:

f̂(u) =

∫ ∞
−∞

e−iuxf(x)dx,

for any real number u.

When the independent variable x represents time, the transform variable u repre-

sents frequency. Under suitable conditions, f is determined by f̂ via inverse Fourier

transform:

f(x) =

∫ ∞
−∞

eiuxf̂(u)du,

for any real number x.

For the rest of this dissertation, we use above definitions for FT and IFT. Assume

f(x) is the probability density function of XT . Now let’s derive the Fourier transform

of C(k).
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Ĉ(u) =

∫ ∞
−∞

e−iukC(k)dk

=

∫ ∞
−∞

e−iukS0E
{

exp

(
−
∫ T

0

r(α(t))dt

)
(eXT − ek)+

}
dk

= S0

∫ ∞
−∞

e−iuκ
∫ ∞
−∞

exp

(
−
∫ T

0

r(α(t))dt

)(
ex − ek

)+
f(x) dx dk

= S0

∫ ∞
−∞

exp

(
−
∫ T

0

r(α(t))dt

)
e−iuk

∫ ∞
k

(ex − ek)f(x) dx dk

= S0

∫ ∞
−∞

exp

(
−
∫ T

0

r(α(t))dt

)
f(x)

∫ x

−∞
e−iuk(ex − ek) dk dx (2.4)

where we changed the order of integration by Fubini’s theorem and used the result∫∞
x

e−iuk(ex − ek)+ dk = 0. If we evaluate the inner integral of (2.4), we have

∫ x

−∞
e−iuk(ex − ek) dk =

∫ x

−∞
e−iuk ex dk −

∫ x

−∞
e−iuk ek dk

= ex
e−iuk

−iu
∣∣x
−∞ −

e(1−iu)k

(1− iu)

∣∣x
−∞. (2.5)

As we can see, the first term of (2.5) is not integrable since limk→−∞ e−iuk 6= 0,

while in second term of (2.5) limk→−∞ e(1−iu)k converges to zero.

To obtain a squared integrable function with respect to k, Carr and Madan [2]

introduced a dampning parameter ρ to modify the call option price. The so-called

dampened call price is defined as

c(k) = eρk
C(k)

S0

, −∞ < k <∞ (2.6)

where ρ > 0 is a prespecified positive number (dampening factor). We explained in

details in Chapter 1, Section 1.3.2 why we need positive dampening factor for call

and negative dampening factor for put options.
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The Fourier transform of the dampened call option price is given by:

ĉ(u) =

∫ ∞
−∞

e−iukc(k)dk, u ∈ (−∞,∞). (2.7)

Once we find a closed form for Fourier transform of the dampened call option

price, the pricing formula for the European-style call option can be obtained via the

inverse Fourier transform as follows:

C(k) =
e−ρk S0

2π

∫ ∞
−∞

eiuk ĉ(u) du =
e−αk S0

π

∫ ∞
0

eiuk ĉ(u) du. (2.8)

where the second term comes from the fact that call option is a real number. This

implies the Fourier transform ĉ(u) is odd in its imaginary part so that

Im{ĉ(u)} = −Im{ĉ(−u)} (2.9)

and even in its real part so that

Re{ĉ(u)} = Re{ĉ(−u)}. (2.10)

Thus this allows to rewrite the pricing integral as the second term in (2.8).

Therefore, all we need to do now is to find a closed form for Fourier transform of

the dampened call option price. Let FT be the σ-algebra generated by the Markov

chain α(t), 0 ≤ t ≤ T , that is, FT = σ{α(t), 0 ≤ t ≤ T}. Note that Wt is still

a Brownian motion (BM) with respect to the filteration of Markov chain since we

consider BM to be independent of Markov chain. Let fFT (x) be the conditional

density function of XT given FT .

Then the Fourier transform of the dampened call option price, c(k), is calculated



20

as follows:

ĉ(u) =

∫ ∞
−∞

e−iuk c(k) dk =

∫ ∞
−∞

e−iuk eρk E
{

e−
∫ T
0 r(α(t))dt (eXT − ek)+

}
dk

= E
{∫ ∞

−∞
e−iukeρkE

{
e−

∫ T
0 r(α(t))dt(eXT − ek)+|FT

}
dk

}
= E

{∫ ∞
−∞

e−iukeρke−
∫ T
0 r(α(t))dt

∫ ∞
k

(
ex − ek

)
fFT (x)dxdk

}
= E

{∫ ∞
−∞

e−
∫ T
0 r(α(t))dtfFT (x)

∫ x

−∞

(
exe(ρ−iu)k − e(1+ρ−iu)k

)
dkdx

}
= E

{∫ ∞
−∞

e−
∫ T
0 r(α(t))dtfFT (x)

(
e(1+ρ−iu)x

(ρ− iu)
− e(1+ρ−iu)x

(1 + ρ− iu)

)
dx

}
= E

{
e−

∫ T
0 r(α(t))dt

(
φFT (−i(1 + ρ)− u)

(ρ− iu)
− φFT (−i(1 + ρ)− u)

(1 + ρ− iu)

)}

=

E
{

e−
∫ T
0 r(α(t))dtφFT (−i(1 + ρ)− u)

}
(ρ− iu)(1 + ρ− iu)

(2.11)

where

φFT (u) = E{eiuXT |FT} =

∫ ∞
−∞

eiuxfFT (x)dx (2.12)

is the conditional characteristic function of XT given FT .

Note that the third equality in (2.10) holds by the well-known property of condi-

tional expectations(E{E{X|Y }} = E{X}), and we changed the order of integration

by Fubini’s theorem in fifth equality since the modified call price is bounded.

Call values are determined by substituting (2.11) into (2.8) and performing the

required integration. To find the explicit form for the required integration, we still

need to find the expectation in (2.11). Thus we first try to find φFT (u). To do this

end, we need to know the distribution of XT . Recall ST = S0 eXT , therefore

ST = S0exp

(∫ T

0

[
µ(α(s))− 1

2
σ2(α(s))

]
ds+

∫ T

0

σ(α(s))dWs

)
, t ≥ 0.
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To simplify our notation, let’s define

LT =

∫ T

0

µ(α(t))dt, VT =

∫ T

0

σ2(α(t))dt, RT =

∫ T

0

r(α(t))dt. (2.13)

Then given FT , XT has Gaussian distribution with mean (LT − 1
2
VT ) and variance

VT . It follows that

φFT (u) = exp

(
iu(LT −

1

2
VT )− 1

2
u2VT

)
. (2.14)

Plugging (2.14) in (2.11), we have

ĉ(u) =
1

(ρ− iu)(1 + ρ− iu)
E
{

exp

(
(1 + ρ)

(
LT +

1

2
ρVT

)
−RT

− 1

2
u2VT − iu

(
LT + (

1

2
+ ρ)VT

))}
. (2.15)

As we can see, still we haven’t been able to find a closed form for ĉ(u) as it is

necessary to calculate the expectation with respect to LT , VT and RT in (2.15). Note

that LT , VT and RT are random variables as their value depends on how much time

Markov chain spent in state j for example. Therefore, it’s useful to define the sojourn

time of the Markov chain α(t) in state j during the interval [0, T ].

Tj =

∫ T

0

1{α(t)=j}dt, j ∈M (2.16)

Then
∑m

j=1 Tj = T . Then the three random variables LT , VT and RT defined in

(2.13) can be rewritten as

LT =
m−1∑
j=1

(
µ(j)− µ(m)

)
Tj + µ(m)T,

VT =
m−1∑
j=1

(
σ2(j)− σ2(m)

)
Tj + σ2(m)T, (2.17)
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RT =
m−1∑
j=1

(
r(j)− r(m)

)
Tj + r(m)T.

Using (2.17) in (2.15), we obtain that

ĉ(u) =
1

(ρ− iu)(1 + ρ− iu)
exp
(
B(u)T

)
E
{

exp

(
i

m−1∑
j=1

A(u, j)Tj

)}
(2.18)

where for j = 1, ...,m− 1,

A(u, j) = −u
[
(µ(j)− µ(m)) +

(
1

2
+ ρ

)
(σ2(j)− σ2(m))

]
+

1

2
u2(σ2(j)− σ2(m))i+

[(
r(j)− r(m))−

(1 + ρ)(µ(j)− µ(m)
)
− 1

2
ρ(1 + ρ)(σ2(j)− σ2(m))

]
i,

B(u) = −iu
[
µ(m) +

(
1

2
+ ρ

)
σ2(m)

]
− 1

2
u2σ2(m)+

(1 + ρ)µ(m)− r(m) +
1

2
ρ(1 + ρ)σ2(m). (2.19)

Therefore, the determination of ĉ(u) reduces to calculating the characteristic func-

tion of the random vector (T1, ..., Tm−1)
′
. For the two states case, we only need to find

the characterisitic function of random sojourn time T1, as by finding T1 implies that

T2 = T −T1. We adopt the same methodology in Liu el at [1] for the two states case.

However, for general case, when m > 2, we need to find the characteristic function

of the random vector (T1, ..., Tm−1)
′
. We are going to use a modification of proof of

lemma 1 in Buffington and Elliott [11].

Let the generator of the Markov chain α(·) be given by an m × m matrix Q =
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(qij)m×m such that qij ≥ 0 for i 6= j and
∑m

j=1 qij = 0 for each j ∈M. Let

I(t) =

(
1{α(t)=1},1{α(t)=2}, ...,1{α(t)=m}

)′

∈ Rm×1, (2.20)

denote the vector of indicator functions. Then it is shown by Yin and Zhang [10,

Lemma 2.4, Chapter 2] that

M(t) = I(t)−
∫ t

0

Q
′
I(s)ds (2.21)

is a martingale, where Q
′

denotes the transpose of Q. This implies

dI(t) = Q
′
I(t)dt+ dM(t). (2.22)

Let’s simplify our notation in (2.18) in order to determine the characteristic func-

tion of the random vector (T1, ..., Tm−1)
′
.

E
{

exp

(
i
m−1∑
j=1

θjTj

)}
= E

{
exp

(
i
m−1∑
j=1

θj

∫ T

0

1{α(t)=j}dt

)}
. (2.23)

We would like to generalize our method by calculating the following characteristic

function

E
{

exp

(
i
m−1∑
j=1

θj

∫ u

t

1{α(t)=j}dt

)}
, ∀ u ∈ [t, T ]. (2.24)

Define a random vector

Z(t, u) =

(
z1(t, u), z2(t, u), ..., zm(t, u)

)′

∈ Rm×1 (2.25)
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for any u ∈ [t, T ], where

zj(t, u) = exp

(
i

m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
1{α(u)=j}, (2.26)

in other words, by using the given definition (2.21) for I(u)

Z(t, u) = exp

(
i
m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
I(u).

Consequently,

dZ(t, u) =

(
i
m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
Z(t, u)du+ exp

(
i
m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
dI(u).

(2.27)

We would like to simplify (2.27) by denoting Θ = diag(θ1, θ2, ..., θm−1, 0) where

diag(θ1, θ2, ..., θm−1, 0) is the diagonal matrix with diagonal entries θ1, θ2, ..., θm−1, 0.

Note

(
i
m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
Z(t, u) = iΘZ(t, u). (2.28)

Using (2.28) and the martingale property (2.22), we have

dZ(t, u) = iΘZ(t, u)du+Q
′
Z(t, u)du+ exp

(
i

m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
dM(u), (2.29)

then

dZ(t, u) = (iΘ +Q
′
)Z(t, u)du+ exp

(
i

m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
dM(u). (2.30)
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Consequently,

Z(t, u) = Z(t, t) +

∫ u

t

(iΘ +Q
′
)Z(t, s)ds+

∫ u

t

exp

(
i
m−1∑
j=1

θj

∫ u

t

1{α(s)=j}ds

)
dM(s).

(2.31)

Taking expectations from both sides, we get

E{Z(t, u)} = Z(t, t) +

∫ u

t

(iΘ +Q
′
)E{Z(t, s)}ds. (2.32)

Note that Z(t, t) = I(t), where I(t) is m×m identity matrix. By differentiation,

we have

dE{Z(t, u)} =
(
iΘ +Q

′)E{Z(t, u)}du, E{Z(t, t)} = I(t). (2.33)

Hence E{Z(t, u)} satisfies the following homogeneous system of linear ODEs of

order one and dimension m:

E{Z(t, u)}
du

=

(
iΘ +Q

′
)
E{Z(t, u)}, E{Z(t, t)} = I(t). (2.34)

Since
(
iΘ +Q

′)
is not time dependent, the solution to (2.34) is given by

E{Z(t, u)} = I(t)exp

((
iΘ +Q

′)
(u− t)

)
. (2.35)

Thus for t = 0 and u = T , we have

E{Z(0, T )} = I(0)exp

((
iΘ +Q

′)
T

)
. (2.36)
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Consequently, the characteristic function can be determined by

E
{

exp

(
i
m−1∑
j=1

θjTj

)}
= E

{
exp

(
i

m−1∑
j=1

θj

∫ T

0

1{α(t)=j}dt

)}

=
m∑
j=1

E{zj(0, T )} = 1
′

mE{Z(0, T )}

= 1
′

mI(0)exp

((
iΘ +Q

′)
T

)
, (2.37)

where 1
′
m ∈ Rm×1. Setting θj = A(u, j) in (2.37) and then using the result in (2.18),

we obtain the Fourier transform ĉ(u), which can then be used in the inverse transform

to determine the option price.

We closely follows the innovative way proposed by Liu et. al [1] for deriving a

simple form for the two-state case. Let the generator of the Markov chain α(·) be

given by

Q =

−λ1 λ1

λ2 −λ2

 (2.38)

where λ1 is the jump rate from state 1 to state 2 and λ2 is the jump rate from state 2

to state 1. In this case, we need to find the characteristic function of T1, the sojourn

time in state 1.

Assume the initial state α(0) = j0. Define

φj0(θ, T ) = E{eiθT1|α(0) = j0}, j0 = 1, 2. (2.39)

Then φ1(θ, T ) and φ2(θ, T ) satisfy the following system of integral equations (see the

Appendix A.1):

φ1(θ, T ) = eiθT e−λ1T +

∫ T

0

eiθtφ2(θ, T − t)λ1e−λ1tdt,

φ2(θ, T ) = e−λ2T +

∫ T

0

eiθtφ1(θ, T − t)λ2e−λ2tdt. (2.40)
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In order to find φ1(θ, T ) and φ2(θ, T ) we are going to use Laplace transforms.

Let’s denote L{f(t)} = F (s) and L{g(t)} = G(s). Recall

L{eat} =
1

s− a
,

L
{∫ t

0

f(t)g(t− u)du

}
= F (s)×G(s).

Taking Laplace transforms, we obtain the following system of algebraic equations:

L{φ1(θ, T )} =
1

s+ λ1 − iθ
+

λ1
s+ λ1 − iθ

L{φ2(θ, T )},

L{φ2(θ, T )} =
1

s+ λ2
+

λ2
s+ λ2

L{φ1(θ, T )}. (2.41)

We now solve the pair of equations:

L{φ1(θ, T )} =
1 + λ1L{φ2(θ, T )}

s+ λ1 − iθ
, (2.42)

L{φ2(θ, T )} =
1 + λ2L{φ1(θ, T )}

s+ λ2
. (2.43)

Substituting (2.43) in (2.42) to find L{φ1(θ, T )} and (2.42) to (2.43) in order to

find L{φ2(θ, T )}, we have

(s+ λ1 − iθ)L{φ2(θ, T )} = (1 + λ1)
1 + λ2L{φ2(θ, T )}

s+ λ2

=
s+ λ1 − iθ + λ2 + λ1λ2L{φ2(θ, T )}

s+ λ1 − iθ
,

(s+ λ2)L{φ2(θ, T )} = (1 + λ2)
1 + λ1L{φ2(θ, T )}

s+ λ1 − iθ

=
s+ λ1 − iθ + λ2 + λ1λ2L{φ2(θ, T )}

s+ λ1 − iθ
.
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Solving the above pair of equations for L{φ1(θ, T )} and L{φ2(θ, T )} implies

(s2 + λ1s+ λ2s− iθs− iθλ2)L{φ1(θ, T )} − λ2 − λ1 − s = 0,

(s2 + λ1s+ λ2s− iθs− iθλ2)L{φ2(θ, T )} − λ2 − λ1 − s+ iθ = 0.

Solving the pair of equations finally yields

L{φ1(θ, T )} =
s+ λ1 + λ2

s2 + (λ1 + λ2 − iθ)s− iθλ2
,

L{φ2(θ, T )} =
s+ λ1 + λ2 − iθ

s2 + (λ1 + λ2 − iθ)s− iθλ2
. (2.44)

Now let’s take inverse Laplace transform to find L{φ1(θ, T )} and L{φ2(θ, T )}.

But first, assume s1 and s2 are the two roots of the equation

s2 + (λ1 + λ2 − iθ)s− iθλ2 = 0. (2.45)

Hence

φ1(θ, T ) =
s+ λ1 + λ2

(s− s1)(s− s2)
=

(s+ λ1 + λ2)(s1 − s2)
(s− s1)(s− s2)(s1 − s2)

=
ss1 − ss2 + (λ1 + λ2)s1 − (λ1 + λ2)s2 ± s1s2 ± (λ1 + λ2)s

(s− s1)(s− s2)(s1 − s2)

=
s1(s− s2) + (λ1 + λ2)(s− s2) + (s1 − s)s2 + (s1 − s)(λ1 + λ2)

(s− s1)(s− s2)(s1 − s2)

=
(s1 + λ1 + λ2)(s− s2)− (s− s1)(s2 + λ1 + λ2)

(s− s1)(s− s2)(s1 − s2)

=
s1 + λ1 + λ2

(s1 − s2)
× 1

s− s1
− s2 + λ1 + λ2

(s1 − s2)
× 1

s− s2

=
1

s1 − s2

(
(s1 + λ1 + λ2)L−1{L{es1T}} − (s2 + λ1 + λ2)L−1{L{es2T )}}

)
,

φ2(θ, T ) =
s+ λ1 + λ2 − iθ
(s− s1)(s− s2)

=
(s+ λ1 + λ2 − iθ)(s1 − s2)
(s− s1)(s− s2)(s1 − s2)
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=
ss1 − ss2 + (λ1 + λ2 − iθ)s1 − (λ1 + λ2 − iθ)s2 ± s1s2 ± (λ1 + λ2 − iθ)s

(s− s1)(s− s2)(s1 − s2)

=
s1(s− s2) + (λ1 + λ2 − iθ)(s− s2) + (s1 − s)s2 + (s1 − s)(λ1 + λ2 − iθ)

(s− s1)(s− s2)(s1 − s2)

=
(s1 + λ1 + λ2 − iθ)(s− s2)− (s− s1)(s2 + λ1 + λ2 − iθ)

(s− s1)(s− s2)(s1 − s2)

=
s1 + λ1 + λ2 − iθ

(s1 − s2)
× 1

s− s1
− s2 + λ1 + λ2 − iθ

(s1 − s2)
× 1

s− s2

=
1

s1 − s2

(
(s1 + λ1 + λ2 − iθ)L−1{L{es1T}}

− (s2 + λ1 + λ2 − iθ)L−1{L{es2T )}}
)
.

Therefore we have

φ1(θ, T ) =
1

s1 − s2
((s1 + λ1 + λ2)e

s1T − (s+ λ1 + λ2)e
s2T ),

φ2(θ, T ) =
1

s1 − s2
((s1 + λ1 + λ2 − iθ)es1T − (s+ λ1 + λ2 − iθ)es2T ). (2.46)

The Fourier transform (2.18) in this case is given by

ĉ(u) =
exp(B(u)T )φj0(A(u), T )

(ρ− iu)(1 + ρ− iu)
, (2.47)

where

A(u) = A(u, 1) = −u
[(
µ(1)− µ(2)

)
+
(1

2
+ ρ
)(
σ2(1)− σ2(2)

)]
+

1

2
u2
(
σ2(1)− σ2(2)

)
i+

[(
r(1)− r(2)

)
− (1 + ρ)

(
µ(1)− µ(2)

)
− 1

2
ρ(1 + ρ)

(
σ2(1)− σ2(2)

)]
i,

B(u) = −iu
[
µ(2) + (

1

2
+ ρ)σ2(2)

]
− 1

2
u2σ2(2)

+ (1 + ρ)µ(2)− r(2) +
1

2
ρ(1 + ρ)σ2(2). (2.48)
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2.4 FFT algorithm for option pricing

We adopt the approach introduced by Carr and Madan [3].There are many ways to

define the discrete Fourier transform (DFT), varying in the sign of the exponent,

normalization, etc. Since we are going to use Python implementation, therfore we are

following the same definition for DFT given in Python package numpy. The DFT is

defined in Python is

Ak =
n−1∑
m=0

amexp

{
− 2πi

mk

n

}
, k = 0, ..., n− 1. (2.49)

The inverse DFT is defined as

am =
1

n

n−1∑
k=0

Akexp

{
2πi

mk

n

}
m = 0, ..., n− 1.

It differs from the Fourier transform by the sign of the exponential argument and

the default normalization by
1

n
.

Given the transform function ĉ(u), the modified option price c(k) can be obtained

by the inverse Fourier transform as described in (2.9)

C(k) =
exp(−ρk)

2π

∫ ∞
−∞

eiνkĉ(u)du =
exp(−ρk)

π

∫ ∞
0

eiukĉ(u)du,

and the option price is, in view of (2.7), C(k) = e−ρkS0c(k), for −∞ < k <∞.

Set uj = j4u, j = 0, 1, ..., N−1, where 4u is the grid size in the variable u. Then

(2.9) can be approximated by the following summation:

c(k) ≈ 1

π

N−1∑
j=0

eiujkĉ(uj)4u. (2.50)

Next, let 4k be the grid size in k and choose a grid along the modified log strike
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k as below:

kl = (l − N

2
)4k, l = 0, 1, ..., N − 1. (2.51)

Then

c(kl) ≈
1

π

N−1∑
j=0

eiujkl ĉ(uj)4u, l = 0, 1, ..., N − 1

=
1

π

N−1∑
j=0

eij4u(l−
N
2
)4k ĉ(uj)4u

=
1

π

N−1∑
j=0

eij4ul4ke−ij4u
N
2
4k ĉ(uj)4u. (2.52)

If we set

4u4k =
2π

N
, (2.53)

then we have

c(kl) ≈
1

π

N−1∑
j=0

eijl
2π
N e−ijπ ĉ(uj)4u, l = 0, 1, ..., N − 1. (2.54)

Using Simpson’s rule for numerical integration, define a sequence of weighting

factors by

w(j) =



1

3
, if j = 0,

4

3
, if j is odd,

2

3
, if j is even.
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Then

c(kl) ≈
4u

πN

N−1∑
j=0

eijl
2π
N e−ijπ ĉ(uj)w(j)N, l = 0, 1, ..., N − 1. (2.55)

Comparing (2.51) with (2.45), it is easily seen that

{
c(k)

}
can be obtained by

taking the Fourier transform of the sequence

{
e−ijπ ĉ(uj)w(j)N

}
, j = 0, 1, ..., N − 1.

Details for the code is provided in Appendix A.2.

2.5 Monte Carlo and Semi-Monte Carlo algorithm for option pricing

Monte Carlo simulations are frequently used when closed-form solutions are not avail-

able for complex stochastic problems. A Monte Carlo algorithm frequently serves as

a benchmark for the ”true value” used for testing other numerical methods. The

benchmark value is obtained by running a great number of sample paths in simulat-

ing the underlying stochastic dynamics. It is very time consuming and therefore not

feasible for most practical use in real time.

We employ Monte Carlo simulations (MCS) to price options in our two-state

Markov-modulated model. To price non-path dependent options such as European

call options, we only require the final stock price at maturity time ST , not the stock

price trajectory {St}t∈[0,T ]. Therefore we need to be creative on how to simulate the

stock price trajectory in order to be able to implement MCS. As a first step, we

consider simulating the trajectory of the Markov chain {α(t)}t∈[0,T ], conditional on

α(0) = 1. Hence we may consider distribution of the first jump from state 1 to state

2. The exponential distribution is often concerned with the amount of time until

some specific event occurs. For example, the amount of time (beginning t = 0) until

Markov chain leaves state 1 has an exponential distribution. Let’s call the first time

jumping from state 1 to state 2 J , therefore J ∼ exp(λ1) and P(J > t) = e−λ1 t for
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any t ∈ [0, T ]. We draw a uniform random variable on interval [0, 1] to simulate the

probability P(J > t). Hence our exponential random variable is t = −ln(p)
λ1

. We then

calculate the occupation time T1 of state 1, and use independent increments property

of Brownian motion as well as sum of two independent normally distributed random

variables is normal, with its mean being the sum of the two means, and its variance

being the sum of the two to simply observe that, given T1 = τ1 ∈ [0, T ],

(
Ln(ST )|FT

)
≈ LnS0 +

∫ τ1

0

(µ1 −
1

2
σ2
1)ds+

∫ T

τ1

(µ2 −
1

2
σ2
2)ds

+

∫ τ1

0

σ1dWs +

∫ T

τ1

σ2dWs

= LnS0 + (µ1 −
1

2
σ2
1)τ1 + (µ2 −

1

2
σ2
2)(T − τ1)

+ σ1W (τ1) + σ2(W (T )−W (τ1))

dist
≈ N

(
LnS0 + (µ1 −

1

2
σ2
1)τ1 + (µ2 −

1

2
σ2
2)(T − τ1), σ2

1τ1 + σ2
2(T − τ1)

)
.

(2.56)

By using the procedure above and (2.56), we only require one pseudo-random

sample from the standard normal distribution, which minimizes the required compu-

tational time. To price options using the Monte Carlo algorithm above, let N be the

number of replications. For n = 1, ..., N ,

1. Obtain the nth sample path of α(t), t ∈ [0, T ].

2. Find the occupation time spent at given initial state (In our case, state 1. Note

than we only need to find occupation time in one state as we only have two

states).

3. Use equation (2.56) to simulate the log of terminal of stock price.

4. Calculate Cn(K) for the nth sample path.

5. Calculate the average C(K) =
1

N

∑N
n=1Cn(K).
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A Monte Carlo base algorithm is presented by Liu el. at [1] that can be also

used as benchmark values in numerical experiments. It’s called semi-Monte Carlo

simulation algorithm. As noted by Buffington and Elliott [11], for a given realization

of the Markov chain α(·) = {α(t) : 0 ≤ t ≤ T}, the European call option price whose

underlying asset is governed by regime-switching GBM can be calculated by the usual

Black-Scholes formula in which the volatility and the interest rate are replaced by

the sample path values. Semi-Monte Carlo simulation approach only takes random

sampling of the Markov chain and then takes advantage of the availability of analytical

formula of the conditional price. Recall that from Section 2, FT denotes the σ-algebra

generated by the Markov chain α(t), 0 ≤ t ≤ T . Then the call option price can be

calculated by

C(K) = E
{

exp

(
−
∫ T

0

r(α(t))dt

)
(S(T )−K)+

}
= E

{
E
{

e−RT (S(T )−K)+|FT
}}

.

The conditional expectation is given by the Black-Scholes formula, that is,

E
{

e−RT (S(T )−K)+|FT
}

= S0e
−(RT−LT )N

(
d1(LT , VT )

)
−Ke−RTN

(
d2(LT , VT )

)

where

d1(LT , VT ) =
ln(

S0

K
) + LT +

1

2
VT

√
VT

, d2(LT , VT ) = d1(LT , VT )−
√
VT

and N (·)is the cumulative standard normal distribution function.

Detail of the code is provided in Appendix A.3. We consider a two-state (m = 2)

example. When the underlying Markov chain α(·) has only two states, an analytical

formula in terms of an integral with respect to the Bessel function is developed by



35

Guo [9] for the European call option prices. Fuh, Hu, Ho and Wang [13] considered a

specific example and compared various methods (binomial tree, Monte Carlo, and an

approximation approach presented in their paper) with the analytical results (equa-

tion(7)). Here we consider the same example to compare the Monte Carlo algorithm,

Semi-MC simulations with the analytical results. Details of the code for MC, analyti-

cal results and Semi-MC are provided in Appendix A.3, Appendix A.4 and Appendix

A.5 respectively.

2.6 Numerical experiments using MC and analytical method

The parameters used, in this example, are S0 = 100, K = 90, λ1 = λ2 = 1.0,

µ1 = µ2 = r1 = r2 = 0.1, σ1 = 0.2, σ2 = 0.3. The initial state is α(0) = 1 and

N = 100000 replications are used in the Monte Carlo(MC) simulations. Table 2.1

lists the numerical results for a range of option expiry times. We then change the

initial state from 1 to 2 with the same given parameters and the results are provide

in Table 2.2.

It is clear from Table 2.1 and Table 2.2 that the Monte Carlo simulation converges

to real prices. All the errors show a clear indication of high accuracy. It’s worth to

mention that Fuh and Wang [13] used 50 000 000 replications in their Monte Carlo

simulations to obtain the numbers. We only used 100000 replications (1/50 of theirs)

in the Monte Carlo simulations but achieved a much higher degree of accuracy in our

Semi-MC simulation.
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Table 2.1: Comparison of Analytical prices, MC and Semi-MC Simulations at state
α(0) = 1

T (year) Analytical

α(0) = 1

MC(error)

α(0) = 1

Semi-MC(error)

α(0) = 1

0.1 10.999 10.999 (0.000) 10.993 (0.006)

0.2 12.194 12.186 (0.008) 12.165 (0.029)

0.5 15.754 15.671 (0.083) 15.615 (-0.421)

1.0 21.075 20.970 (0.105 ) 20.723 (-0.648)

2.0 29.943 29.970 (-0.027 ) 29.289 (0.654)

3.0 37.246 37.422 (-0.176) 36.473 (0.773)

Table 2.2: Comparison of Analytical prices, MC and Semi-MC Simulations at state
α(0) = 2

T (year) Analytical

α(0) = 2

MC(error)

α(0) = 2

Semi-MC(error)

α(0) = 2

0.1 11.367 11.370 (-0.003) 11.361 (0.006)

0.2 12.914 12.906 (0.008) 12.889 (0.25)

0.5 16.813 16.730 (0.083) 16.720 (0.93)

1.0 22.003 21.749 (0.254) 21.820 (0.183)

2.0 30.383 29.944 (0.439) 30.087 (0.296)

3.0 37.421 37.135 (0.286) 37.062 (0.359)

2.7 Numerical experiments using FFT

In this section, we report numerical results of using FFT for option pricing developed

in this chapter. In implementing the FFT, we choose the number of grid points

N = 4096(212). That is, we invoke the FFT procedure to calculate 4096 option prices

simultaneously. The grid size along the log strike price k is set to be 4k = 0.01.
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Consequently, 4u = 0.1534 by (2.53). We choose the damping factor ρ to be ρ = 1.0.

All options considered in the examples have maturity T = 1 (year). The initial asset

price S0 = $100. We consider a two-state Markov chain model. The parameters

are given by λ1 = 20.0, λ2 = 30.0, µ1 = r1 = 0.05 , µ2 = r2 = 0.1, σ1 = 0.5 and

σ2 = 0.3. Note that, unlike previous example, in this model, the parameters µ, σ

and r all vary with different states. Large jump rates λ1 and λ2 are chosen so that

the system switches frequently during the life of the options. Table 2.3 and Table

2.4 report the results for seven call options with different strike prices (from deep-

in-the-money to at-the-money and to deep-out-of-money) obtained using FFT, MC

and Semi-MC simulations. Column one in both tables lists the log strike (the strike)

for the options. Columns two, three and four in both tables list the FFT, MC and

Semi-MC prices for both α(0) = 1 and α(0) = 2.

In each case (α(0) = 1 and α(0) = 2), a single run of FFT algorithm produces

4096 option prices (each one with a different strike price and all other parameters are

the same). It took only 0.069 seconds, to run the FFT algorithm. This shows the

clear advantage of the FFT.

Table 2.3: Comparison of FFT, MC and Semi-MC simulations at state α(0) = 1

ln(K/S0)(K) FFT

α(0) = 1

MC

α(0) = 1

Semi-MC

α(0) = 1

-0.3 (74.082) 34.774 34.708 34.773

-0.2 (81.873) 29.696 29.682 29.695

-0.1 (90.484) 24.763 24.766 24.763

0 (100) 20.116 20.095 20.116

0.1 (110.517) 15.881 15.888 15.881

0.2 (122.140) 12.157 12.162 12.155

0.3 (134.986) 9.006 9.019 9.004
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Table 2.4: Comparison of FFT, MC and Semi-MC simulations at state α(0) = 2

ln(K/S0)(K) FFT

α(0) = 2

MC

α(0) = 2

Semi-MC

α(0) = 2

-0.3 (74.082) 34.742 34.661 34.741

-0.2 (81.873) 29.642 29.426 29.642

-0.1 (90.484) 24.688 24.744 24.688

0 (100) 20.022 20.060 20.024

0.1 (110.517) 15.774 15.767 15.772

0.2 (122.140) 12.043 12.086 12.043

0.3 (134.986) 8.893 8.876 8.893

2.8 Concluding remarks

The fast Fourier transform (FFT) has been used for calculating option prices for

a wide range of asset price models. In this chapter, we extended the technique

to the class of regime-switching diffusion models and developed the FFT scheme.

When the number of states of the driving Markov chain in the model is very large,

the calculation of the characteristic function involved in the FFT approach becomes

computationally intensive. The speedup of FFT along with acceptable accuracy is a

promising direction for future research.

In fact, we have illustrated how the calculation of the call price via the Carr-

Madan formula can be done fast and accurately using the fast Fourier Transform.

Typically, N is a power of 2 (where N is the number of discretization steps). The

number of operations of the FFT algorithm is of the order O(N log(N)) and this is

in contrast to the straightforward evaluation of the sums which give rise to O(N2)

number of operations.

The methodology cannot only be applied when it’s not possible to get an explicit

form for characteristic function. However, the fact remains that the FFT is the most
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fast and efficiently method for options price.



CHAPTER 3: FFT APPROACH FOR VALUATION OF COMMODITY AND

FUTURES OPTIONS UNDER A REGIME SWITCHING MODEL

In this chapter, we use the fast Fourier transform (FFT) approach to value commodity

and futures options price, where the log of the underlying commodity spot price is

governed by a regime-switching Ornstein-Uhlenbeck. This Chapter is organized as

follows. In the first section, we state our motivation. Section 2 presents the model

dynamics. In Section 3, we first derive the valuation of commodity options via inverse

Fourier transform approach. Then the value of futures option price is derived. The

final section makes concluding remarks.

3.1 Motivitation

In the previous chapter, we described how one can price, very fast and efficiently,

European call options where the underlying asset price is governed by a regime-

switching geometric Brownian motion using the theory of characteristic functions

and the fast Fourier transforms. We have developed a solid understanding of the cur-

rent frameworks for pricing European call options using FFT, and we have provided

the mathematical and practical background necessary to apply and implement the

technique. The fast Fourier transform method is particularly interesting in case of

advanced equity models, like the future contracts, its stochastic volatility extension,

and many other models like the Heston model, where no closed-form solutions for call

options exist.

An important advantage of the method is that we only need as input the charac-

teristic function of the dynamics of the underlying model. If one wants to switch to
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another model, only the corresponding characteristic functions needs to be changed

and the actual pricing algorithm remains untouched.

Macroeconomic conditions could have significant impacts on commodity prices.

An early work which highlights the link between business cycles and commodity

prices was attributed to the paper by Fama and French [14]. From a practical per-

spective, it is of interest to model and investigate the impacts of structural changes in

macroeconomic conditions on commodity prices. The basic idea of regime-switching

models is that one set of model parameters is in force at a time depending on the state

of the underlying state process at that time. The state process is usually described

by a Markov chain.

In this chapter, we consider an observable Markovian regime-switching Ornstein-

Uhlenbeck model (MRSOU) for evaluating European-style commodity options and

futures options. The main feature of our model is that model parameters, the mean-

reverting level and the volatility of the commodity spot price, are governed by an

observable continuous-time, finite-state, Markov chain. We then discuss the valuation

of commodity options and then the valuation of commodity futures options using

inverse Fourier transform. in the final section, we provide concluding remarks. All

proofs in this chapter are standard and involve the use of standard mathematical

techniques.

3.2 Model dynamics

We consider a continuous-time economy with a finite time horizon τ = [0, T ∗], where

T ∗ <∞. Uncertainties in the economy are described by a complete probability space

(Ω,F ,P), where P is the real-world probability measure. Let X = {X(t)|t ∈ τ}

be an observable continuous-time, finite-state Markov chain with state space ε =

{e1, e2, ..., eN} ⊂ RN , where ei is the unit vector in RN with one in the i-th position

and zero elsewhere. In particular, there could be just two states for X, write X(t) =
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(1, 0)T and X(t) = (0, 1)T for any t ∈ τ , where (1, 0)T denotes the transpose of (1, 0).

State 1 and State 2 represent a ”good” economy and a ”bad” one, respectively. From

Elliott et al.[15] in appendix B, a semi-martingale representation for the chain is given

by

X(t) = X(0) +

∫ t

0

AX(u)du+M(t), t ∈ τ (3.1)

where A := [aij]N×N is a constant rate matrix of the chain and {M(t)|t ∈ τ} is a

martingale under P . The element aij in A is the constant intensity of the transition

of the chain X from State ej to State ei.

We consider commodities that are not investment assets, such as agricultural

products, oil or metals. Evidence from futures prices highlights that the spot prices

of these commodities follow mean reverting processes. Hence the main model feature

is mean reversion in commodity prices, indeed mean reversion toward a Regime-

Switching mean price level. We define the commodity spot price as S = ex. The

process for x is assumed to be

dx(t) = β
(
θ(t)− x(t)

)
dt+ σ(t)dW (t) (3.2)

where W (t) is a Wiener process under the risk-neutral probability measure. θ(t)

is the long term mean level. All future trajectories of x(t) will evolve around a

mean level θ(t) in the long run; and let β be the parameter controlling the speed

of mean reversion for the logarithmic commodity price process, where β > 0. The

instantaneous volatility of the model is σ(t). It measures instant by instant the

amplitude of randomness entering the system.

We assume that {θ(t)|t ∈ τ} changes over time according to the state process of
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{X(t)|t ∈ τ} as follows:

θ(t) = 〈θ,X(t)〉

where 〈·, ·〉 is the scalar product RN . Here θ = (θ1, θ2, ..., θN)T ∈ RN with θi > 0,

for each i = 1, 2, ..., N . In particular, θi is the mean-reversion level of the commodity

process corresponding to the i-th state of the economic condition.

Define {σ(t)|t ∈ τ} as the volatility of the commodity price. Again we suppose

that this volatility changes over time according to the state process of the economy

as follows:

σ(t) = 〈σ,X(t)〉

where σ = (σ1, σ2, ..., σN) ∈ RN with σi > 0.

The solution to the stochastic differential equation (3.2) is given by the following

equation:

x(T ) = e−β(T−t)x(t) + β

∫ T

t

θ(u)e−β(T−u)du+

∫ T

t

σ(u)e−β(T−u)dW (u) (3.3)

3.3 Valuation of commodity futures and options

We now present an observable Markovian Regime-Switching Ornstein-Uhlenbeck model

proposed by Schwartz [16] for a commodity futures pricing. In the proposed model by

Schwartz [16] θ and σ are constant, which seems restrictive. Our goal in this section

is to evaluate the prices of commodity options and futures options at time 0, denoted

by C(0, T ) and Cf (0, T, U), respectively. The valuation of the two products at an

arbitrary time t ∈ [0, T ], where T < T ∗ can be conducted in a similar fashion. The

mathematical results presented in this section are similar to those in, for example,

Fan et al. [17], Section 4 therein. In Fan et al. [17], the FFT approach was used to
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value European call options in a Markovian regime-switching stochastic interest rate

environment. Hence, the expressions of the characteristic functions and the option

prices presented here are not exactly the same as those in Fan et al. [17].

Under the risk-neutral probability measure P , the prices of a T -maturity futures

contract and a T -maturity European-style commodity option at time 0 are given as

follows:

F (0, T ) = E{S(T )} (3.4)

and

C(0, T ) = E
{

e−rT
(
S(T )−K

)+}
, (3.5)

where S(T ) is the terminal commodity price; K is the strike price of the commodity

option; E is the expectation with respect to the risk-neutral probability measure P .

Consider a European-style futures option with a strike price Kf , the terminal payoff

function at the maturity time T of the option is (F (T, U) − Kf )
+, where F (T, U)

represents the futures price with maturity time U at time T . Then the price of the

futures option at time 0 is given by

Cf (0, T, U) = E
{

e−rT
(
F (T, U)−Kf

)+}
. (3.6)

3.3.1 Valuation of commodity options

Following the notation in the previous chapter, write κ = ln(K), the dampened

commodity option price is given by

c(κ) = eακC(O, T ) (3.7)
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where α is called the dampening coefficient and assumed to be positive. To obtain a

square integrable function, the dampening coefficient α is selected and the dampened

commodity pricing formula is defined. We derive an explicit formula for the Fourier

transform of c(κ) next. Let FT be the σ-algebra generated by {X(t), t ∈ τ}, that is,

FT = σ{FX(t), t ∈ τ}. Let fFT (x) be the conditional density function of x(T ) given

FT . Then, the dampened commodity Fourier transform is given by

ĉ(u) =

e−rT E
{
φFT (−i(1 + α)− u)

}
(α− iu)(1 + α− iu)

(3.8)

where

φFT (ν) = E{eiνx(T )|FT} =

∫ ∞
−∞

eiνxfFT (x)dx (3.9)

is the conditional characteristic function of x(T ) given FT . See chapter 1 section 1.3.2

for details of calculation in (3.8).

Note that given FT , x(T ) has Gaussian distribution with mean

E{x(T )|FT} = e−βTx(0) + β

∫ T

0

θ(u) e−β(T−u) du (3.10)

and variance

Var(x(T )|FT ) =

∫ T

0

σ2(u) e−2β(T−u) du. (3.11)

It follows that

φFT (ν) = exp

(
iνE{x(T )|FT} −

1

2
ν2V ar(x(T )|FT )

)
= exp

(
iν
(
e−βTx(0) + β

∫ T

0

θ(u)e−β(T−u)du
)
− 1

2
ν2
∫ T

0

σ2(u) e−2β(T−u) du

)
.

For each t ∈ [0, T ] and ν ∈ R, let G(t, ν) =
(
g1(t, ν), g2(t, ν), ..., gN(t, ν)

)
, where
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gj(t, ν) for each j = 1, 2, ..., N is

gj(t, ν) = iν β θj e
−β(T−t) − 1

2
ν2 σ2

j e
−2β(T−t).

Therefore,

φFT (ν) = exp

(
iν e−βTx(0) +

∫ T

0

〈G(t, ν), X(t)〉dt
)
. (3.12)

Substituting (3.12) in (3.8) implies

ĉ(u) =

e−rT E
{

exp

(
iν e−βTx(0) +

∫ T
0
〈G(t, ν), X(t)〉dt

)}
(α− iu)(1 + α− iu)

, ν = −(u+ i(1 + α)).

(3.13)

In order to derive an explicit formula for ĉ(u), it’s necessary to calculate the

expectation given in (3.13). To this end, we use a modification to the proof of Lemma

A 1 in Buffington and Elliott [11]. Let diag(G(t, ν)) denote the diagonal matrix with

diagonal elements given by the components of G(t, ν), 1 = (1, 1, ..., 1)T and I denote

the (n× n)-identity matrix. Let’s define

W (t, ν) := exp

(∫ t

0

〈G(s, ν), X(s)〉ds
)
X(t), W (0, ν) = X(0). (3.14)

Consequently,

dW (t, ν) = 〈G(t, ν), X(t)〉W (t, ν) dt+ exp

(∫ t

0

〈G(s, ν), X(s)〉ds
)

dX(t).

Note that under P ,

dX(t) = AT X(t)dt+ dM(t),
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and that

〈G(t, ν), X(t)〉W (t, ν) = diag(G(t, ν))W (t, ν), ∀t ∈ τ.

Then

dW (t, ν) = 〈G(t, ν), X(t)〉W (t, ν) dt+ exp

(∫ t

0

〈G(s, ν), X(s)〉ds
)
AT X(t)dt

+ exp

(∫ t

0

〈G(s, ν), X(s)〉 ds
)

dM(t)

= diag(G(t, ν))W (t, ν) dt+ AT W (t, ν) dt

+ exp

(∫ t

0

〈G(s, ν), X(s)〉 ds
)

dM(t)

=

[
diag(G(t, ν)) + AT

]
W (t, ν) dt + exp

(∫ t

0

〈G(s, ν), X(s)〉 ds
)

dM(t).

By taking integration from both sides, we have

W (t, ν) = W (0, ν) +

∫ t

0

[
diag(G(s, ν)) + AT

]
W (s, ν) ds

+

∫ t

0

exp

(∫ s

0

〈G(s, ν), X(s)〉 ds
)

dM(s)

= X(0) +

∫ t

0

[
diag(G(s, ν)) + AT

]
W (s, ν) ds

+

∫ t

0

exp

(∫ s

0

〈G(s, ν), X(s)〉 ds
)

dM(s).

Taking expectation under P gives:

E{W (t, ν)} = X(0) +

∫ t

0

[
diag(G(s, ν)) + AT

]
E{W (s, ν)} ds.

Hence E{W (t, ν)} satisfies the following homogeneous system of linear ODEs of

order one and dimension N :

dE{W (t, ν)}
dt

=
[
diag(G(t, ν)) + AT

]
E{W (t, ν)}, E{W (0, ν)} = X(0). (3.15)
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Suppose Φ(t, ν) denotes the fundamental matrix solution of

dΦ(t, ν)

dt
=
[
diag(G(t, ν)) + AT

]
Φ(t, ν), Φ(0, ν) = I.

If
[
diag(G(t, ν)) + AT

]
= ∆ (i.e. a constant matrix), the fundamental matrix

solution Φ(t, ν) is

Φ(t, ν) = exp(∆ t).

In general, there exists a unique fundamental matrix solution Φ(t, ν) of the linear

matrix differential Eq. (3.15). Now, E{W (t, ν)} can be represented in terms of the

fundamental matrix solution Φ(t, ν) as below:

E{W (t, ν)} = Φ(t, ν)X(0).

Now

E
{

exp

(∫ T

0

〈G(t, ν), X(t)〉dt
)}

= E
{

exp

(∫ T

0

〈G(t, ν), X(t)〉dt
)
〈X(T ),1〉

}
= E

{〈
exp

(∫ T

0

〈G(t, ν), X(t)〉dt
)
X(T ),1

〉}
=

〈
E
{

exp

(∫ T

0

〈G(t, ν), X(t)〉dt
)
X(T )

}
,1

〉
=
〈
E{W (T, ν)},1

〉
=
〈
Φ(T, ν)X(0),1

〉
.

Therefore under Markovian regime-switching Ornstein-Uhlenbeck model, the price

of the commodity option is given by:

ĉ(u) =

exp

(
− rT + iν e−βTx(0)

)〈
Φ(T, ν)X(0),1

〉
(α− iu)(1 + α− iu)

, ν = −(u+ i(1 + α)). (3.16)
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3.3.2 Valuation of futures options

In this subsection we consider the valuation of commodity futures options. We wish

to evaluate the time-zero value of a standard European call option on the future price

F (T, U) with strike price Kf and maturity at time T . That is to evaluate:

Cf (0, T, U) = E
{

e−rT
(
F (T, U)−Kf

)+}
.

As seen before, the dampened commodity futures options price is given by:

cf (κf ) = eαf κf Cf (0, T, U), (3.17)

where κf = ln(Kf ). Let’s define Y (t) := ln
(
F (t, U)

)
for each t ∈ τ . Now we derive an

explit formula for the Fourier transform of the dampened commodity futures options.
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ĉf (u) =

∫ ∞

−∞

e−iuκf c(κf ) dκf

=

∫ ∞

−∞

e−iuκf eαfκf E
{

e−rT (eY (T ) − eκf )+
}

dκf

= E

{∫ ∞

−∞

e−iuκf eαfκf E
{

e−rT (eY (T ) − eκf )+
∣∣∣∣FT} dκf

}

= E

{∫ ∞

−∞

e−iuκf eαfκf e−rT

∫ ∞

κf

(
ey − eκf

)
fFT (y) dy dκf

}

= e−rT E

{∫ ∞

−∞

fFT (y)

∫
y

−∞

(
ey e(αf−iu)κf − e(1+αf−iu)κf

)
dκf dy

}

= e−rT E

{∫ ∞

−∞

fFT (y)

(
e(1+αf−iu)y

(αf − iu)
− e(1+αf−iu)y

(1 + αf − iu)

)
dy

}

= e−rT E

{(
ψFT (−i(1 + αf )− u)

(αf − iu)
− ψFT (−i(1 + αf )− u)

(1 + αf − iu)

)}

=

e−rT E
{
ψFT (−i(1 + αf )− u)

}
(αf − iu)(1 + αf − iu)

(3.18)

where

ψFT (ν) = E{eiνY (T )|FT} =

∫ ∞
−∞

eiνyfFT (y)dy (3.19)

is the conditional characteristic function of Y (T ) given FT . In order to derive an

explicit formula for ĉf (u), we need to derive an analytical formula of the characteristic

function of the logarithmic commodity futures price, in other words ln
(
F (T, U)

)
.

To do so, first we need to derive the time-t price of a T -maturity futures contract.

In other words,

F (t, T ) = E{S(T )|Ft} = E
{
E{S(T )|FT}|Ft

}
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Since S(T ) = ex(T ) and given the initial condition at time T , x(T ) has a Gaussian

distribution with mean

E{x(T )|FT} = e−β(T−t)x(t) + β

∫ T

t

θ(u) e−β(T−u) du, (3.20)

and variance

Var
(
x(T )|FT

)
=

∫ T

t

σ2(u) e−2β(T−u) du, (3.21)

then, it’s easy to see that

E{S(T )|FT} = exp

(
E{x(T )|FT}+

1

2
Var
(
x(T )|FT

))
= exp

(
e−β(T−t)x(t) + β

∫ T

t

θ(u) e−β(T−u) du

+
1

2

∫ T

t

σ2(u) e−2β(T−u) du

)
.

Then the time-t price of a T -maturity futures contract is given by

F (t, T ) = E{S(T )|Ft} = E
{
E{S(T )|FT}|Ft

}
= E

{
exp

(
e−β(T−t)x(t) + β

∫ T

t

θ(u) e−β(T−u) du

+
1

2

∫ T

t

σ2(u) e−2β(T−u) du

)∣∣∣∣Ft}.
Let’s define N(s) =

(
n1(s), n2(s), ..., nN(s)

)
for each s ∈ [0, T ], where for each

j = 1, 2, ..., N ,

nj(s) = β θj e
−β(T−s) +

1

2
σ2
j e
−2β(T−s).
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Therefore

F (t, T ) = E
{

exp

(
e−β(T−t)x(t) +

∫ T

t

〈N(s), X(s)〉 ds
)∣∣∣∣Ft}. (3.22)

In order to derive an explicit formula for F (t, T ), It’s necessary to calculate the

expectation given in (3.22). To do this end, we adopt the same methodology used

in previous subsection. Let diag(N(t)) denote the diagonal matrix with diagonal

elements given by the components of N(t). Let’s define

H(t, u) = exp

(∫ u

t

〈N(s), X(s)〉ds
)
X(u), H(t, t) = X(t).

Consequently,

dH(t, u) = 〈N(u), X(u)〉H(t, u) du+ exp

(∫ u

t

〈N(s), X(s)〉ds
)

dX(u).

Note that under P ,

dX(u) = AT X(u)du+ dM(u),

and that

〈N(u), X(u)〉H(t, u) = diag(N(u))H(t, u), ∀t ∈ τ.
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Then

dH(t, u) = 〈N(u), X(u)〉H(t, u) du+ exp

(∫ u

t

〈N(s), X(s)〉ds
)
AT X(u)du

+ exp

(∫ u

t

〈N(s), X(s)〉 ds
)

dM(u)

= diag(N(u))H(t, u) du+ AT H(t, u) du

+ exp

(∫ u

t

〈N(s), X(s)〉 ds
)

dM(u)

=

[
diag(N(u)) + AT

]
H(t, u) du+ exp

(∫ u

t

〈N(s), X(s)〉 ds
)

dM(u).

By taking integration from both sides, we have

H(t, u) = H(t, t) +

∫ u

t

[
diag(N(s)) + AT

]
H(t, s) ds

+

∫ u

t

exp

(∫ u

t

〈N(s), X(s)〉 ds
)

dM(s)

= X(t) +

∫ u

t

[
diag(N(s)) + AT

]
H(t, s) ds

+

∫ u

t

exp

(∫ u

t

〈N(s), X(s)〉 ds
)

dM(s).

Taking expectation under P given Ft gives:

E{H(t, u)|Ft} = X(t) +

∫ u

t

[
diag(N(s)) + AT

]
E{H(t, s)|Ft} ds.

Hence E{H(t, u)|Ft} satisfies the following homogeneous system of linear ODEs

of order one and dimension N :

dE{H(t, u)|Ft}
du

=
[
diag(N(u)) + AT

]
E{H(t, u)|Ft}, E{H(t, t)|Ft} = X(t).

(3.23)
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Suppose Ψ(t, u) denotes the fundamental matrix solution of

dΨ(t, u)

du
=
[
diag(N(u)) + AT

]
Ψ(t, u), Ψ(t, t) = I.

If
[
diag(N(u)) + AT

]
= ∆ (i.e. a constant matrix), the fundamental matrix

solution Ψ(t, u) is

Ψ(t, u) = exp(∆ (u− t)).

In general, there exists a unique fundamental matrix solution Ψ(t, u) of the linear

matrix differential Eq. (3.23). Now, E{H(t, u)|Ft} can be represented in terms of the

fundamental matrix solution Ψ(t, u) as below:

E{H(t, u)|Ft} = Ψ(t, u)X(t).

Now

F (t, T ) = E
{

exp

(
e−β(T−t)x(t) +

∫ T

t

〈N(u), X(u)〉 du
)∣∣∣∣Ft}

= exp

(
e−β(T−t)x(t)

)
E
{

exp

(∫ T

0

〈N(t), X(t)〉 du
)∣∣∣∣Ft}

= exp

(
e−β(T−t)x(t)

)
E
{

exp

(∫ T

t

〈N(u), X(u)〉du
)
〈X(T ),1〉

∣∣∣∣Ft}
= exp

(
e−β(T−t)x(t)

)
E
{〈

exp

(∫ T

t

〈N(u), X(u)〉du
)
X(T ),1

〉∣∣∣∣Ft}
= exp

(
e−β(T−t)x(t)

)〈
E
{

exp

(∫ T

t

〈N(u), X(u)〉du
)
X(T )

∣∣∣∣Ft},1〉
= exp

(
e−β(T−t)x(t)

)〈
E{H(t, T )|Ft},1

〉
= exp

(
e−β(T−t)x(t)

)〈
Ψ(t, T )X(t),1

〉
.

Then under the risk-neutral probability measure P , the time-T price of a U -
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maturity futures contract is given by:

F (T, U) = E{S(U)|FT} = exp

(
e−β(U−T )x(T )

)
×
〈
Ψ(T, U)X(T ),1

〉
= exp

(
e−β(U−T )

[
e−β(T )x(0) + β

∫ T

0

θ(u)e−β(T−u)du

+

∫ T

0

σ(u)e−β(T−u)dW (u)

])
×
〈
Ψ(T, U)X(T ),1

〉
= exp

(
e−β U x(0) + e−βU β

∫ T

0

θ(u)eβ udu

+ e−βU
∫ T

0

σ(u)eβ udW (u)

)
×
〈
Ψ(T, U)X(T ),1

〉
.

where T < U < T ∗.

Note that given FT , Y (T ) = ln(F (T, U)) has Gaussian distribution with mean

E{Y (T )|FT} = e−β Ux(0) + β

∫ T

0

θ(u) e−β(U−u) du+ ln〈Ψ(T, U)X(T ),1
〉

(3.24)

and variance

Var(Y (T ))|FT ) =

∫ T

0

σ2(u) e−2β(U−u) du. (3.25)

It follows from (3.24) and (3.25) that

ψFT (ν) = exp

(
i ν E{Y (T )|FT} −

1

2
ν2 Var(Y (T )|FT )

)
= exp

(
i ν e−β Ux(0) + β

∫ T

0

θ(u) e−β(U−u) du

)
× 〈Ψ(T, U)X(T ),1

〉i ν
× exp

(
− 1

2
ν2
∫ T

0

σ2(u) e−2β(U−u) du

)
.

(3.26)

Define Z(ν) = (Z1(ν), Z2(ν), ..., ZN(ν)) and z(t, ν) = (z1(t, ν), z2(t, ν), ..., zN(t, ν))
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for each ν ∈ R and t ∈ τ , where Zj(ν) and zj(t, ν) for each j = 1, 2, ..., N are

Zj(ν) = Z(ej, ν) = exp
(
i ν e−β Ux(0)

)
× 〈Ψ(T, U) ej,1

〉i ν
(3.27)

and

zj(t, ν) = z(t, ej, ν) = i ν βe−β(U−t)θj −
1

2
ν2e−2β(U−t)σ2

j . (3.28)

Therefore,

ψFT (ν) = Z(X(T ), ν) exp

(∫ T

0

〈
z(t,X(t), ν), X(t)

〉
dt

)
. (3.29)

Substituting (3.29) in (3.18) implies

ĉf (u) =

e−rT Z(X(T ), ν)E
{

exp

(∫ T
0

〈
z(t,X(t), ν), X(t)

〉
dt

)}
(α− iu)(1 + α− iu)

,

ν = −(u+ i(1 + α)). (3.30)

As we have seen before, in order to derive an explicit formula for ĉf (u), It’s

necessary to calculate the expectation given in (3.30). Let diag(z(t,X(t), ν)) denote

the diagonal matrix with diagonal elements given by the components of z(t,X(t), ν).

Let’s define

Γ(t, ν) = exp

(∫ t

0

〈
z(s,X(s), ν), X(s)

〉
ds

)
X(t), Γ(0, ν) = X(0). (3.31)

Applying Itô differentiation rule to Γ(t, ν) gives

dΓ(t, ν) =
〈
z(t,X(t), ν), X(t)

〉
Γ(t, ν) dt+ exp

(∫ t

0

〈
z(s,X(s), ν), X(s)

〉
ds

)
dX(t).
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Note that under P ,

dX(t) = AT X(t)dt+ dM(t),

and that

〈
z(t,X(t), ν), X(t)

〉
Γ(t, ν) = diag(z(t,X(t), ν)) Γ(t, ν), ∀t ∈ τ.

Then

dΓ(t, ν) =
〈
z(t,X(t), ν), X(t)

〉
Γ(t, ν) dt+ exp

(∫ t

0

〈
z(s,X(s), ν), X(s)

〉
ds

)
AT X(t)dt

+ exp

(∫ t

0

〈
z(s,X(s), ν), X(s)

〉
ds

)
dM(t)

= diag(z(t,X(t), ν)) Γ(t, ν) dt+ AT Γ(t, ν) dt

+ exp

(∫ t

0

〈
z(s,X(s), ν), X(s)

〉
ds

)
dM(t)

=

[
diag(z(t,X(t), ν)) + AT

]
Γ(t, ν) dt + exp

(∫ t

0

〈
z(s,X(s), ν), X(s)

〉
ds

)
dM(t).

By taking integration from both sides, we have

Γ(t, ν) = Γ(0, ν) +

∫ t

0

[
diag(z(s,X(s), ν)) + AT

]
Γ(s, ν) ds

+

∫ t

0

exp

(∫ t

0

〈
z(s,X(s), ν), X(s)

〉
ds

)
dM(s)

= X(0) +

∫ t

0

[
diag(z(s,X(s), ν)) + AT

]
Γ(s, ν) ds

+

∫ t

0

exp

(∫ t

0

〈
G(s, ν), X(s)

〉
ds

)
dM(s).

Taking expectation under P gives:

E{Γ(t, ν)} = X(0) +

∫ t

0

[
diag(z(s,X(s), ν)) + AT

]
E{Γ(s, ν)} ds.
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Hence E{Γ(t, ν)} satisfies the following homogeneous system of linear ODEs of

order one and dimension N :

dE{Γ(t, ν)}
dt

=
[
diag(z(t,X(t), ν)) + AT

]
E{Γ(t, ν)}, E{Γ(0, ν)} = X(0). (3.32)

Suppose Υ(t, ν) denotes the fundamental matrix solution of

dΥ(t, ν)

dt
=
[
diag(z(t,X(t), ν)) + AT

]
Υ(t, ν), Υ(0, ν) = I.

If
[
diag(z(t,X(t), ν)) + AT

]
= ∆ (i.e. a constant matrix), the fundamental

matrix solution Φ(t, ν) is

Υ(t, ν) = exp(∆ t).

In general, there exists a unique fundamental matrix solution Υ(t, ν) of the linear

matrix differential Eq. (3.32). Now, E{Γ(t, ν)} can be represented in terms of the

fundamental matrix solution Υ(t, ν) as below:

E{Γ(t, ν)} = Υ(t, ν)X(0).

Now

E
{

exp

(∫ T

0

〈
z(t,X(t), ν), X(t)

〉
dt

)}
= E

{
exp

(∫ T

0

〈
z(t,X(t), ν), X(t)

〉
dt

)
〈X(T ),1〉

}
= E

{〈
exp

(∫ T

0

〈z(t,X(t), ν), X(t)〉dt
)
X(T ),1

〉}
=

〈
E
{

exp

(∫ T

0

〈z(t,X(t), ν), X(t)〉dt
)
X(T )

}
,1

〉
=
〈
E{Γ(T, ν)},1

〉
=
〈
Υ(T, ν)X(0),1

〉
.
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Therefore under Markovian regime-switching Ornstein-Uhlenbeck model, the price

of the futures option is given by:

ĉf (u) =
e−rT Z(X(T ), ν)

〈
Υ(T, ν)X(0),1

〉
(α− iu)(1 + α− iu)

, ν = −(u+ i(1 + α)). (3.33)

3.4 Conclusions

In this chapter, We discussed the valuation of European-style call options on commod-

ity spot price and futures price in a Markovian regime-switching Ornstein-Uhlenbeck

model. The model parameters were assumed to be modulated by an observable,

finite-state Markov chain, whose states represent the states of an economy. The main

feature of our study is that the regime-switching effect is emphasized, i.e., the struc-

tural changes of macroeconomic conditions could be incorporated in the model. We

applied the inverse Fourier transform to evaluate the prices of commodity options and

futures options. We my further our work to investigate the valuation of American-

style options under Markovian regime-switching Ornstein-Uhlenbeck model, since as

we know, most of commodity options traded in NYMEX/CME are American-style

options.



CHAPTER 4: FFT APPROACH FOR PRICING COMMODITY AND FUTURES

OPTIONS UNDER A REGIME SWITCHING STOCHASTIC INTEREST RATE

MODEL

In this chapter, we investigate the pricing of European-style commodity and futures

options under a Markovian regime-switching Ornstien-Ohlenbec model with a Marko-

vian regime-switching Hull-White interest rate model. The model parameters, in-

cluding the mean reversion level, the volatility of the stochastic interest rate, and the

volatility of the commodity price process are modulated by an observable, continuous-

time, finite-state Markov chain. We employ the concept of stochastic flows to derive

an exponential affine form of the price of a zero-coupon bond. Then, we represent the

exponential affine form of the bond price in terms of fundamental matrix solutions of

linear matrix differential equations. Furthermore, we give the forward measure when

taking the zero-coupon bond as the numéraire. Then we adopt similar methodol-

ogy to find a closed-form expression for the characteristic function of the logarithmic

terminal commodity and futures price.

4.1 Motivitation

Option valuation has been an important problem in the theory and practice of fi-

nancial economics. A major breakthrough in this area was made by Fischer Black,

Myron Scholes, and Robert Merton [22]. Despite the practical importance of the

Black–Scholes–Merton model, its underlying assumptions, including the constant in-

terest rate and volatility, are not consistent with empirical observations. It is phe-

nomenal that interest rates have become volatile in the past few decades. Many
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stochastic interest rate models have been introduced in the literature. Some popular

short rate models include those proposed by Vasicek [23], Cox et al. [24], Hull and

White [25], amongst others. The main feature of these models is that the short rate

process, commonly described as a diffusion process, is mean-reverting. This means

that the short rate process will eventually revert to a long-term value. This property

is a “stylized” fact of the empirical behavior of interest rates.

Structural changes in economic conditions affect stochastic evolution of interest

rates over time. Regime-switching models may be used to describe such impacts.

This class of models was popularized by Hamilton [26] in financial econometrics.

There has been some interest in pricing bonds and related options in Markovian

regime-switching stochastic interest rate models. Elliott and Mamon [27] considered

a Vasicek model, with the mean-reverting level being modulated by a continuous-time,

finite-state Markov chain, while a regime-switching Hull-White model was considered

in Elliott and Wilson [28].

Using the concept of stochastic flows, Elliott and Siu [18] discussed a bond valu-

ation problem under a regime-switching Hull–White short rate model and a regime-

switching Cox–Ingersoll–Ross model. Siu [19] proposed a general short rate model

incorporating jumps of the interest rate due to some extraordinary market events

or economic cycles. More specifically, Siu [19] derived a bond pricing formula under

a jump-augmented Vasicek model, a kind of jump-diffusion-type short rate models,

using techniques in stochastic flows. Shen and Siu [20] employed a partial differen-

tial equation approach to derive exponential-affine formulas for a zero-coupon bond

and a longevity bond, respectively, while Shen and Siu [21] considered the valu-

ation of a bond option under a regime-switching Hull–White model. Elliott and

Siu [29] considered the valuation of bond options in a Markovian regime-switching

Heath–Jarrow–Morton (HJM) model and derived semi-analytical formulas for pricing

bond options using the Fourier transform space.
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4.2 The model dynamics

As described in the previous chapter, we consider a continuous-time economy with

a finite time horizon T , i.e., T := [0, T ], where T < ∞. Suppose (Ω,F ,P) is a

complete probability space, where P is a risk-neutral probability measure. Here,

we start with a risk-neutral probability as in some literature on stochastic interest

rate models. We assume the state of an economy is modeled by a continuous-time,

finite-state, observable Markov Chain X := {X(t)|t ∈ T }. The state space of the

chain is denoted by S := {s1, s2, ..., sN}, representing N different observable states of

an economy. Without loss of generality, using the convention in Elliott et al. [15],

we identify the state space of the chain with a finite set of standard unit vectors

ε := {e1, e2, ..., eN} ⊂ RN , where the j-th component of ei is the Kronecker delta δij,

for each i, j = 1, 2, ..., N . Let Q := [qij]i,j=1,2,...,N denote the generator or rate matrix

of the chain X. Then, Elliott et al. [15] in Lemma 1.1 Appendix B obtained the

following semi-martingale dynamics for the chain X:

X(t) = X(0) +

∫ t

0

QX(u)du+M(t). t ∈ T (4.1)

Here {M(t)|t ∈ T } is an RN -valued martingale with respect to the filtration

generated by X under the measure P .

We now present the Markovian regime-switching models for the dynamics of the

underlying logarithmic commodity spot price and the stochastic interest rate. Let yT

be the transpose of a vector or a matrix y. Denote {α(t)|t ∈ T } and {γ(t)|t ∈ T }

as the mean reversion level and the volatility of the short rate process, respectively.

Suppose that

α(t) = 〈α,X(t)〉
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and

γ(t) = 〈γ,X(t)〉

where 〈·, ·〉 is the scalar production RN . Here α = (α1, α2, ..., αN)T ∈ RN with

αi > 0, and γ = (γ1, γ2, ..., γN)T ∈ RN with γi > 0 for each i = 1, 2, ..., N . The

mean reversion coefficient η describing the speed of mean reversion is assumed to be

a positive constant.

Let σ(t) and θ(t) be the volatility and the mean reversion level of the underlying

logaritthmic commodity spot price at time t. Again suppose that

σ(t) = 〈σ,X(t)〉

and

θ(t) = 〈θ,X(t)〉

where σ = (σ1, σ2, ..., σN)T ∈ RN with σi > 0 and θ = (θ1, θ2, ..., θN)T ∈ RN with

θi > 0 for each i = 1, 2, ..., N . In particular, θi is the mean reversion level of the

commodity process corresponding to the i-th state of the hidden economic condition

for each i = 1, 2, ..., N . Let β be the parameter controlling the speed of mean reversion

for the logaritthmic commodity price process, where β > 0.

We define the commodity spot price as S = ex. Then, we assume that under

the risk-neutral probability measure P , the dynamics of the underlying logaritthmic

commodity spot price and the short rate are given by

dx(t) = β
(
θ(t)− x(t)

)
dt+ σ(t)dWS(t) (4.2)

dr(t) = η
(
α(t)− r(t)

)
dt+ γ(t)dWr(t) (4.3)
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where WS := {WS(t)|t ∈ T } and Wr := {Wr(t)|t ∈ T } are two standard Brownian

motions with respect to their right-continuous, P-complete, natural filtrations un-

der P . Furthermore, we suppose that the two Brownian motions WS and Wr are

correlated, and the instantaneous correlation coefficient ρ(t) at time t is given by

ρ(t) = 〈WS,Wr〉 =

∫ t

0

ρ(s)ds,

where ρ(t) = 〈ρ,X(t)〉 and ρ := (ρ1, ρ2, ..., ρN) ∈ RN with −1 < ρi < 1.

{〈WS,Wr〉(t)|t ∈ T } is the (predictable) quadratic covariation between WS and

Wr. Consequently, the correlation coefficient between the spot price and the short

rate depends on the state of an economy.

Let FX = {FX(t)|t ∈ T }, FS = {FS(t)|t ∈ T } and F r = {F r(t)|t ∈ T }

be the natural filtrations generated by {X(t)|t ∈ T }, {S(t)|t ∈ T } and {r(t)|t ∈ T }

respectively. As usual, we assume that the filtrations given above are right-continuous

and P-complete. Define two enlarged filtrations G = {G(t)|t ∈ T } and H = {H(t)|t ∈

T } by letting

G(t) := F r(t) ∨ FX(t)

and

H(t) := F r(t) ∨ FS(t) ∨ FX(t).

Here A ∨ B represents the minimal σ-field containing both the σ-fields A and B.

4.3 Bond pricing and the forward measure

In this section, we shall employ the concept of stochastic flows to derive an expo-

nential affine form of the price of a zero-coupon bond. Then, we shall represent the
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exponential affine form of the bond price in terms of fundamental matrix solutions of

linear matrix differential equations. Furthermore, we give the forward measure when

taking the zero-coupon bond as the numéraire. To do this end, we adopt the same

methodology used in Elliott and Siu [18], Shen and Siu [20 & 21] and Siu [19].

4.3.1 Stochastic flows and bond prices

Let rt,s(r) be a version of the process rt,s, s ≥ t, with initial condition rt,t(r) = r ∈ R.

Then, from (4.3),

rt,s(r) = r +

∫ s

t

η
(
α(u)− rt,u(r)

)
du+

∫ s

t

γ(u)dWr(u) (4.4)

Write

Dt,s =
∂rr,u(r)

∂r

for the derivative of the map r −→ rt,u(r). Differentiating (4.4) with respect to r

gives

Dt,s = 1− η
∫ s

t

Dt,udu,

with initial condition Dt,t = 1.

So,

Dt,s = e−η(s−t).

Here, Dt,s is a deterministic real-valued process.
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The price at time t ∈ T of any contingent claim V ∈ L2(Ω,F ,P) is

P (t) = E
[
exp

(
−
∫ T

t

rt,u(r)du

)
V

∣∣∣∣G(t)

]

Here, E[] represents an expectation with respect to the risk-neutral measure P .

Letting V (ω) = 1, for each ω ∈ Ω, the price of a zero-coupon bond at time t with

maturity at time T is:

P (t, T ) = E
[
exp

(
−
∫ T

t

rt,u(r)du

)∣∣∣∣G(t)

]
.

Since (r,X) is a two-dimensional Markov process with respect to the enlarged

filtration G(t) , given that r(t) = r and X(t) = x,

P (t, T ) = E
[
exp

(
−
∫ T

t

rt,u(r)du

)∣∣∣∣X(t) = x, r(t) = r

]
= P (t, T, r, x).

Define B(t, T ) as the following path integral:

B(t, T ) =

∫ T

t

Dt,ud(u) =
1

η
(1− e−η(T−t)),

so it is a real-valued deterministic process.

Since the exponential is bounded,

∂P (t, T, r, x)

∂r
=

(
−
∫ T

t

Dt,udu

)
E
[
exp

(
−
∫ T

t

rt,u(r)du

)∣∣∣∣X(t) = x, r(t) = r

]
= −B(t, T )P (t, T, r, x). (4.5)

Integrating (4.5) in r gives

P (t, T, r, x) = Ã(t, T, x)exp(−B(t, T ) r) = exp

(
A(t, T, x)−B(t, T ) r

)
,
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where A(t, T, x) = ln[Ã(t, T, x)].

Consider the discounted bond price back to time zero:

P̃ (t, T, r, x) = exp

(
−
∫ t

0

r0,u(r0)du

)
P (t, T, r, x) = E

[
exp

(
−
∫ T

0

rt,u(r0)du

)∣∣∣∣G(t)

]
.

Here, P̃ (t, T, r, x) is a (G,P)-martingale.

Write P̃i = P̃ (t, T, r, ei) for i = 1, 2, ..., N and P̃ = (P̃1, P̃2, ..., P̃N) ∈ RN . Applying

Itô’s differentiation rule to P̃ (t, T, r, x)

P̃ (t, T, r, x) = P̃ (0, T, r0, x0) +

∫ t

0

∂P̃

∂u
du+

∫ t

0

∂P̃

∂r
η
(
α(u)− r(u−)

)
du

+

∫ t

0

∂P̃

∂r
γ(u) dWr(u) +

∫ t

0

〈
P̃, QX(u)

〉
du+

∫ t

0

〈
P̃, dM(u)

〉
= P̃ (0, T, r0, x0) +

∫ t

0

∂P̃

∂r
γ(u) dWr(u) +

∫ t

0

〈
P̃, dM(u)

〉
+

∫ t

0

{
∂P̃

∂u
+
∂P̃

∂r
η
(
α(u)− r(u−)

)
+ 〈P̃, QX(u)〉

}
du

Note that P̃ (t, T, r, x) is a (G,P)-martingale. So, the bounded variation terms,

which are not martingales, in the above stochastic integral representation for P̃ (t, T, r, x)

must sum to zero. Therefore,

∂P̃

∂t
+
∂P̃

∂r
η
(
α(t)− r(t−)

)
+

1

2

∂2P̃

∂r2
γ2(t) + 〈P̃, Q x〉 = 0

Write, for each i = 1, 2, ..., N , Pi = P (t, T, r, ei) and P = (P1, P2, ..., PN)T ∈ RN .

Then,

exp

(
−
∫ t

0

r0,u(r)du

){
∂P

∂t
− r(t−)P +

∂P

∂r
η
(
α(t)− r(t−)

)
+

1

2

∂2P

∂r2
γ2(t) + 〈P, Q x〉

}
= 0

So, we have the following regime-switching partial differential equation (PDE) for
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P (t, T, r, x)

∂P

∂t
− r(t−)P +

∂P

∂r
η
(
α(t)− r(t−)

)
+

1

2

∂2P

∂r2
γ2(t) + 〈P, Q x〉 = 0

with terminal condition

P (T, T, r(T ), X(T )) = 1.

Equivalently, the vector of bond prices P satisfies the following system of N cou-

pled PDEs

∂Pi
∂t
− r(t−)Pi +

∂Pi
∂r

η
(
αi − r(t−)

)
+

1

2

∂2Pi
∂r2

γ2i + 〈P, Q ei〉 = 0

with terminal condition

P (T, T, r(T ), ei) = 1, i = 1, 2, ..., N.

Note that the bond price has the following Markovian regime-switching exponen-

tial affine form

P (t, T, r, x) = exp
(
A(t, T, x)−B(t, T ) r

)
.

Recall that Ã(t, T, x) = exp
(
A(t, T, x)

)
. Let Ãi = Ã(t, T, ei) for i = 1, 2, ..., N and

Ã = (Ã1, Ã2, ..., ÃN)T ∈ RN . Note that

∂P

∂t
= P

(
∂A

∂t
− r∂B

∂t

)
,

∂P

∂r
= −B P,

∂2P

∂r2
= B2P.
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Then, A(t, T, x) satisfies the following Markovian regime-switching ordinary dif-

ferential equation (ODE)

dA

dt
− α(t)

(
1− e−η(T−t)

)
+

1

2η2
γ2(t)

(
1− e−η(T−t)

)2
+ e−A〈Ã, Q x〉 = 0

with A(T, T,X(T )) = 0.

Write, for each i = 1, 2, ..., N , Ai = A(t, T, ei) and A = (A1, A2, ..., AN)T ∈ RN .

Then, the vector of coefficients A satisfies the following system of N coupled ODEs

dAi
dt
− αi

(
1− e−η(T−t)

)
+

1

2η2
γ2i
(
1− e−η(T−t)

)2
+ e−Ai〈Ã, Q ei〉 = 0 (4.6)

with A(T, T, ei) = 0 for each i = 1, 2, ..., N .

Write, for each i = 1, 2, ..., N ,

Fi(t) = αi
(
1− e−η(T−t)

)
+

1

2η2
γ2i
(
1− e−η(T−t)

)2
.

Consider the following diagonal matrix

diag
(
F (t)

)
= diag

(
F1(t), F2(t), ..., FN(t)

)
.

Substituting Ãi = exp(Ai) for each i = 1, 2, ..., N into (4.6), Ã satisfies the fol-

lowing homogeneous system of linear ODEs of order one and dimension N

dÃ(t)

dt
=

[
diag

(
F (t)

)
−QT

]
Ã(t), Ã(0) = 1

where 1 = (1, 1, ..., 1)T ∈ RN .

Define

∆(t) = diag
(
F (t)

)
−QT
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If we let τ = T − t, then dτ = −dt. So

dÃ(τ)

dτ
= −∆(τ) Ã(τ), Ã(0) = 1.

Suppose Φ(t) denotes the fundamental matrix solution of

dΦ(τ)

dτ
= −∆(τ) Φ(τ), Φ(0) = I (4.7)

where I is the n× n-identity matrix.

If ∆(t) = ∆ (i.e. a constant matrix), the fundamental matrix solution Φ(T ) is

Φ(t) = exp(∆ t).

In general, there exists a unique fundamental matrix solution Φ(t) of the linear

matrix differential Eq. (4.7). Now, Ã can be represented in terms of the fundamental

matrix solution Φ(t) as below.

Ã(t) = Φ(t) Ã(0) = Φ(t)1.

So,

A(t, T, x) =
N∑
i=1

ln
(
〈Φ(t)1, ei〉

)
〈x, ei〉.

Therefore, the bond price is represented as the following Markovian regime-switching

exponential affine form

P (t, T, r, x) = exp

( N∑
i=1

ln
(
〈Φ(t)1, ei〉

)
〈x, ei〉 −B(t, T )

)
.

So far, we employed the concept of stochastic flows to derive an exponential affine

form of the bond price when the short rate process is governed by a Markovian regime-

switching Hull-White model. Our model allowed the market parameters, including
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the mean-reversion level and the volatility rate to switch over time according to

a continuous-time, finite-state Markov chain. We provided a representation to the

exponential affine form of the bond price in terms of fundamental matrix solutions of

linear matrix differential equations.

4.3.2 Bond pricing and the forward measure

The following lemma was given in Shen and Siu [17, 20 & 21] and gives the dynamics

of the underlying commodity spot price, the interest rate, and the Markov chain under

a forward measure PT to be defined below.

Lemma 4.1. Let Λ(T ) denote the Radon–Nikodym derivative defined by

Λ(T ) =
dPT

dP

∣∣∣∣
G(T )

=
exp
(
−
∫ T
0
r(t) dt

)
E
[
exp
(
−
∫ T
0
r(t)dt

)] (4.8)

Under the following assumptions, we have

1. The Novikov condition is satisfied.

E
[
exp
(1

2

∫ T

0

γ2(t)B2(t, T )dt
)]
<∞.

2. Ã(t, T, x) is a suitable function in the sense that

Ã(t, T,X(t)

Ã(0, T,X(0)
exp

(
−
∫ t

0

∂Ã
∂s

+QÃ(s, T,X(s))

Ã(s, T,X(s))
ds

)
, t ∈ T

is a (G,P)-martingale.

Then, under the forward probability measure P, the following results hold:

1. The dynamics of the underlying logarithmic of commodity spot price and the

short rate are given by
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dx(t) =

(
β
(
θ(t)− x(t)

)
− ρ(t)γ(t)σ(t)B(t, T )

)
dt+ σ(t)dW T

S (t) (4.9)

dr(t) =

(
η
(
α(t)− r(t)

)
− γ2(t)B(t, T )

)
dt+ γ(t)dW T

r (t) (4.10)

where

W T
S (t) = WS(t) +

∫ t

0

ρ(s)γ(s)B(s, T )ds, t ∈ T ,

and

W T
r (t) = Wr(t) +

∫ t

0

γ(s)B(s, T )ds, t ∈ T ,

are PT -standard Brownian motions with instantaneous correlation coefficient

ρ(t) at time t, i. e., 〈W T
S ,W

T
r 〉 =

∫ t
0
ρ(s)ds.

2. The rate matrix of the chain X is QT (t) = [qTij(t)]i,j=1,2,...,N

qTij(t) =


qij
Ã(t, T, ej)

Ã(t, T, ei)
i 6= j

−
∑
k 6=i

qik
Ã(t, T, ek)

Ã(t, T, ei)
i = j

and the semimartingale dynamics of the chain is given by

X(t) = X(0) +

∫ t

0

QT (s)X(s)ds+MT (t), t ∈ T ,

where {MT (t)|t ∈ T } is an RN -valued, (FX ,PT )-martingale.

Proof. The proof is given in Lemma 3.3 of Fan et al. [17] and follows the same

arguments in Lemma 3.2 in Shen and Siu [20]. So we do not repeat it again here.
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4.4 Valuation of commodity futures and options

In this section, we derive the price of a European-style commodity option and futures

option under the regime-switching stochastic interest rate model at time 0, denoted

by C(0, T ) and Cf (0, T, U), respectively. Under the risk-neutral probability mea-

sure P , the prices of a T -maturity futures contract and a T -maturity European-style

commodity option at time 0 are given as follows:

F (0, T ) = E{S(T )} (4.11)

and

C(0, T ) = E
{(

e−
∫ T
0 r(t)dt

)(
S(T )−K

)+}
, (4.12)

where S(T ) is the terminal commodity price; K is the strike price of the commodity

option; E is the expectation with respect to the risk-neutral probability measure P .

Consider a European-style futures option with a strike price Kf , the terminal payoff

function at the maturity time T of the option is (F (T, U) − Kf )
+, where F (T, U)

represents the futures price with maturity time U at time T . Then the price of the

futures option at time 0 is given by

Cf (0, T, U) = E
{(

e−
∫ T
0 r(t)dt

)(
F (T, U)−Kf

)+}
. (4.13)

By change of measures defined in the earlier section, (4.12) and (4.13) become

C(0, T ) = P (0, T )ET
{(
S(T )−K

)+}
, (4.14)
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and

Cf (0, T, U) = P (0, T )ET
{(
F (T, U)−Kf

)+}
(4.15)

where ET is an expectation under the forward measure PT .

4.4.1 Valuation of commodity options

From now on, al the calculations are pretty similar to chapter 3 section 3.

Following the notation in previous chapter, write κ = ln(K), the dampened com-

modity option price is given by

c(κ) = eακC(O, T ) (4.16)

where α is called the dampening coefficient and assumed to be positive. To obtain a

square integrable function, the dampening coefficient α is selected and the dampened

commodity pricing formula is defined. The problem how to choose the value of the

coefficient α is completely explained in chapter 2. We derive an explicit formula for

the Fourier transform of c(κ) next. Let fHT (x) be the conditional density function of

x(T ) given H(T ). Then, the dampened commodity Fourier transform is given by

ĉ(u) =

∫ ∞

−∞

e−iuκ c(κ) dκ

= P (0, T )

∫ ∞

−∞

e−iuκ eακ ET
{

(ex(T ) − eκ)+
}

dκ

= P (0, T )ET
{∫ ∞

−∞

e−iuκ eακ ET
{

(ex(T ) − eκ)+
∣∣∣∣H(T )

}
dκ

}

= P (0, T )ET
{∫ ∞

−∞

e−iuκ eακ

∫ ∞

κ

(
ex − eκ

)
fHT (x) dx dκ

}
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= P (0, T )ET
{∫ ∞

−∞

fHT (x)

∫
x

−∞

(
ex e(α−iu)κ − e(1+α−iu)κ

)
dκ dx

}

= P (0, T )ET
{∫ ∞

−∞

fHT (x)

(
e(1+α−iu)x

(α− iu)
− e(1+α−iu)x

(1 + α− iu)

)
dx

}

= P (0, T )ET
{(

φHT (−i(1 + α)− u)

(α− iu)
− φHT (−i(1 + α)− u)

(1 + α− iu)

)}

=

P (0, T )ET
{
φHT (−i(1 + α)− u)

}
(α− iu)(1 + α− iu)

(4.17)

where

φHT (ν) = ET{eiνx(T )|HT} =

∫ ∞
−∞

eiνxfHT (x)dx (4.18)

is the conditional characteristic function of x(T ) given H(T ). The second equality in

(4.17) holds by the well-known property of conditional expectations (E{E{X|Y }} =

E{X}), and fifth equality holds by Fubini’s theorem since the modified commodity

price is bounded.

Note that given H(T ), x(T ) has Gaussian distribution with mean

ET{x(T )|HT} = e−βTx(0) +

∫
T

0

(β θ(u)− ρ(u)γ(u)σ(u)B(u, T )
)
e−β(T−u) du

(4.19)

and variance

Var(x(T )|HT ) =

∫ T

0

σ2(u) e−2β(T−u) du. (4.20)
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It follows that

φHT (ν) = exp

(
iνET{x(T )|HT} −

1

2
ν2V ar(x(T )|FT )

)

= exp

(
iν
(
e−βTx(0) +

∫
T

0

(β θ(u)− ρ(u)γ(u)σ(u)B(u, T )
)
e−β(T−u) du

)
− 1

2
ν2
∫ T

0

σ2(u) e−2β(T−u) du

)
.

For each t ∈ [0, T ] and ν ∈ R, let G(t, ν) =
(
g1(t, ν), g2(t, ν), ..., gN(t, ν)

)
, where

gj(t, ν) for each j = 1, 2, ..., N is

gj(t, ν) = iν e−β(T−t)( β θj − ρj γj σj B(t, T )) − 1

2
ν2 σ2

j e
−2β(T−t).

Therefore,

φHT (ν) = exp

(
iν e−βTx(0) +

∫ T

0

〈G(t, ν), X(t)〉dt
)
. (4.21)

Substituting (4.21) in (4.17) implies

ĉ(u) =

P (0, T )ET
{

exp

(
iν e−βTx(0) +

∫ T
0
〈G(t, ν), X(t)〉dt

)}
(α− iu)(1 + α− iu)

,

ν = −(u+ i(1 + α)). (4.22)

In order to derive an explicit formula for ĉ(u), It’s necessary to calculate the

expectation given in (4.22). To do this end, we use a modification of proof of lemma

1 in Buffington and Elliott [11]. Let diag(G(t, ν)) denote the diagonal matrix with

diagonal elements given by the components of G(t, ν), 1 = (1, 1, ..., 1)T and I denote
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the (n× n)-identity matrix. Let’s define

W (t, ν) = exp

(∫ t

0

〈G(s, ν), X(s)〉ds
)
X(t), W (0, ν) = X(0). (4.23)

Consequently,

dW (t, ν) = 〈G(t, ν), X(t)〉W (t, ν) dt+ exp

(∫ t

0

〈G(s, ν), X(s)〉ds
)

dX(t).

Note that under PT ,

dX(t) = QT X(t)dt+ dM(t),

and that

〈G(t, ν), X(t)〉W (t, ν) = diag(G(t, ν))W (t, ν), ∀t ∈ τ.

Then

dW (t, ν) = 〈G(t, ν), X(t)〉W (t, ν) dt+ exp

(∫ t

0

〈G(s, ν), X(s)〉ds
)
QT X(t)dt

+ exp

(∫ t

0

〈G(s, ν), X(s)〉 ds
)

dM(t)

= diag(G(t, ν))W (t, ν) dt+QT W (t, ν) dt

+ exp

(∫ t

0

〈G(s, ν), X(s)〉 ds
)

dM(t)

=

[
diag(G(t, ν)) + QT

]
W (t, ν) dt + exp

(∫ t

0

〈G(s, ν), X(s)〉 ds
)

dM(t).
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By taking integration from both sides, we have

W (t, ν) = W (0, ν) +

∫ t

0

[
diag(G(s, ν)) + QT

]
W (s, ν) ds

+

∫ t

0

exp

(∫ t

0

〈G(s, ν), X(s)〉 ds
)

dM(s)

= X(0) +

∫ t

0

[
diag(G(s, ν)) + QT

]
W (s, ν) ds

+

∫ t

0

exp

(∫ t

0

〈G(s, ν), X(s)〉 ds
)

dM(s).

Taking expectation under forward measure PT gives:

ET{W (t, ν)} = X(0) +

∫ t

0

[
diag(G(s, ν)) + QT

]
ET{W (s, ν)} ds.

Hence ET{W (t, ν)} satisfies the following homogeneous system of linear ODEs of

order one and dimension N :

dET{W (t, ν)}
dt

=
[
diag(G(t, ν)) + QT

]
ET{W (t, ν)}, ET{W (0, ν)} = X(0).

(4.24)

Suppose Φ(t, ν) denotes the fundamental matrix solution of

dΦ(t, ν)

dt
=
[
diag(G(t, ν)) + QT

]
Φ(t, ν), Φ(0, ν) = I.

If
[
diag(G(t, ν)) + QT

]
= ∆ (i.e. a constant matrix), the fundamental matrix

solution Φ(t, ν) is

Φ(t, ν) = exp(∆ t).

In general, there exists a unique fundamental matrix solution Φ(t, ν) of the linear

matrix differential Eq. (3.15). Now, ET{W (t, ν)} can be represented in terms of the
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fundamental matrix solution Φ(t, ν) as below:

ET{W (t, ν)} = Φ(t, ν)X(0).

Now

ET
{

exp

(∫ T

0

〈G(t, ν), X(t)〉dt
)}

= ET
{

exp

(∫ T

0

〈G(t, ν), X(t)〉dt
)
〈X(T ),1〉

}
= ET

{〈
exp

(∫ T

0

〈G(t, ν), X(t)〉dt
)
X(T ),1

〉}
=

〈
ET
{

exp

(∫ T

0

〈G(t, ν), X(t)〉dt
)
X(T )

}
,1

〉
=
〈
ET{W (T, ν)},1

〉
=
〈
Φ(T, ν)X(0),1

〉
.

Therefore under Markovian regime-switching Ornstein-Uhlenbeck model, the price

of the commodity option is given by:

ĉ(u) =

P (0, T ) exp

(
iν e−βTx(0)

)〈
Φ(T, ν)X(0),1

〉
(α− iu)(1 + α− iu)

, ν = −(u+ i(1 + α)). (4.25)

4.4.2 Valuation of futures options

In this subsection we consider the valuation of commodity futures options. We wish

to evaluate the time-zero value of a standard European call option on the future price

F (T, U) with strike price Kf and maturity at time T . That is to evaluate:

Cf (0, T, U) = P (0, T )ET
{(

F (T, U)−Kf

)+}
.

As seen before, the dampened commodity futures options price is given by:

cf (κf ) = eαf κf Cf (0, T, U), (4.26)
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where κf = ln(Kf ). Let’s define Y (t) := ln
(
F (t, U)

)
for each t ∈ τ . Now we derive an

explit formula for the Fourier transform of the dampened commodity futures options.

ĉf (u) =

∫ ∞

−∞

e−iuκf c(κf ) dκf

= P (0, T )

∫ ∞

−∞

e−iuκf eαfκf ET
{

(eY (T ) − eκf )+
}

dκf

= P (0, T )ET
{∫ ∞

−∞

e−iuκf eαfκf ET
{

(eY (T ) − eκf )+
∣∣∣∣HT

}
dκf

}

= P (0, T )ET
{∫ ∞

−∞

e−iuκf eαfκf

∫ ∞

κf

(
ey − eκf

)
fHT (y) dy dκf

}

= P (0, T )ET
{∫ ∞

−∞

fHT (y)

∫
y

−∞

(
ey e(αf−iu)κf − e(1+αf−iu)κf

)
dκf dy

}

= P (0, T )ET
{∫ ∞

−∞

fHT (y)

(
e(1+αf−iu)y

(αf − iu)
− e(1+αf−iu)y

(1 + αf − iu)

)
dy

}

= P (0, T )ET
{(

ψHT (−i(1 + αf )− u)

(αf − iu)
− ψHT (−i(1 + αf )− u)

(1 + αf − iu)

)}

ĉf (u) =

P (0, T )ET
{
ψHT (−i(1 + αf )− u)

}
(αf − iu)(1 + αf − iu)

(4.27)

where

ψHT (ν) = ET{eiνY (T )|HT} =

∫ ∞
−∞

eiνyfHT (y)dy (4.28)

is the conditional characteristic function of Y (T ) given HT . In order to derive an

explicit formula for ĉf (u), we need to derive an analytical formula of the characteristic

function of the logarithmic commodity futures price, in other words ln
(
F (T, U)

)
.

To do so, first we need to derive the time-t price of a T -maturity futures contract.
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In other words,

F (t, T ) = ET{S(T )|Ht} = ET
{
ET{S(T )|HT}|Ht

}
Since S(T ) = ex(T ) and under forward measure PT , the conditional distribution

of x(T ) given HT is a Gaussian distribution with mean

ET{x(T )|HT} = e−β(T−t)x(t) +

∫ T

t

(β θ(u)− ρ(u)γ(u)σ(u)B(u, T )
)
e−β(T−u) du

(4.29)

and variance

Var(x(T )|HT ) =

∫ T

t

σ2(u) e−2β(T−u) du, (4.30)

then, it’s easy to see that

ET{S(T )|HT} = exp

(
ET{x(T )|HT}+

1

2
Var
(
x(T )|HT

))
= exp

(
e−β(T−t)x(t) +

∫ T

t

(β θ(u)− ρ(u)γ(u)σ(u)B(u, T )
)
e−β(T−u) du

+
1

2

∫ T

t

σ2(u) e−2β(T−u) du

)
.

Then the time-t price of a T -maturity futures contract is given by

F (t, T ) = ET{S(T )|Ht} = ET
{
ET{S(T )|HT}|Ht

}
= ET

{
exp

(
e−β(T−t)x(t) +

∫ T

t

(β θ(u)− ρ(u)γ(u)σ(u)B(u, T )
)
e−β(T−u) du

+
1

2

∫ T

t

σ2(u) e−2β(T−u) du

)∣∣∣∣Ht

}
.

Let’s define N(s) =
(
n1(s), n2(s), ..., nN(s)

)
for each s ∈ [0, T ], where for each
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j = 1, 2, ..., N ,

nj(s) = (β θj − ρjγjσjB(s, T )) e−β(T−s) +
1

2
σ2
j e
−2β(T−s).

Therefore

F (t, T ) = ET
{

exp

(
e−β(T−t)x(t) +

∫ T

t

〈N(s), X(s)〉 ds
)∣∣∣∣Ft}. (4.31)

In order to derive an explicit formula for F (t, T ), It’s necessary to calculate the

expectation given in (4.38). To do this end, we adopt the same methodology used

in previous subsection. Let diag(N(t)) denote the diagonal matrix with diagonal

elements given by the components of N(t). Let’s define

H(t, u) = exp

(∫ u

t

〈N(s), X(s)〉ds
)
X(u), H(t, t) = X(t).

Consequently,

dH(t, u) = 〈N(u), X(u)〉H(t, u) du+ exp

(∫ u

t

〈N(s), X(s)〉ds
)

dX(u).

Note that under PT ,

dX(u) = QT X(u)du+ dM(u),

and that

〈N(u), X(u)〉H(t, u) = diag(N(u))H(t, u), ∀t ∈ τ.
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Then

dH(t, u) = 〈N(u), X(u)〉H(t, u) du+ exp

(∫ u

t

〈N(s), X(s)〉ds
)
QT X(u)du

+ exp

(∫ u

t

〈N(s), X(s)〉 ds
)

dM(u)

= diag(N(u))H(t, u) du+ QT H(t, u) du

+ exp

(∫ u

t

〈N(s), X(s)〉 ds
)

dM(u)

=

[
diag(N(u)) +QT

]
H(t, u) du+ exp

(∫ u

t

〈N(s), X(s)〉 ds
)

dM(u).

By taking integration from both sides, we have

H(t, u) = H(t, t) +

∫ u

t

[
diag(N(s)) + QT

]
H(t, s) ds

+

∫ u

t

exp

(∫ u

t

〈N(s), X(s)〉 ds
)

dM(s)

= X(t) +

∫ u

t

[
diag(N(s)) + QT

]
H(t, s) ds

+

∫ u

t

exp

(∫ u

t

〈N(s), X(s)〉 ds
)

dM(s).

Taking expectation under PT given Ht gives:

ET{H(t, u)|Ht} = X(t) +

∫ u

t

[
diag(N(s)) + QT

]
ET{H(t, s)|Ht} ds.

Hence ET{H(t, u)|Ht} satisfies the following homogeneous system of linear ODEs

of order one and dimension N :

dET{H(t, u)|Ht}
du

=
[
diag(N(u)) + QT

]
ET{H(t, u)|Ht}, ET{H(t, t)|Ht} = X(t).

(4.32)
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Suppose Ψ(t, u) denotes the fundamental matrix solution of

dΨ(t, u)

du
=
[
diag(N(u)) + QT

]
Ψ(t, u), Ψ(t, t) = I.

If
[
diag(N(u)) + QT

]
= ∆ (i.e. a constant matrix), the fundamental matrix

solution Ψ(t, u) is

Ψ(t, u) = exp(∆ (u− t)).

In general, there exists a unique fundamental matrix solution Ψ(t, u) of the linear

matrix differential Eq. (4.32). Now, ET{H(t, u)|Ht} can be represented in terms of

the fundamental matrix solution Ψ(t, u) as below:

ET{H(t, u)|Ht} = Ψ(t, u)X(t).

Now

F (t, T ) = ET
{

exp

(
e−β(T−t)x(t) +

∫ T

t

〈N(u), X(u)〉 du
)∣∣∣∣Ht

}
= exp

(
e−β(T−t)x(t)

)
ET
{

exp

(∫ T

0

〈N(t), X(t)〉 du
)∣∣∣∣Ht

}
= exp

(
e−β(T−t)x(t)

)
ET
{

exp

(∫ T

t

〈N(u), X(u)〉du
)
〈X(T ),1〉

∣∣∣∣Ht

}
= exp

(
e−β(T−t)x(t)

)
ET
{〈

exp

(∫ T

t

〈N(u), X(u)〉du
)
X(T ),1

〉∣∣∣∣Ht

}
= exp

(
e−β(T−t)x(t)

)〈
ET
{

exp

(∫ T

t

〈N(u), X(u)〉du
)
X(T )

∣∣∣∣Ht

}
,1

〉
= exp

(
e−β(T−t)x(t)

)〈
ET{H(t, T )|Ht},1

〉
= exp

(
e−β(T−t)x(t)

)〈
Ψ(t, T )X(t),1

〉
.

Then under the forward measure PT , the time-T price of a U -maturity futures
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contract is given by:

F (T, U) = ET{S(U)|HT} = exp

(
e−β(U−T )x(T )

)
×
〈
Ψ(T, U)X(T ),1

〉
= exp

(
e−β(U−T )

[
e−β(T )x(0) +

∫ T

0

e−β(T−u)
(
βθ(u)− ρ(u)γ(u)σ(u)B(u, T )

)
du

+

∫ T

0

σ(u)e−β(T−u)dW T
S (u)

])
×
〈
Ψ(T, U)X(T ),1

〉
= exp

(
e−β U x(0) + e−βU

∫ T

0

(
β θ(u)− ρ(u)γ(u)σ(u)B(u, T )

)
eβ udu

+ e−βU
∫ T

0

σ(u)eβ udW T
S (u)

)
×
〈
Ψ(T, U)X(T ),1

〉
.

where T < U < T ∗.

Note that given HT , Y (T ) = ln(F (T, U)) has Gaussian distribution with mean

ET{Y (T )|HT} = e−β U x(0) + e−βU
∫ T

0

(
β θ(u)− ρ(u)γ(u)σ(u)B(u, T )

)
eβ udu

+ e−βU
∫ T

0

σ(u)eβ udW T
S (u) + ln〈Ψ(T, U)X(T ),1

〉
(4.33)

and variance

Var(Y (T )|HT ) =

∫ T

0

σ2(u) e−2β(U−u) du. (4.34)

It follows from (4.33) and (4.34) that

ψHT (ν) = exp

(
i ν E{Y (T )|HT} −

1

2
ν2 Var(Y (T )|HT )

)
= exp

(
i ν e−β U x(0) + i ν e−βU

∫ T

0

(
β θ(u)− ρ(u)γ(u)σ(u)B(u, T )

)
eβ udu

+ i ν e−βU
∫ T

0

σ(u)eβ udW T
S (u)

)
× 〈Ψ(T, U)X(T ),1

〉i ν
× exp

(
− 1

2
ν2
∫ T

0

σ2(u) e−2β(U−u) du

)
.

Define Z(ν) = (Z1(ν), Z2(ν), ..., ZN(ν)) and z(t, ν) = (z1(t, ν), z2(t, ν), ..., zN(t, ν))
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for each ν ∈ R and t ∈ τ , where Zj(ν) and zj(t, ν) for each j = 1, 2, ..., N are

Zj(ν) = Z(ej, ν) = exp
(
i ν e−β Ux(0)

)
× 〈Ψ(T, U) ej,1

〉i ν
(4.35)

and

zj(t, ν) = z(t, ej, ν) = i ν e−β(U−t)(β θj − ρjγjσjB(t, T ))− 1

2
ν2e−2β(U−t)σ2

j . (4.36)

Therefore,

ψHT (ν) = Z(X(T ), ν) exp

(∫ T

0

〈
z(t,X(t), ν), X(t)

〉
dt

)
. (4.37)

Substituting (4.37) in (4.27) implies

ĉf (u) =

P (0, T )E
{
Z(X(T ), ν) exp

(∫ T
0

〈
z(t,X(t), ν), X(t)

〉
dt

)}
(α− iu)(1 + α− iu)

,

ν = −(u+ i(1 + α)). (4.38)

As we have seen before, in order to derive an explicit formula for ĉf (u), It’s

necessary to calculate the expectation given in (4.38). Let diag(z(t,X(t), ν)) denote

the diagonal matrix with diagonal elements given by the components of z(t,X(t), ν).

Let’s define

Γ(t, ν) = exp

(∫ t

0

〈
z(s,X(s), ν), X(s)

〉
ds

)
X(t), Γ(0, ν) = X(0). (4.39)

Applying Itô differentiation rule to Γ(t, ν) gives

dΓ(t, ν) =
〈
z(t,X(t), ν), X(t)

〉
Γ(t, ν) dt+ exp

(∫ t

0

〈
z(s,X(s), ν), X(s)

〉
ds

)
dX(t).
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Note that under PT ,

dX(t) = AT X(t)dt+ dM(t),

and that

〈
z(t,X(t), ν), X(t)

〉
Γ(t, ν) = diag(z(t,X(t), ν)) Γ(t, ν), ∀t ∈ τ.

Then

dΓ(t, ν) =
〈
z(t,X(t), ν), X(t)

〉
Γ(t, ν) dt+ exp

(∫ t

0

〈
z(s,X(s), ν), X(s)

〉
ds

)
QT X(t)dt

+ exp

(∫ t

0

〈
z(s,X(s), ν), X(s)

〉
ds

)
dM(t)

dΓ(t, ν) = diag(z(t,X(t), ν)) Γ(t, ν) dt+QT Γ(t, ν) dt

+ exp

(∫ t

0

〈
z(s,X(s), ν), X(s)

〉
ds

)
dM(t)

dΓ(t, ν) =

[
diag(z(t,X(t), ν)) + QT

]
Γ(t, ν) dt + exp

(∫ t

0

〈
z(s,X(s), ν), X(s)

〉
ds

)
dM(t).

By taking integration from both sides, we have

Γ(t, ν) = Γ(0, ν) +

∫ t

0

[
diag(z(s,X(s), ν)) + QT

]
Γ(s, ν) ds

+

∫ t

0

exp

(∫ t

0

〈
z(s,X(s), ν), X(s)

〉
ds

)
dM(s)

Γ(t, ν) = X(0) +

∫ t

0

[
diag(z(s,X(s), ν)) + QT

]
Γ(s, ν) ds

+

∫ t

0

exp

(∫ t

0

〈
G(s, ν), X(s)

〉
ds

)
dM(s).

Taking expectation under PT gives:

ET{Γ(t, ν)} = X(0) +

∫ t

0

[
diag(z(s,X(s), ν)) + QT

]
ET{Γ(s, ν)} ds.
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Hence ET{Γ(t, ν)} satisfies the following homogeneous system of linear ODEs of

order one and dimension N :

dET{Γ(t, ν)}
dt

=
[
diag(z(t,X(t), ν)) + QT

]
ET{Γ(t, ν)}, ET{Γ(0, ν)} = X(0).

(4.40)

Suppose Υ(t, ν) denotes the fundamental matrix solution of

dΥ(t, ν)

dt
=
[
diag(z(t,X(t), ν)) + QT

]
Υ(t, ν), Υ(0, ν) = I.

If
[
diag(z(t,X(t), ν)) + QT

]
= ∆ (i.e. a constant matrix), the fundamental

matrix solution Φ(t, ν) is

Υ(t, ν) = exp(∆ t).

In general, there exists a unique fundamental matrix solution Υ(t, ν) of the linear

matrix differential Eq. (3.32). Now, ET{Γ(t, ν)} can be represented in terms of the

fundamental matrix solution Υ(t, ν) as below:

E{Γ(t, ν)} = Υ(t, ν)X(0).

ET
{

exp

(∫ T

0

〈
z(t,X(t), ν), X(t)

〉
dt

)}
= ET

{
exp

(∫ T

0

〈
z(t,X(t), ν), X(t)

〉
dt

)
〈X(T ),1〉

}
= ET

{〈
exp

(∫ T

0

〈z(t,X(t), ν), X(t)〉dt
)
X(T ),1

〉}
=

〈
ET
{

exp

(∫ T

0

〈z(t,X(t), ν), X(t)〉dt
)
X(T )

}
,1

〉
=
〈
ET{Γ(T, ν)},1

〉
=
〈
Υ(T, ν)X(0),1

〉
.
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Therefore under Markovian regime-switching Ornstein-Uhlenbeck model with stochas-

tic interest rate, the price of the futures option is given by:

ĉf (u) =
P (0, T )Z(X(T ), ν)

〈
Υ(T, ν)X(0),1

〉
(α− iu)(1 + α− iu)

, ν = −(u+ i(1 + α)). (4.41)



CHAPTER 5: CONCLUSION AND FUTURE DIRECTIONS

This dissertation is concerned with pricing of European-style derivatives such as

call, commodity, and futures options under different regime-switching models. Only

regime-switching models are considered in this thesis. We assume the Markov chain

is observable.

Possible furture research directions are as follows:

One can demonstrate the practicality of the model via numerical examples. It is

also possible to apply the techniques developed here to American options. It is also

possible to consider the hedging of these products under regime-switching models.

Static hedging and dynamic hedging are two main types of hedging. We could inves-

tigate the static hedging and the dynamic hedging of standard options, exotic options

and insurance products with embedded option features and provide comparisons of

these hedging strategies.
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A.1: PROOF FOR THE PAIR OF EQUATIONS (2.40)

Recalling that for the initial state α(0) = j0 we define

φj0(θ, T ) = E(eiθT1|α(0) = j0), j0 = 1, 2.

Let J ∼ exp(λ1) be the first time jumping from state 1 to state 2. Then

φ1(θ, T ) = E
[
eiθT1

∣∣∣∣α(0) = 1

]

= E
[
e
iθ

(
J+

∫ T
J I{α(s)=1}ds

)
I{J<T} + eiθT I{J≥T}

∣∣∣∣α(0) = 1

]

= E
[
e
iθ

(
J+

∫ T
J I{α(s)=1}ds

)
I{J<T}

∣∣∣∣α(0) = 1

]
+ eiθTP(J ≥ T )

=

∫ T

0

E
[
e
iθ

(
t+

∫ T
t I{α(s)=1}ds

)∣∣∣∣α(t) = 2

]
λ1e
−λ1tdt+ eiθT e−λ1T

=

∫ T

0

eiθTλ1e
−λ1tE

[
eiθ

∫ T
t I{α(s)=1}ds

∣∣∣∣α(t) = 2

]
dt+ eiθT e−λ1T

=

∫ T

0

eiθTλ1e
−λ1tφ2(θ, T − t)dt+ eiθT e−λ1T

Note that since J is exponentially distributed with rate λ1, hence

E
[
I{J≥T}

∣∣∣∣α(0) = 1

]
= P(J ≥ T ) = e−λ1T .

The fourth equality holds by well know property of expectations.

E
[
e
iθ

(
J+

∫ T
J I{α(s)=1}ds

)
I{J<T}

∣∣∣∣α(0) = 1

]

= E

[
E
[
e
iθ

(
J+

∫ T
J I{α(s)=1}ds

)
I{J<T}

∣∣∣∣α(J) = 2

]∣∣∣∣∣α(0) = 1

]
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= E

[
E
[
e
iθ

(
J+

∫ T
J I{α(s)=1}ds

)
I{J<T}

∣∣∣∣α(J) = 2

]]

=

∫ T

0

E
[
e
iθ

(
t+

∫ T
t I{α(s)=1}ds

)∣∣∣∣α(t) = 2

]
λ1e
−λ1tdt

Following the same methodology we will get the second equality for φ2(θ, T ). Now

let’s assume J ∼ exp(λ2) be the first time jumping from state 2 to state 1. Then

φ2(θ, T ) = E
[
eiθT1

∣∣∣∣α(0) = 2

]

= E
[
e
iθ

( ∫ T
J I{α(s)=1}ds

)
I{J<T} + eiθ0I{J≥T}

∣∣∣∣α(0) = 2

]

= E
[
e
iθ

( ∫ T
J I{α(s)=1}ds

)
I{J<T}

∣∣∣∣α(0) = 2

]
+ P(J ≥ T )

=

∫ T

0

E
[
e
iθ

( ∫ T
t I{α(s)=1}ds

)∣∣∣∣α(t) = 1

]
λ2e
−λ2tdt+ e−λ2T

=

∫ T

0

λ2e
−λ2tE

[
eiθ

∫ T
t I{α(s)=1}ds

∣∣∣∣α(t) = 1

]
dt+ e−λ2T

=

∫ T

0

λ2e
−λ2tφ1(θ, T − t)dt+ e−λ2T

Note that since J is exponentially distributed with rate λ2, hence

E[I{J≥T}|α(0) = 2] = P(J ≥ T ) = e−λ2T .



A.2: PYTHON CODE FOR FFT METHOD IN CHAPTER 2

The Python code used throughout was generated using Python 3.5.2 64bits, Qt 5.6.0,

PyQt5 5.6 on Darwin through the Anaconda Navigator 1.3.1 distribution, available at

https://anaconda.org/anaconda/anaconda-navigator/files?version=1.3.1. I

hope this information will help any reader to replicate our result without any trouble.

The following is the code that generated the data seen in Table 2.3 and Tabel 2.4.

import numpy as np

from math import pi

from scipy.interpolate import interp1d

from time import time

t0 = time()

class FFT_Euro:

def __init__(self, m1, m2, r1, r2, sig1, sig2, l1, l2, a, w, T):

self.m1 = m1

self.m2 = m2

self.r1 = r1

self.r2 = r2

self.sig1 = sig1

self.sig2 = sig2

self.l1 = l1

self.l2 = l2

self.a = a

self.w = w

self.T = T

def A(self):

m1, m2, r1, r2, sig1, sig2, a, w = self.m1, self.m2, \

self.r1, self.r2, self.sig1, self.sig2, self.a, self.w
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value = ((m1 - m2) + (0.5 + a) * (sig1**2 - sig2**2)) * -w \

+ 0.5 * 1j * w**2 * (sig1**2 - sig2**2) \

+ ((r1 - r2) - (1 + a) * (m1 - m2) \

- 0.5 * a * (1 + a) * (sig1**2 - sig2**2)) * 1j

return value

def B(self):

m2, r2, sig2, a, w = self.m2, self.r2, \

self.sig2, self.a, self.w

value = 1j * -w * (m2 + (0.5 + a) * sig2**2) -\

0.5 * w**2 * sig2**2 + (1 + a) * m2 - \

r2 + 0.5 * a * (1 + a) * sig2**2

return value

def price(self):

l1, l2, T, a, w = self.l1, self.l2, self.T, self.a, self.w

A = self.A

B = self.B

#-----------------------------------------------

# Prepare phi function according to

# equation 2.22-2.23 paper 2006

#-----------------------------------------------

s1 = 0.5 * ((1j * A() - l1 - l2) - \

np.sqrt((l1 + l2 - 1j * A())**2 \

+ 4 * 1j * A() * l2))

s2 = 0.5 * ((1j * A() - l1 - l2) + \

np.sqrt((l1 + l2 - 1j * A())**2 \

+ 4 * 1j * A() * l2))

phi0 = (1/(s1-s2)) * ((s1 + l1 + l2) * np.exp(s1 * T)\
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- (s2 + l1 + l2) * np.exp(s2 * T))

phi1 = (1/(s1-s2)) * ((s1 + l1 + l2 - 1j * A())\

* np.exp(s1 * T) - (s2 + l1 + l2 - 1j * A())\

* np.exp(s2 * T))

#--------------------------------------------------

# Prepare characteristic function of

# modified price equation 2.24 paper 2006

#--------------------------------------------------

D = np.exp(B()*T) / (a**2 + a - w**2 - (1j * (1 + 2 * a) * w))

q0 = D * phi0

q1 = D * phi1

#--------------------------------------------------

# Prepare a mesh in the frequency (w)

# & space (k) domain

#--------------------------------------------------

S0 = 100.0

N = int(2**12)

h = 0.1534

dk = (2.0 * pi) / (h * N)

kmin = (-N/2) * dk

kmax = ((N/2)-1) * dk

wmax = (N-1) * h

k = np.linspace(kmin, kmax, N)

w = np.linspace(0, wmax, N)

dw = np.zeros(N)

dw[0] = 1/3

for j in range(1,N):
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if (j % 2 == 0):

dw[j] = 2/3

else:

dw[j] = 4/3

#----------------------------------------------

# Prepare the A vector for

# Python’s FFT implementation

#----------------------------------------------

I = np.zeros(N)

for i in range(N):

I[i] = i

A_vector0 = np.exp(-1j * I * pi) * q0 * dw * N

A_vector1 = np.exp(-1j * I * pi) * q1 * dw * N

#-----------------------------------------------

# Compute the DFT of A_vector

# and retrieve its real part

#----------------------------------------------

a_vector0 = np.fft.ifft(A_vector0)

a_vector1 = np.fft.ifft(A_vector1)

a_vector0 = np.real(a_vector0)

a_vector1 = np.real(a_vector1)

#---------------------------------------------

# Convert the a_vector into a

# value vector of European option

#--------------------------------------------

V_vector0 = (h * S0 / pi) * np.exp(-a * k) * a_vector0

V_vector1 = (h * S0 / pi) * np.exp(-a * k) * a_vector1
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#-------------------------------------------

# Obtain a continuous value f

# unction using interpolation

#-------------------------------------------

# This is linear interpolation.

K_vector = S0 * np.exp(k)

V0 = interp1d(K_vector, V_vector0)

V1 = interp1d(K_vector, V_vector1)

return V0, V1, K_vector

if __name__==’__main__’:

l1 = 20.0

l2 = 30.0

m1 = r1 = 0.05

m2 = r2 = 0.1

sig1 = 0.5

sig2 = 0.3

T = 1.0

S0 = 100.0

K = [74.082, 81.873, 90.484, 100.0, 110.517, 122.140, 134.986]

N = int(2**12)

h = 0.1534

dk = (2.0 * pi) / (h * N)

kmin = (-N/2) * dk

kmax = ((N/2)-1) * dk

wmax = (N-1)*h

k = np.linspace(kmin, kmax, N)

w = np.linspace(0, wmax, N)
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a = 1.0

print (’\n European Call Option Price via FFT method ’)

print (’\n Strike Price STATE 1 STATE 2 \n’)

for n in range(7):

callprice = FFT_Euro(m1, m2, r1, r2, sig1, sig2,\

l1, l2, a, w, T)

V0, V1, K_vector = callprice.price()

print (’%20f %20.10f %20.10f \n’ % (K[n] ,V0(K[n]), V1(K[n])))

tn = time()-t0

print ("\n Duration in seconds %7.3f \n" %tn)



A.3: PYTHON CODE FOR MONTE CARLO SIMULATIONS IN CHAPTER 2

The following is the codes that generated the data seen in Table 2.3, Tabel 2.4, Table

2.1 and Tabel 2.2. Monte Carlo algorithm relies on repeated random sampling to

obtain numerical results. Its essential idea is using randomness to solve problems

that might be deterministic in principleI. As we said before, it’s very time consuming

versus FFT is less than a second and it’s not feasible in most practical use in real

time. Other reason makes FFT more useful is that simulating of random variable in

MC makes slightly different answers each try, while we always get the same results in

FFT.

This code is created for MC simulations with different strike prices in Table 2.3

and Tabel 2.4.

import numpy as np

import random

from time import time

t0 = time()

# Given parameters

T = 1.0

S0 = 100.0

Initial_State = 1.0

sig1 = 0.5

sig2 = 0.3

r1 = mu1 = 0.05

r2 = mu2 = 0.1

n = 100000

Strikes = [74.082, 81.873, 90.484, 100.0, 110.517, 122.140, 134.986]

l1 = 20.0

l2 = 30.0
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#np.random.seed(19)

print (’\n European Call Option Price under RSGBM via MC method ’)

print (’\n Strike Price STATE 1 \n’)

for j in range(7):

K = Strikes[j]

SumofTermVals = 0.0

TermValOneRun = 0.0

for x in range(n):

LogStock = float(np.log(S0))

Curr_Time = 0.0

tau1 = 0.0

Curr_State = Initial_State

#Determine our occupation time of state 1

while Curr_Time < T:

#Determine time until next change of state

# p(tau_i>t)=exp(-lambda_i * t)

p = random.uniform(0, 1)

if Curr_State==1:

ExpRV = -1*np.log(p)/l1

else:

ExpRV = -1*np.log(p)/l2

#If the next state change is before maturity,

# increment tau

if Curr_Time + ExpRV < T and Curr_State==1:

tau1 = tau1 + ExpRV

# Else there is no state change between now and maturity

else:
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if Curr_State==1:

tau1 = tau1 + T - Curr_Time

#Increment to next switch time

Curr_Time = Curr_Time + ExpRV

#Switch State

if Curr_State==1:

Curr_State = 2

else:

Curr_State = 1

# Obtain a pseudo-random sample from

# standard normal distribution

SimRand = float(np.random.standard_normal(1))

#Calculate our terminal log stock price

LogStock = LogStock + (mu1 - 0.5 * sig1**2) * tau1 + \

(mu2 - 0.5 * sig2**2) * (T-tau1) \

+ SimRand*np.sqrt(tau1*sig1**2 \

+ (T-tau1)*sig2**2)

#Calculate terminal option value

TermValOneRun = np.maximum(0, np.exp(LogStock) - K)

#Add terminal option value running total

SumofTermVals = SumofTermVals + TermValOneRun

callprice = (SumofTermVals / n) * np.exp(-1 * ((tau1 * r1 )+...

r2*(T-tau1)))

print (’%20f %20.10f \n’ % (K ,callprice))

tn = time()-t0

print ("\n Duration in seconds %7.3f \n" %tn)
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This code is created for MC simulations with different maturities in Table 2.1 and

Tabel 2.2.

import numpy as np

import random

from time import time

t0 = time()

# Given parameters

Maturities = [0.1, 0.2, 0.5, 1.0, 2.0, 3.0]

S0 = 100.0

Initial_State = 2.0

sig1 = 0.2

sig2 = 0.3

r1 = mu1 = 0.1

r2 = mu2 = 0.1

n = 100000

K = 90.0

l1 = 1.0

l2 = 1.0

#np.random.seed(19)

print (’\n European Call Option Price under RSGBM via MC method ’)

print (’\n Maturity STATE 2 \n’)

for j in range(6):

T = Maturities[j]

SumofTermVals = 0.0

TermValOneRun = 0.0

for x in range(n):

LogStock = float(np.log(S0))
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Curr_Time = 0.0

tau1 = 0.0

Curr_State = Initial_State

#Determine our occupation time of state 1

while Curr_Time < T:

#Determine time until next change of state

# p(tau_i>t)=exp(-lambda_i * t)

p = random.uniform(0, 1)

if Curr_State==1:

ExpRV = -1*np.log(p)/l1

else:

ExpRV = -1*np.log(p)/l2

#If the next state change is before maturity, increment tau

if Curr_Time + ExpRV < T and Curr_State==1:

tau1 = tau1 + ExpRV

# Else there is no state change between now and maturity

else:

if Curr_State==1:

tau1 = tau1 + T - Curr_Time

#Increment to next switch time

Curr_Time = Curr_Time + ExpRV

#Switch State

if Curr_State==1:

Curr_State = 2

else:
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Curr_State = 1

# Obtain a pseudo-random sample from

# standard normal distribution

SimRand = float(np.random.standard_normal(1))

#Calculate our terminal log stock price

LogStock = LogStock + (mu1 - 0.5 * sig1**2) * tau1 + \

(mu2 - 0.5 * sig2**2) * (T-tau1) \

+ SimRand*np.sqrt(tau1*sig1**2 \

+ (T-tau1)*sig2**2)

#Calculate terminal option value

TermValOneRun = np.maximum(0, np.exp(LogStock) - K)

#Add terminal option value running total

SumofTermVals = SumofTermVals + TermValOneRun

callprice = (SumofTermVals / n) * np.exp(-1 * ((tau1 * r1 )+...

r2*(T-tau1)))

print (’%20f %20.10f \n’ % (T ,callprice))

tn = time()-t0

print ("\n Duration in seconds %7.3f \n" %tn)



A.4: PYTHON CODE FOR ANALYTICAL PRICES IN CHAPTER 2

The following is the code that generated the data seen in Table 2.1 and Tabel 2.2.

# first page

# mu(100,0 , 0, 0.1, 0.2, 0.3, 1, 1/3) = 4.668503519321425

# mu(100,0 , 0, 0.1, 0.2, 0.3, 1, 1) = 4.685170185988092

# mu(100,0 , 0, 0.1, 0.2, 0.3, 1, 0) = 4.6601701859880915

# var(0.2, 0.3, 1, 1/3) = 0.07333333333333333

import numpy as np

from math import log, pi

def mu(S0, d0, d1, r, sig0, sig1, T, t):

value = log(S0)+(d1 - d0 - 0.5 * (sig0**2 - sig1**2)) * t \

+ (r - d1 - 0.5 * sig1**2)*T

return value

def var(sig0, sig1, T, t):

value = (sig0**2 - sig1**2) * t + sig1**2 * T

return value

# second page

# call0(100,0 , 0, 0.1, 0.2, 0.3, 1, 1, 1, 90) =21.075037242396174

# call1(100,0 , 0, 0.1, 0.2, 0.3, 1, 1, 1, 90) = 22.002645343515372

import numpy as np

from math import pi, log

from scipy.integrate import quad

from parameters import mu, var

def integrand0(y, S0, d0, d1, r, sig0, sig1, T, l0, l1, K):

m0T = mu(S0, d0, d1, r, sig0, sig1, T, T/3)

mT = mu(S0, d0, d1, r, sig0, sig1, T, T)

v0T = var(sig0, sig1, T, T/3)
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vT = var(sig0, sig1, T, T)

a = (1/np.sqrt(2*pi*v0T)) * np.exp(-(log(y+K)-m0T)**2 / (2*v0T))

b = (1/np.sqrt(2*pi*vT)) * np.exp(-(log(y+K)-mT)**2 / (2*vT))

value = (y/(y+K)) * (a * (1-np.exp(-l0*T)) + b * np.exp(-l0*T))

return value

def call0(S0, d0, d1, r, sig0, sig1, T, l0, l1, K):

return np.exp(-r*T) * quad(integrand0, 0, np.inf, \

args=(S0, d0, d1, r, sig0, sig1, T, l0, l1, K))[0]

def integrand1(y, S0, d0, d1, r, sig0, sig1, T, l0, l1, K):

m0T = mu(S0, d0, d1, r, sig0, sig1, T, T/3)

m0 = mu(S0, d0, d1, r, sig0, sig1, T, 0)

v0T = var(sig0, sig1, T, T/3)

v0 = var(sig0, sig1, T, 0)

a = (1/np.sqrt(2*pi*v0T)) * np.exp(-(log(y+K)-m0T)**2 / (2*v0T))

b = (1/np.sqrt(2*pi*v0)) * np.exp(-(log(y+K)-m0)**2 / (2*v0))

value = (y/(y+K)) * (a * (1-np.exp(-l1*T)) + b * np.exp(-l1*T))

return value

def call1(S0, d0, d1, r, sig0, sig1, T, l0, l1, K):

return np.exp(-r*T) * quad(integrand1, 0, np.inf, \

args=(S0, d0, d1, r, sig0, sig1, T, l0, l1, K))[0]

# third page

import numpy as np

from price import call0, call1

from time import time

t0 = time()

def main():

d0 = d1 = 0
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l0 = l1 = 1.0

sig0 = 0.2

sig1 = 0.3

T = [0.1, 0.2, 0.5, 1.0, 2.0, 3.0]

S0 = 100.0

K = 90.0

r = 0.1

V0 = np.zeros((6))

V1 = np.zeros((6))

print (’\n European Call Option Price under RS GBM- Analytical Solutions ’)

print (’\n Strike Price STATE 1 STATE 2 \n’)

for i in range(6):

V0[i] = call0(S0, d0, d1, r, sig0, sig1, T[i], l0, l1, K)

V1[i] = call1(S0, d0, d1, r, sig0, sig1, T[i], l0, l1, K)

print (’%20f %20.10f %20.10f \n’ % (T[i] ,V0[i], V1[i]))

tn = time()-t0

print ("\n Duration in seconds %7.3f \n" %tn)

main()



A.5: PYTHON CODE FOR SEMI-MC SIMULATIONS IN CHAPTER 2

This approach only takes random sampling of the Markov chain and then takes ad-

vantage of the availability of analytical formula (therefore exact) of the conditional

price. Thus semi-Monte Carlo simulation outperforms Monte Carlo method. As we

can see the obtained results from FFT and semi-MC simulation are so closed to each

other than the results obtained from MC simulations.

The following is the code that generated the data seen in Table 2.1 and Tabel

2.2 for for semi-MC simulations with different maturities. One can simply obtain the

data generated in Table 2.3 and Tabel 2.4 for semi-MC simulations with different

strike price.

from scipy import log, sqrt, exp

import random

from time import time

from scipy.stats import norm

t0 = time()

# Given parameters

Maturities = [0.1, 0.2, 0.5, 1.0, 2.0, 3.0]

S0 = 100.0

Initial_State = 2.0

sig1 = 0.2

sig2 = 0.3

r1 = mu1 = 0.1

r2 = mu2 = 0.1

n = 100000

K = 90.0

l1 = 1.0

l2 = 1.0
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#np.random.seed(19)

print (’\n European Call Option Price under RSGBM via Semi-MC method ’)

print (’\n Maturity STATE 2 \n’)

for j in range(6):

T = Maturities[j]

SumofTermVals = 0.0

TermValOneRun = 0.0

for x in range(n):

LogStock = float(log(S0))

Curr_Time = 0.0

tau1 = 0.0

Curr_State = Initial_State

#Determine our occupation time of state 1

while Curr_Time < T:

#Determine time until next change of state

# p(tau_i>t)=exp(-lambda_i * t)

p = random.uniform(0, 1)

if Curr_State==1:

ExpRV = -1*log(p)/l1

else:

ExpRV = -1*log(p)/l2

#If the next state change is before maturity,

# increment tau

if Curr_Time + ExpRV < T and Curr_State==1:

tau1 = tau1 + ExpRV

# Else there is no state change between now and maturity

else:
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if Curr_State==1:

tau1 = tau1 + T - Curr_Time

#Increment to next switch time

Curr_Time = Curr_Time + ExpRV

#Switch State

if Curr_State==1:

Curr_State = 2

else:

Curr_State = 1

LT = mu1 * tau1 + mu2 * (T-tau1)

VT = sig1**2 * tau1 + sig2**2 * (T-tau1)

RT = tau1 * r1 + r2 * (T-tau1)

d1 = (log(S0/K) + LT + (0.5 * VT)) / sqrt(VT)

d2 = d1 - sqrt(VT)

TermValOneRun = S0 * exp(-(RT - LT)) * norm.cdf(d1) \

- K * exp(-RT) * norm.cdf(d2)

SumofTermVals = SumofTermVals + TermValOneRun

callprice = (SumofTermVals / n)

print (’%20f %20.10f \n’ % (T ,callprice))

tn = time()-t0

print ("\n Duration in seconds %7.3f \n" %tn)


