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ABSTRACT

RAJAN PURI. On the discrete spectrum of exterior elliptic problems.
(Under the direction of Dr. BORIS VAINBERG)

In this dissertation, we present three new results in the exterior elliptic problems

with the variable coefficients that describe the process in inhomogeneous media in

the presence of obstacles. These results concern perturbations of the operator H0 =

−div((a(x)∇) in an exterior domain with a Dirichlet, Neumann, or FKW boundary

condition. We study the critical value βcr of the coupling constant (the coefficient at

the potential) that separates operators with a discrete spectrum and those without it.

Our main technical tool of the study is the resolvent operator (H0 − λ)−1 : L2 → H̊2

near point λ = 0. The dependence of βcr on the boundary condition and on the

distance between the boundary and the support of the potential is described. The

discrete spectrum of a non-symmetric operator with the FKW boundary condition

(that appears in diffusion processes with traps) is also investigated.
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CHAPTER 1: INTRODUCTION OF THE PROBLEM

1.1 Motivation

Many equations of Mathematical Physics has been characterized as the the major

bridge between central issues of applied mathematics and physical sciences. An in-

creasing number of publications written on elliptic problems and their spectral anal-

ysis is an evidence of the continuing interests of mathematicians and physicists. The

main reason for studying elliptic problems is that they arise in a wide variety of

physical systems and describe a large class of natural phenomena. The rigorous

mathematical analysis of physical models and applications has played a major role

in many branches of mathematics. Also, the stability and dynamics of the solutions

of many physical problems have been carefully investigated in various mathematical

applications including quantum mechanics, optics, acoustics, geophysics, and popu-

lation dynamics.

Many quantum mechanical systems are descried by a Hamiltonian of the form H =

−∆+V. Different systems are distinguished by the potential V. We have a significant

amount of information concerning the eigenvalues of H. However, for more general

elliptic operators , i.e. Hβ = H0 − βV, where H0 = −∇(a(x)∇), spectral stability

and dynamics have not been exhaustively studied. Therefore, we decided to study

elliptic problems in the exterior domain with the variable coefficient that describes

the process in inhomogeneous media with the presence of obstacles. This framework

covers conceptually any physical system governed by an elliptic equation.
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1.2 Statement of the problem

Let Ω = Rd\B̄, where B is a bounded domain in Rd with smooth boundary. i.e ∂Ω

is smooth.

Figure 1.1: Exterior domain

Consider the following elliptic problems in Ω.

H0u− βV (x)u− λu = f, x ∈ Ω, (1.1)

where H0 = −div(a(x)∇), the potential V (x) ≥ 0 is compactly supported and con-

tinuous, β ≥ 0 , a(x) > 0 , a(x) ∈ C1(Ω), and a = 1 when |x| >> 1. We assume

that f ∈ L2(Rd) and the solutions belong to the space H2(Ω) and satisfies a Dirich-

let, Neumann, or FKW-boundary condition. The latter boundary condition will be

introduced later.

One can reformulate the problem in the operator setting. Let Hβ : H̊2 → L2(Ω), be

the operator which maps each u ∈ H̊2 into

f = Hβu− λu,

where Hβ = (H0 − βV (x)) and H̊2 is the set of functions from the Sobolev space

H2(Ω) that satisfy the boundary condition, and it can be a Dirichlet, Neumann, or

FKW boundary condition.

The main question under the investigation is whether the discrete spectrum ap-

pears for arbitrary small perturbations (arbitrary small β > 0), or β must be large

enough to create negative eigenvalues. Thus we would like to know when βcr = 0 and
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when βcr > 0. The answer is known [2] for the Schrödinger operator −∆− βV (x) in

Rd and depends only on dimension: βcr = 0 if d = 1, 2 and βcr > 0 if d ≥ 3. The

purpose of our study is to present some new results on the critical value of the cou-

pling constant in exterior elliptic problems. The βcr remains positive for all boundary

conditions if d ≥ 3. This fact follows immediately from the Cwikel-Lieb-Rozenblum

inequality:

#{λj < 0} ≤ Cd

∫
∂Ω

(βV )d/2dx, d ≥ 3.

The inequality above implies that the negative eigenvalues do not exist if β is so small

that the right-hand side above is less than one. We will show that the answer to the

main question for the problem (1.1) in dimension d = 1 and 2 is different from the

answer in the case of the Schrödinger operator and depends on the boundary condi-

tion. The dependence of βcr on the boundary condition and on the distance between

the boundary and the support of the potential will be described. The discrete spec-

trum of a non-symmetric operator with the FKW boundary condition (that appears

in diffusion processes with traps) will be also investigated.

1.3 Layout of Dissertation

Chapter 2 starts with some necessary prerequisite information needed for our results.

We will provide the background needed for our results, but will not go into details. For

more information, we refer the reader to books on the subject, such as [23, 24, 22, 25].

In Chapter 3, we will recall the results of the Schrödinger operator and discuss some

properties of the operators associated with the Schrödinger equation to put our results

in perspective. The statements of our results are given in the the Chapter 4, 5,

and 6. Chapter 4 contains a discussion of the structure of the discrete spectrum

of the operator Hβ and related results considering Drichlet and Neumann boundary
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conditions. In Chapter 5, we will provide the detailed introduction of the FKW

boundary condition and provide related results. Chapter 6 contains a study of the

dependence of βcr on the distance between the support of the potential and the

boundary of the domain.



CHAPTER 2: BACKGROUND INFORMATION

In this chapter, we will discuss the known general facts of the Laplace operator in a

bounded domain Ω. We will not go into details, but rather remind the reader some

understanding of the basic definitions and facts.

2.1 Some definitions

Definition 2.1. Laplace Operator

Laplace operator is a differential operator denoted by ∆ and is given by

∆u = (∇ · ∇)u =
(∂u
∂x1

)2

+ · · ·+
(∂u
∂xd

)2

,

where u is a sufficiently smooth real valued functions, u : Ω → R and x1, x2, · · · , xd

are the coordinates for Ω ⊂ Rd.

Boundary Conditions(BCs)

• Dirichlet BC means u = 0 in ∂Ω,

• Neumann BC means ∂u
∂n

= 0 in ∂Ω where n denotes the normal vector to the

boundary ∂Ω.

• FKW BC means u = α in ∂Ω,
∫
∂Ω

∂u
∂n
dµ(x) = 0 where α is some constant in R

and dµ is a positive measure on ∂Ω.

The idea of this boundary condition, FKW boundary condition was first introduced

by M. Freidlin, L. Koralov, and A. Wentzell in their paper “On the behaviour of
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diffusion processes with traps”, 2015. When large drifts of a diffusion process direct

towards to a point in the interior of the domain (see fig 2.2) then the FKW boundary

problem occurs as the limiting problem describing the behaviour of the process as the

magnitude of the drift tends to infinity.

Figure 2.2: FKW boundary problem.

It is a common physical phenomenon that occurs when the vector field is large and

the domain becomes trapping. We will provide more information of this boundary

condition later in the Chapter 5.

Definition 2.2. Resolvent set and Spectrum

Let A be a densely defined linear operator on a Hilbert space H. The operator A−λ

has domain D(A), for each λ ∈ C. Define the resolvent set

ρ(A) = {λ ∈ C : A− λ is invertible (has a bounded inverse defined on H)}.

For λ in the resolvent set, we call the inverse (A− λ)−1 the resolvent operator. The

spectrum is defined as the complement of the resolvent set:

σ(A) = C \ ρ(A).

The discrete spectrum consists of λ where A− λ fails to be an injective. Continuous

spectrum consists of λ with A−λ injective and with dense image, but not surjective.
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The classification of the spectrum into discrete and continuous parts usually corre-

sponds to a classification of the dynamics into localized (bound) states and locally

decaying states when time increases (scattering), respectively.

If λ is an eigenvalue of A then λ ∈ σ(A), because if Af = λf for some f 6= 0, then

(A−λ)f = 0 and so A−λ is not injective, and hence is not invertible. The resolvent

set is open, and hence the spectrum is closed.

Definition 2.3. Compact Operator

Let X and Y be Hilbert spaces. A linear operator T : X → Y is said to be compact

if for each bounded sequence {xi}i∈N ⊂ X , there is a subsequence of {Txi}i∈N that

is convergent.

Definition 2.4. Fredholm operator

Let H be a Hilbert space and T : H → H be a bounded linear operator. Then T is

said to be Fredholm if dimension of Ker(T) <∞, and co-dimension Im(T)<∞.

Definition 2.5. We define the Sobolev spaces as

Hm(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω), 0 ≤ |α| ≤ m} (2.2)

and its norm is defined by

‖u‖2
Hm(Ω) = Σ0≤|α|≤m ‖Dαu‖2

L2(Ω)

where m is a non-negative integer.

Analytic Fredholm Theory Let Ω be a connected open subset of C and suppose

T (λ) is an analytic family of Fredholm operators on a Hilbert Space H. Then either:

a. T (λ) is not invertible for any λ ∈ C OR

b. There exists a discrete set S ⊂ Ω such that T (λ) is invertible ∀λ /∈ S and

furthermore, every operator appearing as a coefficients of a term of negative order is

finite rank.
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2.2 Some remarks

Remark 2.1. From the Green formulas it follows that the Laplace operator is sym-

metric and positive on the space S= C∞c (Ω) of all smooth and compactly supported

functions on Ω.

Remark 2.2. The Dirichlet problem −∆ = f, x ∈ Ω, u|∂Ω = 0, in a bounded domain

with the a smooth boundary has a solution u ∈ H2(Ω) for each f ∈ L2, and the

solution is unique.

Remark 2.3. If Ω is bounded, then the inverse Laplace operator with the Dirichlet

boundary condition, ∆−1
d is a compact operator in L2(Ω), and its eigenvalues µj −→ 0.

Remark 2.4. The −∆ on a bounded domain with a smooth boundary and with

Dirichlet or Neumann boundary condition has discrete spectrum.

Remark 2.5. Operator −∆ : L2(Rd)→ L2(Rd) does not have eigenvalues.

Proof. We have,

−∆u = λu, u ∈ L2(Rd)

Taking a Fourier Transform on both sides, we get,

|ξ2|û(ξ) = λû(ξ), û ∈ L2(Rd)),

(|ξ2| − λ)û(ξ) = 0,

û(ξ) = 0 a.e.

This shows that û = 0 as element of L2(Rd). Thus, operator −∆ : L2(Rd)→ L2(Rd)

does not have eigenvalues.

Definition 2.6. (Weyl Sequence): A Weyl sequence exists for −∆ and λ, if there

exist functions wn such that the following three conditions hold:
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WS1. ‖(−∆− λ)wn‖L2 −→ 0 as n −→∞.

WS2. ‖wn‖L2 = 1.

WS3. wn
w−→ 0 in L2 as n −→ ∞. The continuous spectrum coincides with those λ

values for which Weyl sequence exists.

Lemma 2.6. The operator (−∆− λ) : H2(Rd)→ L2(Rd) has a bounded inverse

(−∆− λ)−1 : L2(Rd)→ H2(Rd)

for each λ /∈ [0,∞).

Proof. Let (−∆−λ)u = f where u ∈ H2(Rd) and f ∈ L2(Rd). Then after the Fourier

transform on both sides, we have,

(|ξ2| − λ)û(ξ) = f̂(ξ),

û(ξ) =
f̂(ξ)

(|ξ2| − λ)
.

Hence,

‖u(x)‖2
H2 =

∫
Rd

(1 + |ξ|2)2|û(ξ)|2dξ

=

∫
Rd

∣∣∣∣ (1 + |ξ|2)

(|ξ2| − λ)

∣∣∣∣2 f̂(ξ)|2dξ

≤ sup

∣∣∣∣ (1 + |ξ|2)

(|ξ2| − λ)

∣∣∣∣2 ∫
Rd
|f̂(ξ)|2dξ

= sup

∣∣∣∣ (1 + |ξ|2)

(|ξ2| − λ)

∣∣∣∣2 ∥∥∥f̂(ξ)
∥∥∥2

L2
.

Since λ /∈ [0,∞), the function

ψ(ξ) =

∣∣∣∣ (1 + |ξ|2)

(|ξ2| − λ)

∣∣∣∣2
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is continuous.The limit at infinity is equal to one:

lim
ξ→∞

ψ(ξ) = 1.

Thus, ψ(ξ) is bounded, i.e |ψ(ξ)| ≤M(λ), and therefore

‖u(x)‖H2 ≤
√
M(λ)

∥∥∥f̂(ξ)
∥∥∥
L2

=
√
M(λ)‖f(x)‖L2 .

Lemma 2.7. The following estimates are valid :

∥∥(∆− λ)−1f
∥∥
H1 ≤

C

|λ|
‖f‖L2 ,

∥∥(∆− λ)−1f
∥∥
L2 ≤

C

|λ|2
‖f‖L2 , λ→ −∞

Proof. Arguments that were used to prove Lemma 2.6 lead to the estimates

∥∥(∆− λ)−1f
∥∥
H1 ≤ max ψ1(ξ, λ) ‖f‖L2 ,

∥∥(∆− λ)−1f
∥∥
L2 ≤ max ψ0(ξ, λ) ‖f‖L2 ,

where ψ1(ξ, λ) = |ξ|2+1
(|ξ|2−λ)2

, ψ0(ξ, λ) = 1
(|ξ|2−λ)2

. This immediately implies the statement

of the lemma.

Theorem 2.8. The spectrum of operator −∆ in Rd is continuous and coincides with

the positive semi-axis.

Proof. From Lemma 2.6, it follows that Rd\[0,∞) does not belong to the spectrum

of −∆. Hence, it remains to show that the semi-axis [0,∞) belongs to the continuous

spectrum. It will be done by showing the existence of a Weyl Sequence.

Fix λ ∈ [0,∞) and choose ω ∈ Rd with |ω|2 = λ. Take a cut-off function α ∈ C∞0 (Rd)
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such that α ≡ 1 on the unit ball B(1) and α ≡ 0 on Rd \ B(2). Define a cut-off

version of the generalized eigenfunction, by

wn = cnα(
x

n
)vω(x), where vω(x) = eiω·x,

and the normalizing constant is

cn =
1

nd/2 ‖α‖L2

.

First we prove (WS1). We have

(∆ + λ)wn

= cn(λvω + ∆vω)α(
x

n
) + 2

cn
n
∇vω(x) · (∇α)(

x

n
) +

cn
n2
vω(x)(∆α)(

x

n
).

The first term vanishes because ∆vω = −|ω|2vω pointwise. In the third term, note

that vω is a bounded function, and that a change of variable shows

cn
n2

∥∥∥(∆α)(
x

n
)
∥∥∥
L2

=
1

n2

‖∆α‖L2

‖α‖L2

→ 0 as n→∞.

The second term similarly vanishes in the limit, as n→∞. Hence (λ+ ∆)wn → 0 in

L2, which is (WS1).

For (WS2) we simply observe that |vω(x)| = 1 pointwise, so that ‖wn‖L2 = 1 is a

consequence of the change of variable,x
n
→ x and the definition of cn.

To prove (WS3), we take f ∈ L2 and fix ε > 0. We decompose f into “near” and

“far” components, as f = g + h where g = f1B(R) and h = f1Rd\B(R).

(f, wn)L2 = (g, wn)L2 + (h,wn)L2 .
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We choose R > 0 such that ‖h‖ < ε
2
. Then by the Cauchy-Schwartz inequality

lim
n→∞

∣∣(h,wn)L2

∣∣ ≤ ‖h‖L2 · 1 <
ε

2
.

We have, ∣∣(g, wn)L2

∣∣ ≤ cn ‖α‖L∞ ‖g‖L1 → 0

as n→∞, since cn → 0 and R is fixed. So,

lim
n→∞

(f, wn)L2 = 0 ,

i.e., wn
w−→ 0 weakly (WS3). Hence, the spectrum of operator −∆ is continuous and

coincides with the positive semi-axis.



CHAPTER 3: SCHRÖDINGER OPERATOR

In this chapter, we will study some important results in the spectral theory of

Schrödinger operators. More specifically, we would need these results to put our re-

sults in perspective. We will consider the operator, Ĥβ = −∆−βV : L2(Ω)→ L2(Ω),

where the potential V (x) ≥ 0, is compactly supported and continuous, and β ≥ 0. It

is known that the spectrum of Ĥβ consists of absolutely continuous part [0,∞) and

at most a finite number of negative eigenvalues:

σ(Ĥβ) = {λj} ∪ [0,∞), 0 ≤ j ≤ N, λj ≤ 0.

One can define βcr as the value of β such that the eigenvalues λ of the operator Ĥβ

exist when β > βcr and does not exist when β < βcr i.e

βcr = inf{β : inf σ(Ĥβ) < 0}.

It is known [2] that βcr = 0 for d = 1, 2 and βcr > 0 for d ≥ 3 . The later fact follows

immediately from the Cwikel-Lieb-Rozenblum inequality:

#{λj < 0} ≤ Cd

∫
∂Ω

(βV )d/2dx, d ≥ 3.

The inequality above implies that the negative eigenvalues do not exist if β is so

small that the right-hand side above is less than one. If d = 1 or 2, then the answer

to the main question for our problem is different from the answer in the case of the
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Schrödinger operator and depends on the boundary condition.

3.1 Operators associated with Ĥβ.

Let u be an eigenfunction of the operator Ĥβ with an eigenvalue λ < 0. We have,

Ĥβ = −∆− βV,

Ĥβu = λu,

(−∆− λ)u = βV u.

We know that the operator (−∆ − λ)−1 : L2 −→ H2 exists and bounded for λ < 0.

Hence,

(−∆− λ)−1(−∆− λ)u = (−∆− λ)−1βV u,

u = (−∆− λ)−1βV u.

One can multiply both sides by β
√
V , this leads to

β
√
V u = β

√
V (−∆− λ)−1βV u,

β
√
V u = β

√
V (−∆− λ)−1

√
V β
√
V u.

For simplicity, let w = β
√
V u, then we have:

w = β
√
V (−∆− λ)−1

√
V w. (3.3)

Now, we will define operator Tλ and Aλ as follows:

Tλ = β
√
V (−∆− λ)−1

√
V : L2(Rd) −→ L2(Rd), (3.4)

Aλ =
√
V (−∆− λ)−1

√
V : L2(Rd) −→ L2(Rd). (3.5)

Lemma 3.9. µ = 1 is an eigenvalue of Tλ if and only if λ is an eigenvalue of Ĥβ.

Moreover, there is a one to one correspondence between eigenspaces of Tλ and Ĥβ.
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Namely, if u ∈ L2(Rd) is an eigenfunction of Ĥβ then w = β
√
V u is the eigenfunction

of Tλ, and vice versa, if w is an eigenfunction of Tλ with the eigenvalue µ = 1, then

u = (−∆− λ)−1
√
V is the eigenfunction of Ĥβ.

Proof. Let u ∈ L2(Rd) be an eigenfunction of Ĥβ corresponding to an eigenvalue λ.

Then equations (3.3) and (3.4) imply that w = β
√
V u satisfies

(I − Tλ) w = 0.

Let us assume now that w ∈ L2(Rd) is an eigenfunction of Tλ with the eigenvalue

µ = 1, i.e,

(I − β
√
V (−∆− λ)−1)

√
V w = 0. (3.6)

Then define

u = (−∆− λ)−1
√
V w ∈ L2(Rd) ,

and it follows that

(−∆− λ− βV )u = 0 ,

i.e, u is the eigenfunction of Ĥβ with the eigenvalue λ. Hence, there is one to one

correspondence between the kernel of the operator I − Tλ and the eigenspace of the

operator Ĥβ corresponding to the eigenvalue λ.

Remark: Since operators Tλ and Aλ differ by a factor β, one can use above lemma

to conclude that, µ = 1
β

is an eigenvalue of Aλ if and only if λ is an eigenvalue of Ĥβ,

and there is a one to one correspondence between eigenspaces of Aλ and Ĥβ. Namely,

if u ∈ L2(Rd) is an eigenfunction of the Ĥβ then w = β
√
V u is the eigenfunction of

Aλ, and vice versa, if w is an eigenfunction of Aλ with the eigenvalue µ = 1
β
, then

u = (−∆− λ)−1
√
V is the eigenfunction of Ĥβ.

Lemma 3.10. Tλ is a compact operator in L2(Ω) that depends analytically on λ when

λ /∈ [0,∞], i.e d
dλ

(Tλ) exists.
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Proof. We have

Tλf = β
√
V (−∆− λ)−1

√
V f. (3.7)

Operator (−∆− λ)−1 : L2(Rd)→ H2(Rd) is bounded (see Lemma 2.6). Since V has

a compact support, the product Tλ = β
√
V (−∆ − λ)−1

√
V is compact due to the

Sobolev imbedding theorem.

To prove the analyticity, it is enough to prove for the operator (−∆ − λ)−1. The

analyticity of (−∆− λ)−1 is obvious if we use the Fourier transform F .

F(−∆− λ)−1f =
Ff
|ξ|2 − λ

, λ /∈ [0,∞). (3.8)

One can apply the differentiation in λ in the operator norm to the element of L2(Rd)

defined by (3.8) above. Hence, Tλ is compact operator in L2(Ω) that depends analyt-

ically on λ.

Theorem 3.11. For each λ < 0, eigenvalues µ = µj(λ) of the operator Tλ are discrete

and positive, if β > 0.

Proof. From Lemma 2.7, it follows that:

∥∥(−∆− λ)−1
∥∥
L2(Rd)

→ 0 as λ→ −∞.

Thus, ‖Tλ‖L2(Rd) → 0 as λ→ −∞. Lemma 3.10 and the Analytic Fredholm theorem

imply that eigenvalues of Tλ are discrete. The eigenvalues are real since Tλ is sym-

metric. Moreover, if w =
√
V u then

(Tλu, u) = (β
√
V (−∆− λ)−1)

√
V u, u) = β((−∆− λ)−1w,w) = β

∫
|ŵ|2

|ξ|2 − λ
dξ > 0.

Thus, operator Tλ is positive and its eigenvalues are positive.

Let us define, µ0(λ) = max‖u‖=1(Tλu, u).
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Lemma 3.12. µ0(λ) is a continuous and increasing function of λ on the semi-axis

(−∞, 0).

Proof. As we defined,

µ0(λ) = max
‖u‖=1

(Tλu, u).

It is easy to check that (Tλ1u, u) ≤ (Tλ2u, u), ∀u ∈ L2 by using the Fourier transform

if λ1 ≤ λ2 < 0. Indeed, if w =
√
V u then

(Tλu, u) = (β
√
V (−∆− λ)−1)

√
V u, u) = β((−∆− λ)−1w,w) = β

∫
|ŵ|2

|ξ|2 − λ
dξ.

This implies that µ0(λ) is an increasing function of λ on the semi-axis (−∞, 0). Also,

the operation of taking the maximum value preserves the continuity which implies

the continuity of µ0(λ).

Lemma 3.13. If d = 1, 2, then µ0(λ)→∞ when λ→ 0−.

Proof. We know the asymptotic behavior of the operator Tλ as λ → 0− from [2].

Now,

(Tλu, u) �


β√
|λ|

∫
V |u|2 + o(1) for d=1

β ln|λ|
∫
V |u|2 + o(1) for d=2

Which concludes that µ0(λ)→∞ as λ→ 0−.

Lemma 3.14. µ0(λ)→ 0 as λ→ −∞.

Proof. We will use Parseveals’s identity to proof the lemma. Here,

(Tλu, u) = (T̂λu, û) = (β

√̂
V u

|ξ|2 + |λ|
,
√̂
V u).

Hence, by using the definition of µ0(λ) one can conclude that µ0(λ) → 0 as λ →

−∞.



CHAPTER 4 : DEPENDENCE OF βcr ON THE BOUNDARY CONDITION

4.1 Spectrum of the Operator Hβ

Consider the following elliptic problems in Ω.

H0u− βV (x)u− λu = f, x ∈ Ω, (4.9)

where H0 = −div(a(x)∇), the potential V (x) ≥ 0 is compactly supported and con-

tinuous, β ≥ 0 , a(x) > 0 , a(x) ∈ C1(Ω), and a = 1 when |x| >> 1. We assume that

f ∈ L2(Rd) and the solutions belong to the space H2(Ω) and satisfies a Dirichlet,

Neumann, or FKW-boundary condition. We consider the truncated resolvent Aλ of

operator H0 with the cut-off function χ =
√
V (x):

Aλ =
√
V (H0 − λ)−1

√
V : L2(Ω)→ L2(Ω), λ < 0. (4.10)

The main question of our study is whether the discrete spectrum appears for arbitrary

small perturbations (arbitrary small β > 0), or β must be large enough to create

negative eigenvalues. As we defined βcr in the chapter three, we defined βcr as the

value of β such that operator Hβ = H0 − βV (x) does not have negative eigenvalues

for β < βcr and has them if β > βcr. Thus, we would like to know when βcr = 0 and

when βcr > 0 considering the Dirichlet, Neumann, and FKW boundary condition.

Lemma 4.15. There is a one-to-one correspondence between the eigenspaces of op-

erators Hβ, β > 0, and Aλ, λ < 0. Namely, if u ∈ H2(Ω) is an eigenfunction of Hβ
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with an eigenvalue λ < 0, then w =
√
V u is an eigenfunction of operator Aλ with

the eigenvalue 1
β
. Vice versa, if w ∈ L2(Ω) is an eigenfunction of Aλ, λ < 0, with an

eigenvalue µ, then µ > 0 and u = (H0−λ)−1(
√
V w) is an eigenfunction of H1/µ with

the eigenvalue λ.

Proof. Let Hβu = λu. Then (H0 − λ)u = βV u and u = β(H0 − λ)−1(V u). After

multiplying both sides by
√
V , we obtain w = βAλw, i.e., w is an eigenfunction of

Aλ with the eigenvalue 1/β.

Conversely, let Aλw = µw, λ < 0, i.e.,

√
V (H0 − λ)−1(

√
V w) = µw. (4.11)

Since operator Aλ, λ < 0, is positive, we have µ > 0. Define u = (H0 − λ)−1(
√
V w).

Then u ∈ H2, Bu|∂Ω = 0, and (H0 − λ)u =
√
V w. We multiply both sides of (4.11)

by
√
V and express

√
V w through u. This leads to V u = µ(H0 − λ)u, i.e., u is an

eigenfunction of H1/µ with the eigenvalue λ.

Theorem 4.16. The spectrum of Hβ consists of the absolutely continuous part [0,∞)

and at most a finite number of negative eigenvalues.

σ(Hβ) = {λj} ∪ [0,∞), 0 ≤ j ≤ N, λj ≤ 0.

Figure 4.3: Spectrum of the operator Hβ.

Proof. Let ΩR+1 := Ω
⋂
{|x| < R+1}, and denote by A−λ0 : H2(ΩR+1)→ L2(ΩR+1)
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the operator that corresponds to the problem

−diva(x)∇u− βV (x)u− λ0u = g, x ∈ ΩR+1; (4.12)

Bu|∂Ω = 0, u||x|=R+1 = 0. (4.13)

We construct the resolvent Rλ : L2(Ω) → H2(Ω) using the following parametrix

P (almost inverse operator) for Hβ − λ which consists of two terms that ”invert”

operator Hβ − λ in a bounded part ΩR+1 of Ω and in a neighborhood of infinity,

respectively. Namely,

P : L2(Ω)→ H2(Ω), Ph = ψ1(A−λ0)−1(ϕ1h)+ψ2(−∆−λ)−1(ϕ2h) := ψ1P1h+ψ2P2h,

(4.14)

where {ϕ1, ϕ2} is a partition of unity (i.e., ϕ1(x) + ϕ2(x) = 1 in Ω) such that ϕ1 ∈

C∞, ϕ1 = 1 when |x| < R + 1/3, ϕ1 = 0 when |x| > R + 2/3; ψ1, ψ2 ∈ C∞, ψ1 = 1

for |x| < R + 2/3, ψ1 = 0 for |x| > R + 1; ψ1 = 1 for |x| > R + 1/3, ψ1 = 0 for

|x| < R (i.e., ψ1ϕ1 = ϕ1, ψ2ϕ2 = ϕ2); λ0 < −βmaxV will be chosen later.

The Green formula implies that operator A − λ0 is positive, and therefore it is

invertible. Hence P is bounded for λ /∈ [0,∞). We will look for the solution of the

equation (Hβ − λ)u = f, λ /∈ [0,∞), in the form u = Ph with some h ∈ L2(Ω).

Since ψ1 = 1 and ψ2 = 0 in a neighborhood of ∂Ω, function Ph satisfies the boundary

condition Bu = 0 on ∂Ω. Thus Rλf = Ph if

(−diva(x)∇− βV (x)− λ)Ph = f ∈ L2(Ω). (4.15)

If we apply the differential operator above only to the second factors Pih in the terms

of the expression (4.14) for P , then we will get the following contribution to the
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left-hand side of (4.15):

ψ1[(λ0 − λ)(A− λ0)−1(ϕ1h) + ϕ1h] + ψ2ϕ2h = h+ ψ1(λ0 − λ)P1h.

Hence (4.15) has the form

h+ Fλh = f, f, h ∈ L2(Ω), (4.16)

where

Fλh = ψ1(λ0−λ)P1h−(diva∇ψ1)P1h−2a∇ψ1·∇P1h−∆ψ2P2h−2∇ψ2·∇P2h. (4.17)

Since Fλ does not contain derivatives of the second order of Pih, it follows that Fλ

is a bounded operator from L2(Ω) into H1(Ω). Additionally, one can easily see that

the support of Fλh belongs to ΩR+1. Thus, the Sobolev imbedding theorem implies

that operator Fλ : L2(Ω)→ L2(Ω) is compact.

Obviously, operator Fλ is analytic in λ ∈ C\[0,∞). We will show that λ0 can

be chosen in such a way that ‖Fλ0‖L2(Ω) < 1. Then analytic Fredholm theorem can

be applied to the operator I + Fλ from which it follows that operator (I + Fλ)
−1 is

meromorphic in λ ∈ C\[0,∞), and therefore

Rλ = P (I + Fλ)
−1, λ ∈ C\[0,∞). (4.18)

Let us justify the possibility to choose an appropriate λ0. The following parameter-

elliptic estimate is valid for v = (A− λ0)−1g:

‖v‖H2(ΩR+1) +
√
|λ0|‖v‖H1(ΩR+1) + |λ0|‖v‖L2(ΩR+1) ≤ C‖g‖L2(ΩR+1), λ0 → −∞.

(4.19)

Since the supports of ϕ1, ψ1 belong to ΩR+1, from (4.19) it follows that the
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norms of the second and third operators in the right-hand side of (4.17) go to zero as

λ0 → −∞. Since

‖(−∆− λ)−1g‖H1(Rd) ≤ C‖g‖L2(Rd)/
√
|λ|, λ < 0,

the norms of the last two operators in the right-hand side of (4.17) go to zero as

λ = λ0 → −∞. The first term in the right-hand side of (4.17) vanishes as λ = λ0.

Thus if −λ0 is large enough, then ‖Fλ0‖ < 1 and (4.18) is valid.

Formula (4.18) proves that the negative poles of Rλ are discrete. Since operator

Hβ is bounded from below, the first statement of the theorem will be proved if one

shows that I + Fλ is invertible when 0 < |λ| < ε for some ε > 0. The latter follows

from specific properties of Fλ at λ = 0. In fact, using Lemma 1 of [18], the operator

F0 is of finite rank, i.e bounded linear operator in the ε− neighbourhood of the point

λ = 0. Hence, there is not an eigenvalue in the neighbourhood of λ = 0, which states

the invertibility of I + Fλ.

The truncated resolvent R̂λ is defined by R̂λ = χRλχ where χ =
√
V (x) and

Rλ = P (I + Fλ)
−1, λ ∈ C\[0,∞).

Theorem 4.17. The truncated resolvent R̂λ admits a meromorphic continuation

through the continuous spectrum. If d is odd, then the continuation is a meromorphic

function in the complex plane k =
√
λ; if d is even, then it is meromorphic in k ∈ C

with a logarithmic branching point at k = 0.

Proof. From (4.18) it follows that

R̂λ = χP (I + Fλ)
−1χ, λ ∈ C\[0,∞). (4.20)

Let χ1(x) ∈ Ccom(Ω) be a cut-off function which is equal to one on ΩR+1 and on the
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support of χ. Since Fλh = 0 outside of ΩR+1, we have χ1Fλ = Fλ. If we also take into

account that h = χ1h for the solutions h of (4.16) with χf in the right-hand side,

then we get that (I +Fλ)
−1χf = χ1(I +χ1Fλχ1)−1χf . Thus, (4.20) can be rewritten

in the form

R̂λ = χPχ1(I + χ1Fλχ1)−1χ, λ ∈ C\[0,∞). (4.21)

Formula (4.21) allows one to extend R̂λ through the continuous spectrum. Indeed,

the integral kernel of the operator (−∆ − λ)−1 : L2(Rd) → H2(Rd), Im
√
λ > 0, is

a Bessel function which is decaying at infinity and which grows exponentially at

infinity if k =
√
λ is extended into the lower half plane. After the truncation, the

kernel becomes bounded uniformly with respect to space variables and analytic in k,

so that the following statement is valid: for any cut-off functions χ(1), χ(2) ∈ Ccom(Rd),

the truncated resolvent

R̂0
k2 = χ(1)(−∆− λ)−1χ(2) : L2(Rd)→ H2(Rd)

admits the analytic continuation into the lower half plane Imk < 0 with the properties:

R̂0
k2 = N(k)

k
if d is odd, R̂0

k2 = N(k) ln k + M(k) if d is even. Here N(k),M(k) are

entire operator functions, N(0) is a one-dimensional operator when d = 1, 2, and

N(0) = 0 when d ≥ 3 (thus ‖R̂0
k2‖ is bounded when |k| and | arg k| are bounded and

d ≥ 3.)

From (4.14) and (4.17) it follows that operators χPχ1 and χ1Fλχ1 have the same

analytic properties with respect to variable k as operator R̂0
k2 has. Further, we note

that the proof of the compactness of Fλ and the proof of the estimate ‖Fλ0‖ <

1, −λ0 � 1, remain valid for analytic continuation of χ1Fk2χ1, k ∈ C\{0} (one

need first to check the latter statements when χ1 ∈ C∞com(Ω), χ1 = 1 in Ωρ, ρ � 1;

then these statements are obviously valid for continuous χ1 with the support in Ωρ.)

Therefore, the analytic Fredholm theorem can be applied to operator I+χ1Fk2χ1, k ∈
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C\{0}. Hence (4.21) implies the second statement of the theorem

4.2 Dirichlet Problem

Consider the Dirichlet problem in an exterior domain Ω ⊂ Rd.

Hβ − λu = f, x ∈ Ω, u|∂Ω = 0, λ < 0. (4.22)

We know from equation (4.10) the truncated resolvent operator Aλ is defined by

Aλ =
√
V (H0 − λ)−1

√
V : L2(Ω)→ L2(Ω), λ < 0.

It will be shown that the choice βcr > 0 or βcr = 0 depends on whether the trun-

cated resolvent A0− is bounded or goes to infinity when λ → 0−. In fact, βcr will

be expressed through ‖Aλ‖. Note that operator Hβ − λ decays when λ grows, and

therefore ‖Aλ‖ is monotone in λ and the limit limλ→0− [1/‖Aλ‖] exists.

Theorem 4.18. βcr = 1/‖A0−‖.

Proof. The operator (H0 − λ)−1 : L2(Ω) → H2(Ω), λ < 0, (where H2(Ω) is the

Sobolev space) is bounded and the potential V has a compact support. Hence,

Sobolev’s imbedding theorem implies that operator (4.10) is compact. Since operator

Aλ, λ < 0, is positive, depends continuously on λ, and increases when λ increases, its

principal (largest) eigenvalue µ0(λ), λ < 0, is a positive, continuous, and monotoni-

cally increasing function of λ. Let µ∗ = limλ→0− µ(λ) = ‖A0−‖. Obviously, ‖Aλ‖ → 0

as λ→ −∞. Thus, the range of the function µ0(λ), −∞ < λ < 0, is (0, µ∗). Hence,

for each µ ∈ (0, µ∗), there is a λ = λ0 < 0 such that µ0(λ0) = µ, and therefore H1/µ

has the eigenvalue λ = λ0 due to Lemma 4.15. Since 1/µ ∈ (1/µ∗,∞), operator Hβ

has at least one negative eigenvalue when β > 1/µ∗.
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Figure 4.4: Graph of µ0(λ).

Since Aλ, λ < 0, can not have eigenvalues larger than µ∗, Lemma 4.15 implies

that Hβ does not have eigenvalues λ < 0 if β < 1/µ∗. It concludes that βcr = 1/µ∗ =

1/‖A0−‖.

Theorem 4.19. Let d = 1 or 2. Then ‖A0−‖ < ∞ and βcr > 0 in the case of the

Dirichlet boundary condition.

In order to prove Theorem 4.19, we will need the following lemma.

Lemma 4.20. Let ω ⊂ Rd be a bounded domain with a Lipschitz boundary. Let H

be a non-zero closed subspace of Sobolev space H1(ω) that does not contain non-zero

constant functions. Then there exists a constant C > 0 that depends on ω such that

‖u‖L2 ≤ C‖∇u‖L2 , u ∈ H. (4.23)

Proof. Assume that (4.23) is not true. Then there is a sequence vn ∈ H, n ∈ N,

such that ‖vn‖L2 ≥ n‖∇vn‖L2 . Define un = vn
‖vn‖L2

. Then ‖un‖ = 1 and ‖∇un‖L2 ≤ 1
n
,

i.e., {un} is a bounded sequence in H1(ω). Since the imbedding H1(ω) ⊂ L2(ω) is

compact, there exists a subsequence of {un} that converges in L2(ω). Without loss of

generality we can assume that {un} converges in L2(ω) as n→∞. Since ‖∇un‖L2 → 0
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as n → ∞, the sequence {un} converges in H1(ω). The limiting function u belongs

to H since un ∈ H and H is a closed subspace of H1(ω). Relation ‖∇un‖L2 → 0 as

n → ∞ implies that u is a constant. This constant must be zero since H does not

contain non-zero constant functions. The latter contradicts the fact that ‖un‖L2 = 1.

Hence, our assumption is wrong.

Proof of Theorem 4.19. Consider first the case of the Dirichlet boundary

condition. We would like to show that ‖Aλ‖ < C < ∞, λ → 0−. From (4.10) it

follows that Aλf =
√
V u, where u = (H0 − λ)−1

√
V f , i.e., (H0 − λ)u =

√
V f . From

the Green formula it follows that

∫
Ω

(a(x)|∇u|2 − λ|u|2)dx =

∫
ΩR

√
V fudx.

Hence, ∫
Ω

|∇u|2dx ≤
∫

ΩR

|
√
V fu|dx, λ < 0.

Lemma 4.20 implies that

∫
ΩR

|u|2dx ≤ C

∫
Ω

|∇u|2dx ≤ C

∫
ΩR

|
√
V fu|dx ≤ 1

2

∫
ΩR

|u|2dx+
C2

2

∫
ΩR

|
√
V f |2dx, λ < 0.

Thus

‖u‖L2(ΩR) ≤ C‖
√
V f‖L2(ΩR) ≤ C1‖f‖L2(ΩR), λ < 0,

and

‖Aλf‖L2(Ω) = ‖
√
V u‖L2(ΩR) ≤ C2‖f‖L2(Ω), λ < 0,

Hence, ‖Aλ‖ ≤ C, λ→ 0−, and Theorem 4.18 implies that βcr > 0.
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4.3 Neumann Problem

Consider the Neumann problem in an exterior domain Ω ⊂ Rd.

Hβ − λu = f, x ∈ Ω,
∂u

∂n
|∂Ω = 0, λ < 0. (4.24)

From Theorem 4.18 it follows that the proof of Theorem 4.21 will be complete if we

show that ‖Aλ‖ → ∞ when λ → 0−. We will focus only on the case d = 2 since

one-dimensional case can be studied similarly or independent simpler proof can be

given.

Theorem 4.21. Let d = 1 or 2. Then βcr = 0 in the cases of the Neumann boundary

condition.

Proof. Denote Rλ,0 = (H0 − λ)−1, where the sub-index zero indicates that β = 0.

Consider

R̂λ,0 = χRλ,0χ with χ ∈ C∞0 (Ω).

An asymptotic expansion of this operator as λ → 0 was obtained in [17], [19] in a

more general setting than here (for operators H0 of higher order). In particular, the

following result is valid:

R̂λ,0 = νλ(P +Q(λ)), ‖Q(λ)f‖H2(ΩR) ≤ C| lnλ|−1‖f‖L2(ΩR), λ→ 0−, (4.25)

where R̂λ,0 : L2(ΩR)→ H2(ΩR) is a non-zero bounded operator, νλ = |λ|α/2| lnλ|β, α

and β are integers.

It will be convenient for us to consider the truncated resolvent R̂λ,0 with a non-

smooth function χ which is the indicator of the domain ΩR+1, i.e., χ = 1 in ΩR+1, χ =

0 for |x| ≥ R + 1. Expansion (4.25) was proved in [17], [19] for this χ, and below we

assume that χ is the indicator of the domain ΩR+1.
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Let us show that νλ →∞ as λ→ 0. Let

u = ϕ(x)K0(
√
|λ||x|)− (1− ϕ(x)) ln

√
|λ|, (4.26)

where K0 is the modified Bessel function (it can be expressed through the Hankel

function: K0(r) = πi
2
H

(1)
0 (ir)), and ϕ ∈ C∞, ϕ(x) = 1 when |x| > R + 1

2
, ϕ(x) = 0

when |x| < R. Since operator H0 coincides with −∆ when ϕ 6= 1, it follows that

H0u = f, λ < 0, where

f = −∆ϕ(x)K0(
√
|λ||x|)− 2∇ϕ(x) · ∇K0(

√
|λ||x|)− ln

√
|λ|H0(1− ϕ(x)). (4.27)

Function u decays exponentially at infinity. Thus u = Rλ,0f, λ < 0. Support of f

belongs to the layer R ≤ |x| ≤ R + 1
2
, and χ = 1 there. Thus u = Rλ,0(χf), λ < 0.

Since K0(
√
|λ||x|) = − ln

√
λ+v, where v ∈ C2 uniformly in λ when |x| > R, λ→ 0−,

the terms with ln
√
|λ| are canceled in (4.27), and this implies that ‖f‖ ≤ C, λ→ 0−.

On the other hand, from (4.26) it follows that u = − ln
√
|λ| when |x| < R. Hence

‖R̂λ,0f‖ = ‖χu‖ ∼ − ln
√
|λ|, λ→ 0−, i.e., operator ‖R̂λ,0‖ is unbounded as λ→ 0−.

This fact does not prove yet that Aλ is unbounded, but it proves that νλ → ∞ as

λ → 0. Since χ = 1 when |x| < R, we have Aλh =
√
V Rλ,0(

√
V h). Thus (4.25) will

follow that ‖Aλ‖ → ∞ as λ→ 0− if we show that
√
V P
√
V 6= 0.

The Green function Rλ,0(x, ξ), λ < 0, of operator H0 (with the Neumann bound-

ary condition) is defined uniquely (due to the decay of the Green function at infinity).

It coincides with the integral kernel of operator Rλ,0. Since Rλ,0(x, ξ) ≥ 0, λ < 0,

and symmetric, from (4.25) it follows that the same properties hold for the integral

kernel P (x, ξ) of operator P : P (x, ξ) ≥ 0, P (x, ξ) = P (ξ, x).

Since χ = 1 when |x| < R + 1, from (4.25) it follows that

H0(Ph+Q(λ)h) = ν−1
λ H0Rλ,0(χh) = χh, for |x| < R + 1 and any h ∈ L2(Ω).
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We pass to the limit as λ→ 0− and obtain that H0Ph = 0, |x| < R+1. Let h ∈ L2(Ω)

be a function with the support in ΩR+1 and such that h ≥ 0, and u := Ph 6≡ 0 (recall

that P (x, ξ) ≥ 0 and P is a non-zero operator). The uniqueness of the solutions of

the Cauchy problem for elliptic equations of the second order implies that u can not

vanish identically on an open set in ΩR+1. Since u ≥ 0 it follows that

∫
ΩR+1

u(x)
√
V (x)dx 6= 0.

Consider now function w(ξ) =
∫

Ω
P (x, ξ)

√
V (x)dx. The relation above implies that

w 6≡ 0. Due to the symmetry of the P (x, ξ), function w satisfies the equation H0w =

0, |ξ| < R, and therefore, it cant vanish on an open set. Since w ≥ 0, it follows that∫
Ω
w(ξ)
√
V (ξ)dξ > 0, i.e.,

∫
Ω

∫
Ω

√
V (x)P (x, ξ)

√
V (ξ)dξ > 0.

Hence
√
V P
√
V is a non-zero operator, and ‖Aλ‖ → ∞ as λ → 0−. This complete

the proof of the theorem.

For the convenience of readers, we will provide another proof of this statement.

Consider now operator (4.24) with the Neumann boundary condition in dimensions

d = 1 and 2. It was shown in [2] that the Schrödinger operator H = c∆ − βV in

Rd, d = 1, 2, with arbitrary constants c, β > 0 has negative eigenvalues. Let ψ be its

eigenfunction with an eigenvalue λ < 0. Then

< Hψ,ψ >=

∫
Rd

(c|∇ψ|2 − βV |ψ|2)dx = λ‖ψ‖2 < 0.

We choose c = max a(x). Since the support of V belongs to Ω, we have

< Hβψ, ψ >=

∫
Ω

(a(x)|∇ψ|2 − βV |ψ|2)dx ≤
∫
Rd

(c|∇ψ|2 − βV |ψ|2)dx < 0.
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Thus Hβ, with an arbitrary β > 0, has negative eigenvalues. Hence βcr = 0 (and,

therefore, ‖A0−‖ =∞.)



CHAPTER 5: FKW EXTERIOR BOUNDARY PROBLEM

In this chapter, we will study an exterior boundary problems with the FKW condition

of the form,

−div(a(x)∇u)− βV (x)u− λu = f, x ∈ Ω ⊂ Rd; u|∂Ω = α,

∫
∂Ω

∂u

∂n
dµ = 0,

(5.28)

with f ∈ Hs(Ω) and u ∈ Hs+2(Ω), where s > [d
2
]. This FKW condition appears

in the description of the diffusion process in Ω that is a limit, as A → ∞, of the

process in Rd with a large drift A
−→
F (x) · ∇u in Rd\Ω, where the vector field

−→
F is

directed to an interior point of Rd\Ω, and the time spent by the process outside of Ω

is not taken into account. For simplicity, we will assume in the last section that ∂Ω

and a(x) are infinitely smooth. The results below can be easily extended to a more

general situation (which is considered in [8], [9]) when Rd\Ω is a union of several

non-intersecting domains, and FKW conditions (with different α, µ) are imposed on

the boundaries of these domains.

We will prove that the spectrum of problem (5.28) consists of the continuous

component [0,∞) and a discrete set of eigenvalues with the only possible limiting

point at infinity. It will be shown that ‖A0−‖ < ∞ for problem (5.28) if d ≥ 3

and ‖A0−‖ = ∞ if d = 2. Problem (5.28) is not symmetric and may have complex

eigenvalues. Moreover, eigenvalues can be imbedded into the continuous spectrum

(compare with [10]). If µ is the Lebesgue measure on the boundary, then the problem

is symmetric and may have only real eigenvalues λ ≤ 0. In the latter case, Theorem
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4.18 and its proof remain valid, and therefore βcr > 0 for problem (5.28) when d > 2,

βcr = 0 when d = 1 or 2.The last restriction and the Sobolev imbedding theorem

imply the inclusion u ∈ C1(Ω), which makes the last condition in (5.28) meaningful.

We will use the same notation H0 for the operator related to problem (5.28):

H0 : Hs+2(Ω)→ Hs(Ω),

where the domain of H0 consists of functions u ∈ Hs+2(Ω) satisfying the last two

conditions in (5.28). Obviously, [0,∞) belongs to the continuous spectrum of Hβ =

H0 − βV (x) since one can use the same Weyl sequence for operator Hβ − λ, λ > 0,

as the one in the case of the Dirichlet or Neumann boundary conditions. To study

the spectrum outside of [0,∞) (and eigenvalues on [0,∞) ), consider the resolvent

Rλ = (Hβ − λ)−1 and the truncated resolvent R̂λ = χ(x)Rλχ(x), where χ ∈ C∞0 .

Theorem 5.22. 1) The resolvent Rλ is meromorphic in λ ∈ C\[0,∞). Its poles have

finite orders and do not have limiting points except, possibly, at infinity.

2) If k =
√
λ, Imk > 0, then the truncated resolvent R̂k2 , Imk > 0, has a mero-

morphic continuation to the whole complex k-plane when d is odd or to the Riemann

surface of ln k when d is even. The poles in the regions | arg k| < C may have a

limiting point only at infinity.

3) The truncated resolvent R̂k2 has a pole at a real k 6= 0 (with arg k = 0 or π) if

and only if the homogeneous problem (5.28) has a non-trivial solution satisfying the

radiation condition:

|u| < Cr−(d−1)/2, |∂u
∂r
− iku| < Cr−(d+1)/2eikr, r = |x| → ∞.

Remarks. 1) The first statement implies that the spectrum of Hβ outside of

[0,∞) consists of a discrete set of eigenvalues of finite multiplicity with the only

possible limiting point at infinity. While the last statement of the theorem indicates
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the possibility of the existence of spectral singularises on the continuous spectrum, see

[10], operator Hβ does not have eigenvalues imbedded into the continuous spectrum.

The latter follows from the arguments used in [16, Theorem 3.3].

2) The FKW problem has a non-local boundary condition, and therefore it is

not elliptic. It is also non-symmetric, unless µ in (5.28) is the Lebesgue measure.

Theorem 5.22 is known [19] for general (non-symmetric) exterior elliptic problems

with fast stabilizing at infinity coefficients (see also [20]). There is a wide literature

concerning estimates on eigenvalues of non-symmetric elliptic problems, see for ex-

ample [4, 7, 1, 11, 21, 5, 6] and references therein. In particular, [21] contains the

proof of the finiteness of the number of eigenvalues for the Schrödinger operators with

complex potentials in Rd under certain assumptions on the potential with a minimal

requirement on the decay rate at infinity. Note that a similar result is not valid for

exterior problems with fast decaying potentials, where the number of eigenvalues can

be infinite even in the one-dimensional case [14].

Proof of Theorem 5.22. As we mentioned above, the statement of the theorem

is well known [19] for the resolvent Rλ,D (and the truncated resolvent R̂λ,D) of the

problem with the Dirichlet boundary condition (as well as for other elliptic boundary

conditions). In particular, from [19] it follows that the problem

−div(a(x)∇v)−βV (x)v−λv = f, x ∈ Ω ⊂ Rd; v|∂Ω = 1, λ ∈ C\[0,∞), (5.29)

with f ∈ Hs(Ωcom) has a meromprphic in λ solution v ∈ Hs+2(Ω), and χ(x)v has

a meromorphic continuation in k =
√
λ with the properties described in the second

statement of the theorem above. These properties of v follow immediately from the

properties of R̂λ,D after the substitution v = ϕ + w, where ϕ ∈ C∞0 , ϕ = 1 in a

neighborhood of ∂Ω, and w is the solution of the corresponding Dirichlet problem.
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Let us look for the solution u ∈ Hs+2(Ω) of (5.28) in the form

u = αv +Rλ,Df, λ ∈ C\[0,∞). (5.30)

Obviously, u satisfies (5.28) if and only if

α = −γ(λ, f)/γ1(λ), where γ(λ, f) =

∫
∂Ω

∂

∂n
Rλ,Dfdµ, γ1(λ) =

∫
∂Ω

∂v

∂n
dµ.

(5.31)

From the analytic properties of v it follows that γ1 is meromorphic in λ ∈ C\[0,∞) and

admits a meromorphic continuation to the whole complex k-plane if d is odd or to the

Riemann surface of ln k if d is even. When λ ∈ C\[0,∞), function v decays at infinity.

If λ < −βmaxV (x), then the maximum principle is valid for solutions of (5.29), v

achieves its maximum value at all the points of the boundary, and therefore, ∂v
∂n
> 0

on ∂Ω. Thus γ1(λ) > 0 when λ < −βmaxV (x). Hence γ1(λ) 6≡ 0, and therefore

γ−1
1 (λ) is meromorphic in the complex k-plane if d is odd or on the Riemann surface

of ln k if d is even. Moreover, from the asymptotics of R̂λ,D as λ→ 0 [19, Theorem 10]

it follows that the origin is not a limiting point for zeroes of γ−1
1 (λ) located in a region

| arg k| < C. Thus, the poles of γ−1
1 (λ) in this region may converge only to infinity,

and therefore the first two statements of Theorem 5.22 follow from (5.30), (5.31), and

the validity of these statements for Rλ,D. The last statement of the theorem can be

proved in the same way as a similar statement for R̂λ,D was proved in [17].

Denote by Aλ the operator R̂λ for problem (5.28) with β = 0 and χ =
√
V , i.e.,

Aλ =
√
V (x)(H0 − λ)−1

√
V (x) : Hs(Ω)→ Hs+2(Ω), (5.32)

where H0 is defined by (5.28).
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Lemma 5.23. The following relations are valid for operator (5.32):

‖Aλ‖ ≤ C <∞ as λ→ 0− if d ≥ 3; lim
λ→0−

‖Aλ‖ =∞ if d = 2.

Proof. Below we assume that β = 0.

Let d ≥ 3. For each ρ < ∞, Ωρ = Ω
⋂
|x| < ρ, and λ → 0−, the solution

v ∈ Hs+2(Ω) of (5.29) converges in Hs+2(Ωρ) to a decaying at infinity solution of the

same equation with β = λ = 0. Hence, the arguments used in the proof of Theorem

5.22 to show that γ1(λ) > 0 for λ < −βmaxV (x) remain valid when β = 0, λ = 0−,

i.e., γ1(0−) > 0. Hence, the first statement of the lemma follows immediately from

(5.30), (5.31), and the boundedness of R̂λ,D as λ→ 0−.

If d = 1 or 2, then v converges in each Hs+2(Ωρ) to a constant (equal to one) as

λ → 0−, and therefore γ1(0−) = 0. Thus the second statement of the lemma will

follow from (5.30), (5.31) if we show the existence of f ∈ Hs such that

γ(0−, f) > c > 0 and ‖R̂0−,Df‖ <∞. (5.33)

To construct such an f , we consider an arbitrary u ∈ Hs+2(Ωcom) with a compact

support and such that u|∂Ω = 0, ∂u
∂n
|∂Ω = 1. We have

H0u− λu = f − λu, where f = −div(a(x)∇u) ∈ Hs(Ωcom).

One can assume that the cut-off function χ in the definition of R̂λ,D is chosen in such

a way that χ = 1 on the support of u. Then R̂λ,Df = u − λR̂λ,Du. If d = 1, 2, then

‖R̂λ,Du‖L2 < C < ∞, λ → 0−, due to Theorem 4.21. From a priori estimates for

elliptic equations, it follows that the same estimate holds in the space Hs+2. Hence

‖R̂λ,Df − u‖Hs+2 → 0 as λ→ 0−, and this implies (5.33).
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As me mentioned earlier, Theorem 4.18 remains valid for symmetric FKW prob-

lems. Thus Lemma 5.23 implies the following statement.

Theorem 5.24. If µ is the Lebesgue measure on the boundary in FKW problem, then

βcr = 0 in dimensions one and two and βcr > 0 if d ≥ 3.
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CHAPTER 6: POTENTIALS WITH THE SUPPORTS NEAR THE BOUNDARY

This chapter is devoted to the dependence of βcr on the distance between the support

of the potential and the boundary of the domain. In fact, it is obvious that moving

the support of the potential to the boundary does not affect βcr essentially, but we

will shrink the size of the support, increase the height of the potential appropriately,

and move the potential toward to the boundary.

Figure 6.5: Potentials with the supports near the boundary.

It will be shown that this process, in the case of the Dirichlet boundary condition,

will imply the blowing up of βcr in dimension d = 1. In dimension two (and the

Dirichlet boundary condition), the behavior of βcr depends on the relation between

the rates of the shrinking of the support of the potential and the rate of its motion to

the boundary. We do not consider the Neumann boundary condition when d = 1 or 2

since βcr is always zero in this case. We will show that βcr is not very sensitive to the

location of the support of the potential for both Dirichlet and Neumann problems if
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d ≥ 3.

For the sake of the transparency, we will assume that a(x) ≡ 1, i.e., problem

H0u− βV (x)u = λu, x ∈ Ω, (6.34)

will be in the form

−∆u− βVn(x)u = λu, x ∈ Ω ⊂ Rd; u|∂Ω = 0; β ≥ 0, n→∞. (6.35)

We will consider the potential Vn of the form Vn(x) = hd(n)W ((x − x(n))n), where

W ∈ C0(Rd), W ≥ 0, the support of W belongs to the unit ball, x(n) → x0 ∈ ∂Ω

as n → ∞, the support of Vn(x) belongs to Ω, and hd(n) will be chosen in the next

paragraph.

Let d ≥ 3, so that βcr > 0. In order to study the dependence of βcr on the

location of the potential, we consider the problem in the whole space Rd, assume that

x(n) = 0, and choose hd(n) in such a way that βcr does not depend on n. This value

of hd(n) will be used in (6.35) to study the dependence of βcr on the location of the

potential. We will proceed similarly when d = 1, 2. By Theorem 4.18, hd(n), with

d ≥ 3, must be chosen in such a way that the norm of the operator A0− = A0−(n)

with the integral kernel

A0−(x, y, n) =
√
hdW (xn)

cd
|x− y|d−2

√
hdW (yn)

(where cd is a constant) does not depend on n. The substitution xn = x′, yn = y′

implies that hd(n) = n2, d ≥ 3. Indeed, this substitution immediately implies that if

u(x) is an eigenfunction of the operator A0−(n) with an eigenvalue λ(n), then u(x′/n)

is an eigenfunction of the operator A0−(1) with the eigenvalue λ(1) = hd(1)n2

hd(n)
λ(n).

The converse relation is also valid. Hence, the choice hd(n) = n2, d ≥ 3, implies that



40

‖A0−(n)‖ does not depend on n.

A small change is needed in dimensions one and two. We can’t consider the

operator A0−(n) in the whole space for small dimensions (the operator is not defined),

but we can consider a similar operator for the Dirichlet problem in Ω. Its integral

kernel is bounded when d = 1 and has the singularity 1
2π

ln 1
|x−y| if d = 2. The same

substitution implies that h1(n) = n, h2(n) = n2

lnn
. The norm of A0−(n) depends on n

in this case, but approaches a constant as n→∞.

For transparency, we will not study βcr in the general setting, but focus our

attention on the case when ∂Ω contains a flat part Γ, x0 is an interior point of Γ,

and x(n) moves toward x0 in the direction perpendicular to Γ.

Figure 6.6: Flat part of the boundary.

Theorem 6.25. If d = 1, then βcr (for operator (6.35)) goes to infinity as n → ∞.

The same is true if d = 2 and |x(n)−x0| < C/n, n→∞. If d = 2 and |x(n)−x0| →

0, |x(n) − x0| > C/nδ, n → ∞, with some δ ∈ (0, 1), then βcr remains bounded as

n → ∞. If d ≥ 3, then βcr remains bounded as n → ∞ for both the Dirichlet and

Neumann boundary conditions.

Remarks. The arguments in the proof allow one to estimate the rate with which

βcr tends to infinity. This rate depends on the rate of the convergence of x(n) to x0.

Proof. Let d = 1. Since the exterior of an interval is a union of two half-lines,

it is enough to prove the statement for the Dirichlet problem on (0,∞). The Green
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function Gλ for the operator

H0u = −u′′ − λu, x > 0, u(0) = 0, λ < 0,

has the form Gλ = e−k|x−ξ|−e−k|x+ξ|
−2k

, x, ξ > 0, k =
√
|λ|, and its limiting value as

λ → 0− is |x + ξ| − |x − ξ|. Hence, the operator A0−(n) defined by (4.10) has the

integral kernel

A0−(x, ξ, n) = n
√
W ((x− x(n))n)(|x+ ξ| − |x− ξ|)

√
W ((ξ − x(n))n), x, ξ > 0.

Since |x−x(n)|+|ξ−x(n)| < c
n

on the support of A0−(x, ξ, n), and x(n)→ 0, n→∞,

there exists α(n) such that α(n)→ 0, n→∞, and

|x+ ξ| − |x− ξ| ≤ α(n)

on the support of A0−(x, ξ, n). Then one can easily see that

‖A0−(n)‖ ≤
[ ∫ ∞

0

∫ ∞
0

A2
0−(x, ξ, n)dxdξ

]1/2

≤ C α(n)→ 0, n→∞,

and the statement of Theorem 6.25 for d = 1 follows from Theorem 4.18.

Let us consider the case d ≥ 3. Without loss of generality, we can assume that

Γ is a part of the hyperplane x1 = 0, x0 = 0, and there exists a ball Bε of radius ε

centered at the origin such that its right half B+
ε , where x1 > 0, belongs to Ω, and

the other half does not contain points of Ω. Hence x(n) moves to the origin along

the positive x1-semi-axis as n → ∞. Let E(x) = cd
|x|d−2 be a fundamental solution of

−∆. For ξ ∈ Bε, denote by ξ∗ the point symmetrical to ξ with respect to the plane

x1 = 0.

Lemma 6.26. The Green function G = G∓(x, ξ) of the Dirichlet (Neumann) problem
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in Ω for the operator −∆ has the form G∓ = E(x− ξ)∓ E(x− ξ∗) + F (x, ξ), where

F is uniformly bounded when x ∈ Ω, ξ ∈ Bε/2.

Remark. Additional smoothness of ∂Ω is needed to prove this statement in

the case of the Neumann boundary condition. For example, one can assume that

∂Ω ∈ C2,α.

Proof. In the case of the Dirichlet problem, F is the solution of the homogeneous

equation ∆F = 0 with the boundary condition

F = E(x− ξ∗)− E(x− ξ), x ∈ ∂Ω, ξ ∈ Bε/2.

Since F |∂Ω is bounded uniformly in ξ ∈ Bε/2, the maximum principle implies that

|F | < C. In the case of the Neumann boundary condition, the normal derivative of

F on the boundary belongs to C1,α (if ∂Ω ∈ C2,α). From local a priori estimates

for elliptic equations, it follows that F |∂Ω ∈ Cα, and the maximum principle can be

applied again.

In order to prove the theorem in the case d ≥ 3, it is enough to show that

‖A0−(n)‖ ≥ c > 0 when n→∞ (see Theorem 4.18). Let F̂ be the operator in L2(Ω)

with the integral kernel

F̂ (x, ξ) =
√
n2W ((x− x(n))n)F (x, ξ)

√
n2W ((ξ − x(n))n),

where F is defined in lemma above. The support of
√
n2W ((ξ − x(n))n) belongs to

Bε/2 when n is large enough, and therefore Lemma 6.26 and the substitution

x− x(n) = y/n, ξ − x(n) = σ/n (6.36)
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imply that ∫
Ω

∫
Ω

F̂ 2(x, ξ)dxdξ ≤ C

n
→ 0, n→∞.

Hence, ‖F̂‖ → 0, n→∞, and it remains to show that the norm of the operators Ê∓

in L2(Ω) with the integral kernel

cdn
2
√
W ((x− x(n))n)[|x− ξ|2−d ∓ |x− ξ∗|2−d]

√
W ((ξ − x(n))n)

is bounded from below when n→∞. One can consider these operators in L2(Rd
+), Rd

+ =

{x : x1 > 0} instead of L2(Ω) since the integral kernel vanishes if x or ξ are not in

B+
ε/2 and n is large enough. The norm remains the same after substitution (6.36)

(since the principal eigenvalues are the same). Hence, it is enough to show that the

norm of the integral operator G∓ in L2(Rd
+) with the integral kernel

cd
√
W (y)[|y − σ|2−d ∓ |y − σ∗ + 2nx(n)|2−d]

√
W (σ)

is bounded from below when n→∞.

Consider an arbitrary ball B ∈ Rd
+ such that its distance from the origin is positive

and W (x) ≥ α > 0 when x ∈ B. There exists ρ > 0 such that |y− σ∗+ 2nx(n)|2−d ≤

(1− ρ)|y − σ|2−d, y, σ ∈ B, i.e.,

|y − σ|2−d ∓ |y − σ∗ + 2nx(n)|2−d ≥ ρ|y − σ|2−d.

Hence ‖G∓‖ is not smaller than the norm of the operator in L2(B) with the integral

kernel cdαρ|y − σ|2−d, which does not depend on n. This completes the proof of the

theorem in the case of d ≥ 3.

The Dirichlet problem when d = 2 is treated absolutely similarly to the case d ≥ 3.
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The only difference is that operator G− now has the following integral kernel:

1

2π lnn

√
W (y) ln

|y − σ∗ + 2nx(n)|
|y − σ|

√
W (σ). (6.37)

If n|x(n)| < C, then operatorG− converges strongly to zero as n→∞. Hence, A0−(n)

has the same property, and βcr → 0 due to Theorem 4.18. If |x(n)| > Cn−δ, 0 <

δ < 1, then we write the logarithm of the quotient in (6.37) as the difference of the

logarithms and represent the operator G−as G− = G1−G2. Obviously, G2 converges

strongly to zero as n→∞, and G− is bounded from below for large n by the operator

with the kernel

ln |2nx(n)|
2π lnn

√
W (y)

√
W (σ) ≥ 1− δ

4π

√
W (y)

√
W (σ).

Hence, ‖A0−(n)‖ is bounded from below as n→∞, and βcr is bounded.
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