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Abstract

ANN MARIE STEWART. Jensen-Shannon Divergence: Estimation and Hypothesis
Testing. (Under the direction of DR. ZHIYI ZHANG)

Jensen-Shannon divergence is one reasonable solution to the problem of measuring the

level of difference or “distance” between two probability distributions on a multinomial

population. If one of the distributions is assumed to be known a priori, estimation

is a one-sample problem; if the two probability distributions are both assumed to

be unknown, estimation becomes a two-sample problem. In both cases, the simple

plug-in estimator has a bias that is O(1/N), and hence bias reduction is explored

in this dissertation. Using the well-known the jackknife method for both the one-

sample and two-sample cases, an estimator with a bias of O(1/N2) is achieved. The

asymptotic distributions of the estimators are determined to be chi-squared when the

two distributions are equal, and normal when the two distributions are different. Then,

hypothesis tests for the equality of the two multinomial distributions in both cases

are established using test statistics based upon the jackknifed estimators. Finally,

simulation studies are shown to verify the results numerically, and then the results

are applied to real-world datasets.
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CHAPTER 1: INTRODUCTION

1.1 Problem Statement

Suppose we have a population that follows the multinomial distribution with a finite,

but possibly unknown, number of classes K and that the classes are labeled with the

corresponding letters L = {`1, . . . , `K}. Suppose there are two possible probability

distributions on this population under consideration, defined by the K−1 dimensional

vectors

p = {p1, . . . , pK−1}

and

q = {q1, . . . , qK−1}

Assume throughout the paper that pK and qK refer to

pK = 1−
K−1∑
k=1

pk (1.1)

and

qK = 1−
K−1∑
k=1

qk (1.2)

where the ordering of the elements is fixed. Furthermore, suppose that

K∑
k=1

I[pk > 0] =
K∑
k=1

I[qk > 0] = K

so that all letters have positive probability for both distributions. Often in practice
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it may be desirable to have a measure of “distance” or “divergence” between the

two probability distributions. From [6], such a measure is defined and is known as

Kullback-Leibler divergence.

1.2 Kullback-Leibler Divergence

Definition 1. For two probability distributions p and q on the same alphabet L of

cardinality K, the relative entropy or the Kullback-Leibler divergence of p and q is

defined as

D(p||q) = ∑K
k=1 pk ln

(
pk
qk

)
(1.3)

observing that, for each summand p ln(p/q),

1) If p = 0, p ln
(
p

q

)
= 0, and

2) If p > 0 and q = 0, then p ln
(
p

q

)
= +∞.

This measure has some notable advantageous qualities, one of which is described in

the following theorem.

Theorem 1. Given two probability distributions p and q on the same alphabet L ,

D(p||q) ≥ 0 (1.4)

Moreover, the equality holds if and only if p = q.

However, Kullback-Leibler divergence is not symmetric with respect to p and q, nor

does it necessarily always take finite value. A remedy for these potential concerns is

to use a different measure called Jensen-Shannon divergence, from [7].

1.3 Jensen-Shannon Divergence and Interpretation

Definition 2. For two probability distributions p and q on the same alphabet L , the

Jensen-Shannon divergence of p and q is defined as
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JS(p||q) = 1
2

(
D
(
p
∣∣∣∣∣∣∣∣p + q

2

)
+D

(
q
∣∣∣∣∣∣∣∣p + q

2

))
(1.5)

These measures are closely related to that of Shannon’s Entropy, given in [15], which

is defined loosely as a measure of the dispersion or “variance” of the individual

distribution populations p, q. The more technical definition is as follows.

Definition 3. For a probability distribution p on an alphabet L , Shannon’s entropy

is defined as

H(p) = −
K∑
k

pk ln pk (1.6)

Using this definition, we can write Jensen-Shannon divergence in a more practically

useful form.

Theorem 2. Jensen-Shannon divergence for probability distributions p and q on

alphabet L is equivalent to

= −1
2(H(p) +H(q)) +H

(p + q
2

)
=: A+B

where H is the entropy defined in (1.6).

Proof.

JS(p||q) = 1
2

(
K∑
k=1

pk ln
(

pk
(pk + qk)/2

)
+

K∑
k=1

qk ln
(

qk
(pk + qk)/2

))

= 1
2

(
K∑
k=1

pk ln(pk) +
K∑
k=1

qk ln(qk)
)
−

K∑
k=1

pk + qk
2 ln

(
pk + qk

2

)

An intuitive interpretation of Jensen-Shannon Divergence may therefore be understood

in this way: it is the difference between the entropy of the average and the average of
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the entropies for distributions p and q. In other words, it is the “entropy” leftover from

the interaction between p and q when the “entropy” from the individual distributions

is subtracted out. Taking the difference leaves only that “entropy” which is accounted

for by the interaction between p and q in the average of the distributions. The more

“entropy” or “chaos” caused by the interaction between p and q, the more “distance”

between the two distributions.

1.4 Properties

Our natural understanding of the notion of “distance” is that it should be nonnegative,

and if the elements are the same, the “distance” should be 0.

Theorem 3. The Jensen-Shannon divergence of p and q is nonnegative, and equal

to 0 if and only if p = q.

Proof. By Theorem 1, JS(p||q) is nonnegative as the sum of nonnegative terms.

Because both terms in JS(p||q) are nonnegative, if the sum is 0 then each term must

be 0. Thus, JS(p||q) =0 if and only if

D
(
p
∣∣∣∣∣∣∣∣p + q

2

)
= D

(
q
∣∣∣∣∣∣∣∣p + q

2

)
= 0 (1.7)

Since by Theorem 1, D(p||q) = 0 if and only if p = q, then (1.7) is true if and only if

2q = 2p = p + q

if and only if p = q.

Although the notion of “distance” does not imply the concept of an upper bound,

Jensen-Shannon divergence does happen to have an upper bound, as shown in [4].

Theorem 4. For any two distributions p, q
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JS(p||q) ≤ 1
2 ln

(
2

1 + exp{−D(p||q)}

)
+ 1

2 ln
(

2
1 + exp{−D(q||p)}

)
< ln(2)

Proof.

JS(p||q) = 1
2

K∑
k=1

pk ln
(

2pk
pk + qk

)
+ 1

2

K∑
k=1

qk ln
(

2qk
pk + qk

)

= 1
2

K∑
k=1

pk ln
 2

1 + exp{ln(pk

qk
)}

+ 1
2

K∑
k=1

qk ln
 2

1 + exp{ln( qk

pk
)}



≤ 1
2 ln

(
2

1 + exp{−D(p||q)}

)
+ 1

2 ln
(

2
1 + exp{−D(q||p)}

)
< ln(2)

where the inclusive inequality in the last line is due to Jensen’s inequality.

Note that the line derived from Jensen’s inequality reaches equality if and only if p = q,

in which case JS(p||q) collapses into 0. Otherwise we have all strict inequalities:

JS(p||q) = 1
2

K∑
k=1

pk ln
 2

1 + exp{ln(pk

qk
)}

+ 1
2

K∑
k=1

qk ln
 2

1 + exp{ln( qk

pk
)}



<
1
2 ln

(
2

1 + exp{−D(p||q)}

)
+ 1

2 ln
(

2
1 + exp{−D(q||p)}

)
< ln(2)

Note that

1
2 ln

(
2

1 + exp{−D(p||q)}

)
+ 1

2 ln
(

2
1 + exp{−D(q||p)}

)
(1.8)

approaches ln(2) as D(p||q) and D(q||p) increase, and therefore JS(p||q) approaches
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ln(2) as p and q get “further apart,” as expected. The value in (1.8) will never reach

ln(2) because exp{−D(q||p)} can never be 0. Therefore ln(2) is an upper bound for

JS(p||q), but there will never be equivalence. JS(p||q) approaches, but does not

reach its upper bound.

There are two common scenarios which may arise where Jensen-Shannon divergence

would be of use in practice: one may be interested in the comparison of an unknown

distribution against a known one, or in estimating the divergence between two unknown

distributions. The first case would necessitate only one sample, and the second two

samples. Clearly there are different theoretical implications, so we tackle each problem

separately in each of the following chapters on estimation and asymptotic distributions.



CHAPTER 2: PLUG-IN ESTIMATORS AND BIAS

2.1 One-Sample

Assume that the distribution p is known, and we are trying to estimate q. Suppose

that we have a sample from q of size N from the alphabet L = {`1, `2, . . . , `K} that

is represented by the observations {ω1, . . . , ωN}. Define the sequences of observed

frequencies as:

Y1 =
N∑
j=1

I[ωj = `1], . . . , YK =
N∑
j=1

I[ωj = `K ]

Additionally, denote the vector of plug-in estimates for the probabilities as

q̂ = {q̂1, . . . , q̂K−1}

with

q̂K = 1−
K−1∑
k=1

q̂k

where, for each k from 1 to K − 1,

q̂k = Yk
N

Using these, we can directly estimate the Jensen-Shannon Divergence between a known

distribution p and the estimated one q.

Definition 4. Define the one-sample plug-in estimator for Jensen-Shannon Divergence

as
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ĴS1(p||q) = −1
2 (H(p) +H(q̂)) +H

(
p + q̂

2

)

= 1
2

(
K∑
k=1

pk ln(pk) +
K∑
k=1

q̂k ln(q̂k)
)
−

K∑
k=1

pk + q̂k
2 ln

(
pk + q̂k

2

)

=: Â0
1 + B̂0

1

(2.1)

We shall proceed to find the bias of this estimator and then propose a way to mitigate

it, tackling each part Â0
1 and B̂0

1 separately. Before doing so, it must be noted that [5]

showed that the bias of the plug-in estimator of entropy, Ĥ is

−K − 1
2N + 1

12N2

(
1−

K∑
k=1

1
pk

)
+O(N−3) (2.2)

which implies that the bias of the plug-in of Jensen-Shannon Divergence is also

O(N−1).

Theorem 5. Assuming a sample of size N from an unknown distribution q, the bias

of the one-sample plug-in estimator Â0
1 is

K − 1
4N − 1

24N2

1−
K∑
k=1

1
qk

+O(N−3) (2.3)

Proof. Using (2.2) we have
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E(Â0
1)− A = −1

2 (E(H(q̂))−H(q))

= −1
2

(
−K − 1

2N + 1
12N2

(
1−

K∑
k=1

1
qk

)
+O(N−3)

)

= K − 1
4N − 1

24N2

(
1−

K∑
k=1

1
qk

)
+O(N−3)

Theorem 6. Assuming a sample of size N for an unknown distribution q, the bias

of the one-sample plug-in estimator B̂0
1 is

− 1
4

 1
pK + qK

K−1∑
k=1

qk(1− qk)
N

−
∑
m 6=n

qmqn
N

+
K−1∑
k=1

qk(1− qk)
N(pk + qk)

+O(N−2)

= c

N
+ γ

N2 +O(N−3)

(2.4)

where

c = −1
4

K−1∑
k=1

qk(1− qk)
(

1
pK + qK

+ 1
pk + qk

)
−
∑
m6=n

qmqn
pK + qK

 (2.5)

Proof. By Taylor series expansion, we have
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B̂0
1 −B = B(q̂)−B(q)

= (q̂ − q)τ∇B(q) + 1
2
(
(q̂ − q)τ∇2B(q)(q̂ − q)

)
+RN

where ∇B(q) is the gradient of B(q) and ∇2B(q) is the Hessian matrix of B(q). The

expected value of the first term is clearly 0, and E(RN) = γ

N2 + O(N−3) for some

constant γ. Thus we only have to contend with the term

1
2(q̂ − q)τ∇2B(q)(q̂ − q)

Note that

∇2B(q)

= −1
2



1
p1 + q1

+ 1
pK + qK

1
pK + qK

. . .
1

pK + qK

1
pK + qK

1
p2 + q2

+ 1
pK + qK

. . .
1

pK + qK

... ... ... ...

1
pK + qK

1
pK + qK

. . .
1

pK−1 + qK−1
+ 1
pK + qK



=: −1
2Ω (2.6)

And so
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1
2(q̂ − q)τ

(
−1

2

)
Ω(q̂ − q) = −1

4


(∑K−1

k=1 q̂k − qk
)2

pK + qK
+

K−1∑
k=1

(q̂k − qk)2

pk + qk


Taking the expected value of both sides and using Lemma 15 yields

− 1
4

E
(∑K−1

k=1 q̂k − qk
)2

pK + qK
+

K−1∑
k=1

E (q̂k − qk)2

pk + qk



= −1
4

 1
pK + qK

K−1∑
k=1

qk(1− qk)
N

−
∑
j 6=k

qjqk
N

+
K−1∑
k=1

qk(1− qk)
N(pk + qk)


= − 1

4N

K−1∑
k=1

qk(1− qk)
(

1
pK + qK

+ 1
pk + qk

)
−
∑
j 6=k

qjqk
pK + qK



Theorems 5 and 6 taken together yield the following.

Theorem 7. The bias of the plug-in estimator of Jensen-Shannon Divergence in the

one-sample case is O(N−1):

K − 1
4N − 1

24N2

(
1−

K∑
k=1

1
qk

)
+ c

N
+ γ

N2 +O(N−3)

for some constant γ and where c is as in (2.5).

2.2 Two-Sample

For the two-sample case, assume there exist two independent samples of sizes Np

and Nq, according to unknown distributions p and q; both on the same alphabet

L = {`1, `2, . . . , `K}. Let the p sample be represented by {υ1, . . . , υNp} and the q

sample by {ω1, . . . , ωNq}. Similar to the one-sample case, define the sequences of

observed frequencies as
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X1 =
Np∑
i=1

I[υi = `1], . . . , XK =
Np∑
i=1

I[υi = `K ]

and

Y1 =
Nq∑
j=1

I[ωj = `1], . . . , YK =
Nq∑
j=1

I[ωj = `K ]

Also denote the plug-in estimators as

p̂ = {p̂1, . . . , p̂K−1}

and

q̂ = {q̂1, . . . , q̂K−1}

with

p̂K = 1−
K−1∑
k=1

p̂k

and

q̂K = 1−
K−1∑
k=1

q̂k

where, for each k from 1 to K − 1,

p̂k = Xk

Np

and

q̂k = Yk
Nq

For notational simplicity in the two-sample case, define v and v̂ as the 2K − 2
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dimensional vectors

v = (p,q) = {p1, . . . , pK−1, q1, . . . , qK−1} (2.7)

and

v̂ = (p̂, q̂) = {p̂1, . . . , p̂K−1, q̂1, . . . , q̂K−1} (2.8)

Additionally, we impose the following condition on the asymptotic behavior of the

sample sizes.

Condition 1. The probability distributions p and q and the observed sample distri-

bution p̂ and q̂ satisfy

• There exists a constant λ ∈ (0,∞) such that Np/Nq → λ as Np, Nq →∞

Under Condition 1, for any x ∈ R, O(Nx
p) = O(Nx

q) and will be heretofore notated

more generally as O(Nx).

Definition 5. Define the two-sample plug-in estimator for Jensen-Shannon Divergence

as

ĴS2(p||q) = −1
2 (H(p̂) +H(q̂)) +H

(
p̂ + q̂

2

)

= 1
2

(
K∑
k=1

p̂k ln(p̂k) +
K∑
k=1

q̂k ln(q̂k)
)
−

K∑
k=1

p̂k + q̂k
2 ln

(
p̂k + q̂k

2

)

=: Â0
2 + B̂0

2

(2.9)

Theorem 8. Assuming sample sizes Np, Nq for p and q, the bias of the two-sample
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plug-in estimator Â0
2 is

K − 1
4

(
1
Np

+ 1
Nq

)
− 1

24N2
p

(
1−

K∑
k=1

1
pk

)
− 1

24N2
q

(
1−

K∑
k=1

1
qk

)
+O(N−3) (2.10)

Proof. Using (2.2) we have

E(Â0
2)− A = −1

2 (E(H(p̂))−H(p))− 1
2 (E(H(q̂))−H(q))

= −1
2

(
−K − 1

2Np
+ 1

12N2
p

(
1−

K∑
k=1

1
pk

)
+O(N−3

p )
)

− 1
2

(
−K − 1

2Nq
+ 1

12N2
q

(
1−

K∑
k=1

1
qk

)
+O(N−3

q )
)

= K − 1
4

(
1
Np

+ 1
Nq

)
− 1

24N2
p

(
1−

K∑
k=1

1
pk

)
− 1

24N2
q

(
1−

K∑
k=1

1
qk

)

+O(N−3)

Theorem 9. Assuming sample sizes Np, Nq for p and q, the bias of the two-sample

plug-in estimator B̂0
2 is
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− 1
4Np

K−1∑
k=1

pk(1− pk)
(

1
pK + qK

+ 1
pk + qk

)
−
∑
j 6=k

pjpk
pK + qK



− 1
4Nq

K−1∑
k=1

qk(1− qk)
(

1
pK + qK

+ 1
pk + qk

)
−
∑
j 6=k

qjqk
pK + qK



+ α

N2
p

+ γ

N2
q

+O(N−3)

= a

Np
+ c

Nq
+ α

N2
p

+ γ

N2
q

+O(N−3)

(2.11)

where

a = −1
4

K−1∑
k=1

pk(1− pk)
(

1
pK + qK

+ 1
pk + qk

)
−
∑
j 6=k

pjpk
pK + qK

 (2.12)

and

c = −1
4

K−1∑
k=1

qk(1− qk)
(

1
pK + qK

+ 1
pk + qk

)
−
∑
j 6=k

qjqk
pK + qK

 (2.13)

Proof. By two variable Taylor series expansion, we have

B̂0
2 −B = B(v̂)−B(v)

= (v̂− v)τ∇B(v) + 1
2(v̂− v)τ∇2B(v)(v̂− v) +RN
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Taking the expected value of both sides yields the bias. For the first and third terms

of the right hand side, we have

E ((v̂− v)τ∇B(v)) = 0

and

E(RN) = α

N2
p

+ γ

N2
q

+O(N−3)

This leaves us only to contend with the middle term

1
2(v̂− v)τ∇2B(v)(v̂− v)

Note that

∇2B(v) = −1
2

Ω Ω

Ω Ω


where Ω is defined as in (2.6). Thus

1
2(v̂− v)τ∇2B(v)(v̂− v) = −1

4 ((p̂− p)τ , (q̂ − q)τ )

Ω Ω

Ω Ω


p̂− p

q̂ − q



= −1
4(p̂− p)τΩ(q̂ − q)− 1

4(q̂ − q)τΩ(p̂− p)

− 1
4(p̂− p)τΩ(p̂− p)− 1

4(q̂ − q)τΩ(q̂ − q)

Clearly the expected values of the terms in the first line are both 0, since p and q

are independent. The expected values of the terms in the second line are derived in a

similar manner to those in the proof of Theorem 6.
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Theorems 8 and 9 immediately yield the following Theorem.

Theorem 10. The bias of the plug-in estimator of Jensen-Shannon Divergence is

O(N−1):

K − 1
4

(
1
Np

+ 1
Nq

)
− 1

24N2
p

(
1−

K∑
k=1

1
pk

)
− 1

24N2
q

(
1−

K∑
k=1

1
qk

)

+ a

Np
+ c

Nq
+ α

N2
p

+ γ

N2
q

+O(N−3)

where a and c are defined as in (2.12) and (2.13).

Now that we have the precise forms of the biases in the one and two-sample cases given

in Theorems 7 and 10, a method for mitigating them is developed in the following

chapter.



CHAPTER 3: BIAS REDUCED ESTIMATORS

3.1 One-Sample

First we consider correcting the bias of Â0
1 using the well known jackknife resampling

technique. The idea is, for each datum j, 1 ≤ j ≤ N , leave that observation out and

compute the plug-in estimator from the corresponding sub-sample of size N − 1, then

find the average of these calculations. Denote q̂(−j) as the vector of plug-in estimates

of q with the jth observation omitted,

Â0
1q = −1

2H (q̂) (3.1)

Â1q(−j) = −1
2H

(
q̂(−j)

)
(3.2)

The computation of the one-sample jackknife estimator is as follows:

ÂJK1q = NÂ0
1q −

N − 1
N

N∑
j=1

Â1q(−j) (3.3)

And finally,

ÂJK1 = −1
2H(p) + ÂJK1q (3.4)

Theorem 11. The one-sample jackknife estimator from (3.4) has a bias of order

O(N−2):

E(ÂJK1)− A = − 1
24N(N − 1)

(
1−

K∑
k=1

1
qk

)
+O(N−3) = O(N−2)
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Proof. Using Theorem 5, we have

E(ÂJK1) = NE(Â1)− (N − 1)E(Â1(−j))

= N

(
A+ K − 1

N
− 1

24N2

(
1−

K∑
k=1

1
qk

)
+O(N−3)

)

− (N − 1)
(
A+ K − 1

N − 1 −
1

24(N − 1)2

(
1−

K∑
k=1

1
qk

)
+O((N − 1)−3)

)

= A− 1
24N

(
1−

K∑
k=1

1
qk

)
+ 1

24(N − 1)

(
1−

K∑
k=1

1
qk

)
+O(N−3)

= A− 1
24N(N − 1)

(
1−

K∑
k=1

1
qk

)
+O(N−3) = O(N−2)

Again use the jackknife approach with B̂0
1 . Denote

B̂1(−j) = H

(
p + q̂(−j)

2

)
(3.5)

as the corresponding plug-in estimator of B. Then, compute the jackknife estimator as

B̂JK1 = NB̂0
1 −

N − 1
N

N∑
j=1

B̂1(−j) (3.6)

As will be shown, this procedure reduces the order of the bias, as desired.

Theorem 12. The one-sample jackknife estimator from (3.6) has a bias of order

O(N−2):
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E(B̂JK1)−B = γ

N(N − 1) +O(N−3) = O(N−2)

where γ is as in Theorem 6.

Proof. Using Theorem 6, we have

E(B̂JK1) = NE(B̂0
1)− (N − 1)E(B̂1(−j))

= N
(
B + c

N
+ γ

N2 +O(N−3)
)

− (N − 1)
(
B + c

N − 1 + γ

(N − 1)2 +O(N−3)
)

= B + γ

N
− γ

N − 1 +O(N−3)

= B + γ

N(N − 1) +O(N−3) = O(N−2)

Definition 6. Define the new, bias-adjusted estimator for Jensen-Shannon Divergence

in the one-sample context as

ĴSBA1 = ÂJK1 + B̂JK1 (3.7)

The next corollary follows immediately from Theorems 11 and 12.

Corollary 1. The bias of the adjusted estimator ĴSBA1 is asymptotically O(N−2).

Now that the bias has been reduced in the one-sample case, we turn toward the

two-sample case.
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3.2 Two-Sample

To correct the bias of Â0
2, we use a method similar to that of the one-sample case.

First, denote

Â0
2 = Â0

2p + Â0
2q =

(
−1

2H (p̂)
)

+
(
−1

2H (q̂)
)

(3.8)

as the original plug-in estimator for A = −1
2 (H (p) +H (q)). Let p̂(−i) and q̂(−j) be

the samples without the ith observation for p and without the jth observation for q,

respectively. Also, let

Â
(−i)
2p = −1

2H
(
p̂(−i)

)
(3.9)

Â2q(−j) = −1
2H

(
q̂(−j)

)
(3.10)

Similar to the one-sample case, compute the jackknife estimators as

ÂJK2p = NpÂ
0
2p −

Np − 1
Np

Np∑
i=1

Â
(−i)
2p (3.11)

and

ÂJK2q = NqÂ
0
2q −

Nq − 1
Nq

Nq∑
j=1

Â2q(−j) (3.12)

Put them together to obtain

ÂJK2 = ÂJK2p + ÂJK2q (3.13)

It can easily be shown using a proof similar to that of Theorem 11 that the bias of

(3.13) is O(N−2).
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Theorem 13.

E(ÂJK2)− A

= − 1
24Np(Np − 1)

(
1−

K∑
k=1

1
pk

)
− 1

24Nq(Nq − 1)

(
1−

K∑
k=1

1
qk

)
+O(N−3)

= O(N−2)

Next, a method for correcting the bias of B̂0
2 is explored. A process for two-sample

jackknifing was introduced in [13], and will be used here. It is a two step procedure.

In the first step, a jackknifed estimator is computed by deleting one datum from the

p sample at a time. In the second step, the jackknifed estimator from the first step is

further jackknifed by deleting one datum from the q sample at a time to produce the

final estimator. Denote

B̂0
2 = H

(
p̂ + q̂

2

)
(3.14)

as the original plug-in estimator for B = H
(p + q

2

)
. Let

B̂
(−i)
2 = H

(
p̂(−i) + q̂

2

)
(3.15)

B̂2(−j) = H

(
p̂ + q̂(−j)

2

)
(3.16)

and

B̂
(−i)
2(−j) = H

(
p̂(−i) + q̂(−j)

2

)
(3.17)



23

For the first step, we let

B̂2p = NpB̂
0
2 −

Np − 1
Np

Np∑
i=1
B̂

(−i)
2 (3.18)

Then, the second and final step is obtained by jackknifing B̂2p:

B̂JK2 = NqB̂2p −
Nq − 1
Nq

Nq∑
j=1
B̂2p(−j) (3.19)

where

B̂2p(−j) = NpB̂2(−j) −
Np − 1
Np

Np∑
i=1
B̂

(−i)
2(−j) (3.20)

Note that (3.19) can also be written as

B̂JK2 = NpNqB̂
0
2 −

Nq(Np − 1)
Np

Np∑
i=1
B̂

(−i)
2

− Np(Nq − 1)
Nq

Nq∑
j=1
B̂2(−j) + (Np − 1)(Nq − 1)

NpNq

Np∑
i=1

Nq∑
j=1
B̂

(−i)
2(−j)

(3.21)

We will now show that the order of the bias of B̂JK2 is reduced by one from that of

the plug-in estimator.

Lemma 1.

E(B̂2p) = B + c

Nq
+ α

Np(Np − 1) + γ

N2
q

+O(N−3)
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Proof. Using Theorem 9 and (3.18), we have

E(B̂2p) = NpE(B̂0
2) + (Np − 1)E(B̂(−i)

2 )

= Np

(
a

Np
+ c

Nq
+ α

N2
p

+ γ

N2
q

+O(N−3)
)

− (Np − 1)
(

a

Np − 1 + c

Nq
+ α

(Np − 1)2 + γ

N2
q

+O(N−3)
)

= B + Npc

Nq
− (Np − 1)c

Nq
+ α

Np
− α

Np − 1 + Npγ

N2
q
− (Np − 1)γ

N2
q

= B + c

Nq
+ α

Np(Np − 1) + γ

N2
q

+O(N−3)

Theorem 14.

E(B̂JK2)−B = α

Np(Np − 1) + γ

Nq(Nq − 1) +O(N−3)

In other words, B̂JK2 is O(N−2).

Proof. Using (3.19) and Lemma 1,
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E(B̂JK2) = NqE(B̂2p)− (Nq − 1)E(B̂2p(−j))

= Nq

(
B + c

Nq
+ α

Np(Np − 1) + γ

N2
q

+O(N−3)
)

− (Nq − 1)
(
B + c

Nq − 1 + α

Np(Np − 1) + γ

(Nq − 1)2 +O(N−3)
)

= B + αNq

Np(Np − 1) + γ

Nq
− (Nq − 1)α
Np(Np − 1) −

γ

Nq − 1 +O(N−3)

= B + α

Np(Np − 1) + γ

Nq(Nq − 1) +O(N−3)

Therefore

E(B̂JK2)−B = α

Np(Np − 1) + γ

Nq(Nq − 1) +O(N−3) = O(N−2)

Definition 7. Define the new, bias-adjusted estimator for Jensen-Shannon divergence

in the two-sample context as

ĴSBA2 = ÂJK2 + B̂JK2 (3.22)

The next corollary follows immediately from Theorems 13 and 14.

Corollary 2. The bias of the adjusted estimator ĴSBA2 is asymptotically O(N−2).



CHAPTER 4: ASYMPTOTIC PROPERTIES OF ESTIMATORS

4.1 One-Sample

For finite K, the asymptotic normality of the one-sample plug-in Â0
1 + B̂0

1 is easily

derived. Let

a(q) = ∇A(q) =
(
∂

∂q1
A(q), . . . , ∂

∂qK−1
A(q)

)

and

b(q) = ∇B(q) =
(
∂

∂q1
B(q), . . . , ∂

∂qK−1
B(q)

)

denote the gradients of A(q) and B(q) respectively, and let

(a+ b)(q) = ∇(A+B)(q) =
(
∂

∂q1
(A+B)(q), . . . , ∂

∂qK−1
(A+B)(q)

)
(4.1)

be the gradient of (A+B)(q) where, for 1 ≤ k ≤ K − 1

∂

∂qk
(A+B)(q) = 1

2

(
ln
(
qk
qK

)
− ln

(
pk + qk
pK + qK

))

The partial derivatives are derived in the Appendix, Lemma 14.

We know that q̂ p→ q as n→∞ and so by the multivariate normal approximation to

the multinomial distribution,

√
N(q̂ − q) L−→MVN(0,Σ(q))
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where Σ(q) is a (K − 1)× (K − 1) covariance matrix given by

Σ(q) =



q1(1− q1) −q1q2 . . . −q1qK−1

−q2q1 q2(1− q2) . . . −q2qK−1

... ... ... ...

−qK−1q1 −qK−1q2 . . . qK−1(1− qK−1)


(4.2)

Using the delta method, we obtain the following theorem.

Theorem 15. Provided that (a+ b)τ (q)Σ(q)(a+ b)(q) > 0,

√
N((Â0

1 + B̂0
1)− (A+B))√

(a+ b)τ (q)Σ(q)(a+ b)(q)
L−→ N(0, 1) (4.3)

Next we show that ÂJK1 and B̂JK1 are sufficiently close to Â0
1 and B̂0

1 asymptotically,

so that we can also show that the asymptotic normality of ĴSBA1 holds when (a +

b)τ (q)Σ(q)(a+b)(q) > 0. The following lemma is used toward proving that
√
N(ÂJK1−

Â0
1) p→ 0.

Lemma 2.

ÂJK1q − Â0
1q

= − 1
4(N − 1)

K−1∑
k=1

(qk +O(N−1/2))(1− qk +O(N−1/2))

×
(

1
qK +O(N−1/2) + 1

qk +O(N−1/2)

)

+ 1
4(N − 1)

∑
m6=n

(qn +O(N−1/2))(qm +O(N−1/2))
(

1
qK +O(N−1/2)

)
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Proof. For any vector ηj between q̂(−j) and q̂, using Taylor Series expansion we have

A1q
(
q̂(−j)

)
− A1q (q̂)

=
(
q̂(−j) − q̂

)τ
∇A1q (q̂) + 1

2
(
q̂(−j) − q̂

)τ
∇2A1q (ηj)

(
q̂(−j) − q̂

)
For any j, we can write

(
q̂(−j) − q̂

)τ
=
{(

Y1 −NI[ωj = `1]
N(N − 1)

)
, . . . ,

(
YK−1 −NI[ωj = `K−1]

N(N − 1)

)}

= 1
N − 1 {q̂1 − I[ωj = `1], . . . , q̂K−1 − I[ωj = `K−1]}

(4.4)

Note that ∇A1q (q̂) is a gradient vector equivalent to

1
2

{
ln
(
q̂1

q̂K

)
, . . . , ln

(
q̂K−1

q̂K

)}

and so
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N∑
j=1

(
q̂(−j) − q̂

)τ
∇A1q (q̂)

= 1
2

K−1∑
k=1

ln
(
q̂k
q̂K

)
N∑
j=1

Yk −NI[ωj = `k]
N(N − 1)

= 1
2(N − 1)

K−1∑
k=1

ln
(
q̂k
q̂K

)
N∑
j=1

(q̂k − I[ωj = `k])

= 1
2(N − 1)

K−1∑
k=1

ln
(
q̂k
q̂K

)Nq̂k − N∑
j=1

I[ωj = `k]


= 1
2(N − 1)

K−1∑
k=1

ln
(
q̂k
q̂K

)
(Yk − Yk) = 0

Note that for any j, 1 ≤ j ≤ N ,

∇2A1q(ηj)
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= 1
2



(
1
ηj,1

+ 1
ηj,K

)
1
ηj,K

. . .
1
ηj,K

1
ηj,K

(
1
ηj,2

+ 1
ηj,K

)
. . .

1
ηj,K

... ... ... ...

1
ηj,K

1
ηj,K

. . .

(
1

ηj,K−1
+ 1
ηj,K

)


(K−1)×(K−1)

where ηj,k and ηj,K are the corresponding elements of the ηj vector. This gives rise to

1
2
(
q̂(−j) − q̂

)τ
∇2A1q (ηj)

(
q̂(−j) − q̂

)

= 1
4(N − 1)2


(∑K−1

k=1 q̂k − I[ωj = `k]
)2

ηj,K
+

K−1∑
k=1

(q̂2
k − I[ωj = `k])2

ηj,k


Recall the well known fact that

(
K−1∑
k=1

q̂k − I[ωj = `k]
)2

=
K−1∑
k=1

(q̂k − I[ωj = `k])2+
∑
m6=n

(q̂n−I[ωj = `n])(q̂m−I[ωj = `m])

(4.5)

Therefore we can write

ÂJK1q = Â0
1q −

N − 1
N

N∑
j=1

(
Â1q(−j) − Â0

1q

)
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= Â0
1q −

N − 1
N

N∑
j=1

(1
2
(
q̂(−j) − q̂

)τ
∇2A1q (ηj)

(
q̂(−j) − q̂

))

= Â0
1q −

1
4N(N − 1)

N∑
j=1

∑K−1
k=1 (q̂k − I[ωj = `k])2

ηj,K

− 1
4N(N − 1)

N∑
j=1

∑
m 6=n(q̂n − I[ωj = `n])(q̂m − I[ωj = `m])

ηj,K

− 1
4N(N − 1)

N∑
j=1

K−1∑
k=1

(q̂2
k − I[ωj = `k])2

ηj,k

= Â0
1q −

1
4N(N − 1)

K−1∑
k=1

N∑
j=1

(
q̂2
k − I[ωj = `k]

)2
(

1
ηj,K

+ 1
ηj,k

)

− 1
4N(N − 1)

∑
m6=n

N∑
j=1

(q̂n − I[ωj = `n])(q̂m − I[ωj = `m])
ηj,K

= Â0
1q −

1
4N(N − 1)

K−1∑
k=1

(
Yk(q̂k − 1)2 + (N − Yk)q̂2

k

)

×
(

1
qK +O(N−1/2) + 1

qk +O(N−1/2)

)

− 1
4N(N − 1)

∑
m6=n

(Ym(q̂m − 1)q̂n + Yn(q̂n − 1)q̂m + (N − Ym − Yn)q̂nq̂m)

×
(

1
qK +O(N−1/2)

)
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Taking the 1
N

inside yields

Â0
1q −

1
4(N − 1)

K−1∑
k=1

(
q̂k(q̂k − 1)2 + (1− q̂k)q̂2

k

)( 1
qK +O(N−1/2) + 1

qk +O(N−1/2)

)

− 1
4(N − 1)

∑
m6=n

((q̂m − 1)q̂nq̂m + (q̂n − 1)q̂nq̂m + (1− q̂m − q̂n)q̂nq̂m)

×
(

1
qK +O(N−1/2)

)

= Â0
1q −

1
4(N − 1)

K−1∑
k=1

q̂k(1− q̂k)
(

1
qK +O(N−1/2) + 1

qk +O(N−1/2)

)

+ 1
4(N − 1)

∑
m6=n

q̂nq̂m

(
1

qK +O(N−1/2)

)

= Â0
1q

− 1
4(N − 1)

K−1∑
k=1

(qk +O(N−1/2))(1− qk +O(N−1/2))

×
(

1
qK +O(N−1/2) + 1

qk +O(N−1/2)

)

+ 1
4(N − 1)

∑
m6=n

(qn +O(N−1/2))(qm +O(N−1/2))
(

1
qK +O(N−1/2)

)
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Lemma 3.
√
N(ÂJK1 − Â0

1) p→ 0 (4.6)

Proof.
√
N(ÂJK1 − Â0

1) =
√
N
(
ÂJK1q − Â0

1

)
From Lemma 2, we have

√
N
(
ÂJK1q − Â0

1

)

= −
√
N

4(N − 1)

K−1∑
k=1

(qk +O(N−1/2))(1− qk +O(N−1/2))

×
(

1
qK +O(N−1/2) + 1

qk +O(N−1/2)

)

+
√
N

4(N − 1)
∑
m6=n

(qn +O(N−1/2))(qm +O(N−1/2))
(

1
qK +O(N−1/2)

)

= O(N−1/2)→ 0

The following lemma is used toward proving that
√
N(B̂JK1 − B̂0

1) p→ 0.
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Lemma 4.

B̂JK1 − B̂0
1 = 1

4(N − 1)

K−1∑
k=1

(qk +O(N−1/2))(1− qk +O(N−1/2))

×
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

− 1
4(N − 1)

∑
m6=n

(qn +O(N−1/2))(qm +O(N−1/2))
(

1
pK + qK +O(N−1/2)

)

(4.7)

Proof. For any vector ηj between q̂(−j) and q̂, it is true that

B
(
q̂(−j)

)
−B (q̂)

=
(
q̂(−j) − q̂

)τ
∇B (q̂) + 1

2
(
q̂(−j) − q̂

)τ
∇2B (ηj)

(
q̂(−j) − q̂

)
Note that ∇B (q̂) is a gradient vector such that

−1
2

{
ln
(
p1 + q̂1

pK + q̂K

)
, . . . , ln

(
pK−1 + q̂K−1

pK + q̂K

)}

and so, again using (4.4),

N∑
j=1

(
q̂(−j) − q̂

)τ
∇B (q̂)
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= −1
2

K−1∑
k=1

ln
(
pk + q̂k
pK + q̂K

)
N∑
j=1

Yk −NI[ωj = `k]
N(N − 1)

= − 1
2(N − 1)

K−1∑
k=1

ln
(
pk + q̂k
pK + q̂K

)
N∑
j=1

(q̂k − I[ωj = `k])

= − 1
2(N − 1)

K−1∑
k=1

ln
(
pk + q̂k
pK + q̂K

)Nq̂k − N∑
j=1

I[ωj = `k]


= − 1
2(N − 1)

K−1∑
k=1

ln
(
pk + q̂k
pK + q̂K

)
(Yk − Yk) = 0

Next, we see that for any j, 1 ≤ j ≤ N ,

1
2
(
q̂(−j) − q̂

)τ
∇2B (ηj)

(
q̂(−j) − q̂

)

=− 1
4(N − 1)2


(∑K−1

k=1 q̂k − I[ωj = `k]
)2

pK + ηj,K
+

K−1∑
k=1

(q̂2
k − I[ωj = `k])2

pk + ηj,k



where ηj,k and ηj,K are the corresponding elements of the ηj vector. Again using the

well known fact from (4.5),

B̂JK1 = B̂0
1 −

N − 1
N

N∑
j=1

(
B̂1(−j) − B̂0

1

)

= B̂0
1 −

N − 1
N

N∑
j=1

(1
2
(
q̂(−j) − q̂

)τ
∇2B (ηj)

(
q̂(−j) − q̂

))
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= B̂0
1 + 1

4N(N − 1)

N∑
j=1

∑K−1
k=1 (q̂k − I[ωj = `k])2

pK + ηj,K

+ 1
4N(N − 1)

N∑
j=1

∑
m6=n(q̂n − I[ωj = `n])(q̂m − I[ωj = `m])

pK + ηj,K

+ 1
4N(N − 1)

N∑
j=1

K−1∑
k=1

(q̂2
k − I[ωj = `k])2

pk + ηj,k

= B̂0
1 + 1

4N(N − 1)

K−1∑
k=1

N∑
j=1

(
q̂2
k − I[ωj = `k]

)2
(

1
pK + ηj,K

+ 1
pk + ηj,k

)

+ 1
4N(N − 1)

∑
m6=n

N∑
j=1

(q̂n − I[ωj = `n])(q̂m − I[ωj = `m])
pK + ηj,K

= B̂0
1 + 1

4N(N − 1)

K−1∑
k=1

(
Yk(q̂k − 1)2 + (N − Yk)q̂2

k

)

×
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

+ 1
4N(N − 1)

∑
m6=n

(Ym(q̂m − 1)q̂n + Yn(q̂n − 1)q̂m + (N − Ym − Yn)q̂nq̂m)

×
(

1
pK + qK +O(N−1/2)

)

Taking the 1
N

inside yields
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B̂0
1 + 1

4(N − 1)

K−1∑
k=1

(
q̂k(q̂k − 1)2 + (1− q̂k)q̂2

k

)

×
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

+ 1
4(N − 1)

∑
m 6=n

((q̂m − 1)q̂nq̂m + (q̂n − 1)q̂nq̂m + (1− q̂m − q̂n)q̂nq̂m)

×
(

1
pK + qK +O(N−1/2)

)

= B̂0
1 + 1

4(N − 1)

K−1∑
k=1

q̂k(1− q̂k)
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

− 1
4(N − 1)

∑
m6=n

q̂nq̂m

(
1

pK + qK +O(N−1/2)

)

= B̂0
1 + 1

4(N − 1)

K−1∑
k=1

(qk +O(N−1/2))(1− qk +O(N−1/2))

(
1

pK + qK +O(N−1/2) + 1
pk + qk +O(N−1/2)

)

− 1
4(N − 1)

∑
m6=n

(qn +O(N−1/2))(qm +O(N−1/2))
(

1
pK + qK +O(N−1/2)

)

Now that this is established, we use it to show the following.
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Lemma 5.
√
N(B̂JK1 − B̂0

1) p→ 0 (4.8)

Proof. From Lemma 4, we have

√
N(B̂JK1 − B̂0

1)

=
√
N

4(N − 1)

K−1∑
k=1

(qk +O(N−1/2))(1− qk +O(N−1/2))

×
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

−
√
N

4(N − 1)
∑
m6=n

(qn +O(N−1/2))(qm +O(N−1/2))
(

1
pK + qK +O(N−1/2)

)

= O(N−1/2)→ 0

Putting together Theorem 15, Lemmas 6 and 7 and Slutzky’s theorem, the next

theorem follows immediately to yield the asymptotic normality of ĴSBA1 .

Theorem 16. Provided that (a+ b)τ (q)Σ(q)(a+ b)(q) > 0,

√
N((ÂJK1 + B̂JK1)− (A+B))√

(a+ b)τ (q)Σ(q)(a+ b)(q)
L−→ N(0, 1) (4.9)



39

Corollary 3. For the vector defined as in (4.1),

(a+ b)(q) = 0

if and only if p = q.

Proof. Note that (a+ b)(q) = 0 if and only if each component of the vector is zero,

and so we proceed with the proof component-wise. From Lemma 14, for any k,

1 ≤ k ≤ K − 1,

∂

∂qk
(A+B)(q) = 1

2

(
ln
(
qk
qK

)
− ln

(
pk + qk
pK + qK

))
(4.10)

(⇒) Suppose (4.16) is zero for all k, 1 ≤ k ≤ K − 1. Then we must have

qk
qK

= pk + qk
pK + qK

for all k, 1 ≤ k ≤ K − 1. This implies

qk(pK + qK) = qK(pk + qk)

pKqk = pkqK (4.11)

pk
pK

= qk
qK

which implies

K∑
k=1

pk
pK

=
K∑
k=1

qk
qK

and so
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1
pK

= 1
qK

which means pK = qK . Plugging that back into (4.11) yields pk = qk for 1 ≤ k ≤ K−1.

(⇐) Now suppose that pk = qk for all k. Then

pk + qk
pK + qK

= 2pk
2pK

= pk
pK

which renders (4.1) zero.

This means that the asymptotic normality of ĴSBA1 breaks down if and only if p = q.

Thus we move toward finding the asymptotic behavior in this case. Throughout,

recall that Jensen-Shannon Divergence is 0 when p = q. We begin with the plug-in

estimator.

Theorem 17. When p = q,

N
(
Â0

1 + B̂0
1

)
L−→ 1

8χ
2
K−1

Proof. By Taylor Series Expansion,

N
(
Â0

1 + B̂0
1

)
= N(A+B)(q̂)

= N(A+B)(q)+N(q̂−q)τ∇(A+B)(q)+1
2
√
N(q̂−q)τ∇2(A+B)(q)

√
N(q̂−q)+O(N−1/2)

Since p = q, (A+ B)(q) = 0 by Theorem 1, and ∇(A+ B)(q) = (a+ b)(q) = 0 by
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Corollary 3. Obviously the O(N−1/2) term goes to 0 in probability. Thus the only

term we are left to contend with is

1
2
√
N(q̂ − q)τ∇2((A+B)(q))

√
N(q̂ − q) (4.12)

Using the multivariate normal approximation to the multinomial distribution, we have

√
N(q̂ − q) L−→MVN(0,Σ(q)) (4.13)

where Σ(q) is as in (4.2). Putting together (4.13) and Slutsky’s Theorem, we have

√
N(q̂ − q)Σ(q)−1/2 L−→MVN(0, IK−1) := Z1 (4.14)

Noting this fact, we rewrite (4.12) as

1
2
√
N
(
Σ(q)−1/2(q̂ − q)

)τ
Σ(q)1/2∇2(A+B)(q)Σ(q)1/2

√
N
(
Σ(q)−1/2(q̂ − q)

)

Because we know (4.14), this leaves us with finding the asymptotic behavior of

Σ(q)1/2∇2(A+B)(q)Σ(q)1/2 (4.15)

Let

∇2(A+B)(q) = Θ(q)

where
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Θ(q) = 1
4



1
q1

+ 1
qK

1
qK

. . .
1
qK

1
qK

1
q2

+ 1
qK

. . .
1
qK

... ... ... ...

1
qK

1
qK

. . .
1

qK−1
+ 1
qK


(K−1)×(K−1)

First, we show that

Σ(q)1/2Θ(q)Σ(q)1/2 = 1
4IK−1

This is equivalent to showing that

(4Θ(q))−1 = Σ(q)

To do this, we must use Lemma 16, written in the Appendix.

4Θ(q) =



1
q1

0 . . . 0

0 1
q2

. . . 0

... ... ... ...

0 0 . . .
1

qK−1


(K−1)×(K−1)

+



1
qK

1
qK

. . .
1
qK

1
qK

1
qK

. . .
1
qK

... ... ... ...

1
qK

1
qK

. . .
1
qK


(K−1)×(K−1)

=: G+H

Because all of the rows in H are equivalent, H has rank 1. The inverse of G is clearly
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G−1 =



q1 0 . . . 0

0 q2 . . . 0

... ... ... ...

0 0 . . . qK−1


(K−1)×(K−1)

which greatly simplifies things. Next we need to find g = tr{HG−1} and verify that

it can never be −1 so that (A.10) is never undefined.

g = tr{HG−1} = tr



1
qK



1 1 . . . 1

1 1 . . . 1

... ... ... ...

1 1 . . . 1


(K−1)×(K−1)



q1 0 . . . 0

0 q2 . . . 0

... ... ... ...

0 0 . . . qK−1


(K−1)×(K−1)



= tr



1
qK



q1 q2 . . . qK−1

q1 q2 . . . qK−1

... ... ... ...

q1 q2 . . . qK−1


(K−1)×(K−1)
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= 1
qK

(
K−1∑
k=1

qk

)
= 1− qK

qK

which can never be −1. Using this value to further work towards calculating (A.10),

we have

1
1 + g

= qK

Next we need to find G−1HG:



q1 0 . . . 0

0 q2 . . . 0

... ... ... ...

0 0 . . . qK−1


(K−1)×(K−1)

1
qK



1 1 . . . 1

1 1 . . . 1

... ... ... ...

1 1 . . . 1


(K−1)×(K−1)



q1 0 . . . 0

0 q2 . . . 0

... ... ... ...

0 0 . . . qK−1


(K−1)×(K−1)

= 1
qK



q2
1 q1q2 . . . q1qK−1

q2q1 q2
2 . . . q2qK−1

... ... ... ...

qK−1q1 0 . . . q2
K−1


(K−1)×(K−1)

Thus
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Θ(q)−1 = G−1 − 1
1 + g

G−1HG−1

=



q1 0 . . . 0

0 q2 . . . 0

... ... ... ...

0 0 . . . qK−1


(K−1)×(K−1)

−



q2
1 q1q2 . . . q1qK−1

q2q1 q2
2 . . . q2qK−1

... ... ... ...

qK−1q1 0 . . . q2
K−1


(K−1)×(K−1)

= Σ(q)

as desired. Therefore

Σ(q)1/2∇2(A+B)(q)Σ(q)1/2 = IK−1

Thus we have

(4.12) = 1
2
(√

NΣ(q)−1/2(q̂ − q)
)τ 1

4IK−1
(√

NΣ(q)−1/2(q̂ − q)
)

= 1
8
(√

N(q̂ − q)Σ(q)−1/2
)τ (√

N(q̂ − q)Σ(q)−1/2
)

L−→ 1
8

K−1∑
i=1

Z2
1i

by the Continuous Mapping Theorem, where each Z1i ∼ N(0, 1). Therefore
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1
2
√
N(q̂ − q)τ∇2(A+B)(q)

√
N(q̂ − q) L−→ 1

8χ
2
K−1

as was to be shown.

Lemma 6. For the one-sample case, when p = q,

N(ÂJK1 − Â0
1) p−→ −1

4

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m6=n

pnpm
pK



Proof. Using Theorem 2, we have

N
(
ÂJK1q − Â0

1

)

= − N

4(N − 1)

K−1∑
k=1

(qk +O(N−1/2))(1− qk +O(N−1/2))

×
(

1
qK +O(N−1/2) + 1

qk +O(N−1/2)

)

+ N

4(N − 1)
∑
m6=n

(qn +O(N−1/2))(qm +O(N−1/2))
(

1
qK +O(N−1/2)

)

→ −1
4

K−1∑
k=1

qk(1− qk)
(

1
qK

+ 1
qk

)
−
∑
m6=n

qnqm
qK


Since p = q, this is equivalent to

−1
4

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m6=n

pnpm
pK
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Lemma 7. For the one-sample case, when p = q,

N(B̂JK1 − B̂0
1) p−→ 1

8

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m6=n

pnpm
pK



Proof. From Lemma 4, we have that

N(B̂JK1 − B̂0
1)

= N

4(N − 1)

K−1∑
k=1

(qk +O(N−1/2))(1− qk +O(N−1/2))

×
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

− N

4(N − 1)
∑
m 6=n

(qn +O(N−1/2))(qm +O(N−1/2))
(

1
pK + qK +O(N−1/2)

)

p−→ 1
4

K−1∑
k=1

qk(1− qk)
(

1
pK + qK

+ 1
pk + qk

)
− 1

4
∑
m6=n

qnqm

(
1

pK + qK

)

Since p = q, this is equivalent to

1
8

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m 6=n

pnpm
pK


as desired.

Lemmas 6 and 7 directly yield the following Corollary.



48

Corollary 4. When p = q in the one-sample case,

N((ÂJK1 + B̂JK1)− (Â0
1 + B̂0

1)) p−→ −1
8

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m 6=n

pnpm
pK



By Slutsky’s Theorem, Theorem 17, and Corollary 4, we have the following conclusion.

Theorem 18. When p = q in the one-sample case,

N(ÂJK1 + B̂JK1) + 1
8

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m 6=n

pnpm
pK

 L−→ 1
8χ

2
K−1

Two-Sample

In the two-sample case for finite K, the asymptotic normality of the plug-in Â0
2 + B̂0

2

is also readily derived. Toward this end we let

a(v) = ∇A(v) =
(
∂

∂p1
A(v), . . . , ∂

∂pK−1
A(v), ∂

∂q1
A(v), . . . , ∂

∂qK−1
A(v)

)

and

b(v) = ∇B(v) =
(
∂

∂p1
B(v), . . . , ∂

∂pK−1
B(v), ∂

∂q1
B(v), . . . , ∂

∂qK−1
B(v)

)

Let their sum be notated as
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(a+ b)(v) = ∇(A+B)(v)

=
(
∂

∂p1
(A+B)(v), . . . , ∂

∂pK−1
(A+B)(v), ∂

∂q1
(A+B)(v), . . . , ∂

∂qK−1
(A+B)(v)

)
(4.16)

where, for 1 ≤ k ≤ K − 1

∂

∂pk
(A+B)(v) = 1

2

(
ln
(
pk
pK

)
− ln

(
pk + qk
pK + qK

))

and

∂

∂qk
(A+B)(v) = 1

2

(
ln
(
qk
qK

)
− ln

(
pk + qk
pK + qK

))

The partial derivatives are derived in the Appendix, Lemma 14. Note that v̂ p→ v as

n→∞. By the multivariate normal approximation to the multinomial distribution

√
Np(v̂− v) L−→MVN(0,Σ(v))

where Σ(v) is a (2K − 2)× (2K − 2) covariance matrix given by

Σ(v) =

Σp(v) 0

0 Σq(v)

 (4.17)

Here Σp(v) and Σq(v) are (K − 1)× (K − 1) matrices given by

Σp(v) =



p1(1− p1) −p1p2 . . . −p1pK−1

−p2p1 p2(1− p2) . . . −p2pK−1

... ... ... ...

−pK−1p1 −pK−1p2 . . . pK−1(1− pK−1)


and
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Σq(v) = λ



q1(1− q1) −q1q2 . . . −q1qK−1

−q2q1 q2(1− q2) . . . −q2qK−1

... ... ... ...

−qK−1q1 −qK−1q2 . . . qK−1(1− qK−1)


The delta method immediately yields the following theorem.

Theorem 19. Provided that (a+ b)τ (v)Σ(v)(a+ b)(v) > 0,

√
Np((Â0

2 + B̂0
2)− (A+B))√

(a+ b)τ (v)Σ(v)(a+ b)(v)
L−→ N(0, 1) (4.18)

The proof for the following lemma is almost identical to that of Lemma 2 and is

therefore omitted here.

Lemma 8.

ÂJK2p − Â0
2p

= − 1
4(Np − 1)

K−1∑
k=1

(pk+O(N−1/2))(1−pk+O(N−1/2))
(

1
pK +O(N−1/2) + 1

pk +O(N−1/2)

)

+ 1
4(Np − 1)

∑
m6=n

(pn +O(N−1/2))(pm +O(N−1/2))
(

1
pK +O(N−1/2)

)

and

ÂJK2q − Â0
2q
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= − 1
4(Nq − 1)

K−1∑
k=1

(qk+O(N−1/2))(1−qk+O(N−1/2))
(

1
qK +O(N−1/2) + 1

qk +O(N−1/2)

)

+ 1
4(Nq − 1)

∑
m 6=n

(qn +O(N−1/2))(qm +O(N−1/2))
(

1
qK +O(N−1/2)

)

We now use the asymptotic normality of the plug-in estimator to obtain that of the

bias-adjusted estimator.

Lemma 9. √
Np(ÂJK2 − Â0

2) p→ 0 (4.19)

Proof. Using Lemma 8,



52

√
Np(ÂJK2 − Â0

2) =
√
Np

(
ÂJK2p − Â2p + ÂJK2q − Â2q

)

= −

√
Np

4(Np − 1)

K−1∑
k=1

(pk +O(N−1/2))(1− pk +O(N−1/2))

×
(

1
pK +O(N−1/2) + 1

pk +O(N−1/2)

)

+

√
Np

4(Np − 1)
∑
m 6=n

(pn +O(N−1/2))(pm +O(N−1/2))
(

1
pK +O(N−1/2)

)

−

√
λNq

4(Nq − 1)

K−1∑
k=1

(qk +O(N−1/2))(1− qk +O(N−1/2))

×
(

1
qK +O(N−1/2) + 1

qk +O(N−1/2)

)

+

√
λNq

4(Nq − 1)
∑
m6=n

(qn +O(N−1/2))(qm +O(N−1/2))
(

1
qK +O(N−1/2)

)

= O(N−1/2)→ 0
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Lemma 10.

B̂2p − B̂0
2

= 1
4(Np − 1)

K−1∑
k=1

(pk +O(N−1/2))(1− pk +O(N−1/2))

×
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

− 1
4(Np − 1)

∑
m 6=n

(pn +O(N−1/2))(pm +O(N−1/2))
(

1
pK + qK +O(N−1/2)

)

(4.20)

Similarly,

B̂JK2 = B̂2p

+ 1
4(Nq − 1)

K−1∑
k=1

(qk +O(N−1/2))(1− qk +O(N−1/2))

×
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

− 1
4(Nq − 1)

∑
m 6=n

(qn +O(N−1/2))(qm +O(N−1/2))
(

1
pK + qK +O(N−1/2)

)

(4.21)

Proof. First, note that for any i,
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(
p̂(−i) − p̂

)τ
=
{(

X1 −NpI[υi = `1]
Np(Np − 1)

)
, . . . ,

(
XK−1 −NpI[υi = `K−1]

Np(Np − 1)

)}

= 1
Np − 1 {p̂1 − I[υi = `1], . . . , p̂K−1 − I[υi = `K−1]}

Then, for any vector ξi between p̂(−i) and p̂ and fixed q̂ , we have

B̂
(−i)
2 − B̂0

2 = B
(
p̂(−i), q̂

)
−B (p̂, q̂)

=
(
p̂(−i) − p̂

)τ
∇B (p̂, q̂) + 1

2
(
p̂(−i) − p̂

)τ
∇2B (ξi, q̂)

(
p̂(−i) − p̂

)

We have that ∇B (p̂, q̂) is a vector such that

∇B (p̂, q̂) = −1
2

{
ln
(
p̂1 + q̂1

p̂K + q̂K

)
, . . . , ln

(
p̂K−1 + q̂K−1

p̂K + q̂K

)}

and so
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Np∑
i=1

(
p̂(−i) − p̂

)τ
∇B (p̂, q̂)

= −1
2

K−1∑
k=1

ln
(
p̂1 + q̂1

p̂K + q̂K

) Np∑
i=1

Xk −NpI[υi = `k]
Np(Np − 1)

= − 1
2(Np − 1)

K−1∑
k=1

ln
(
p̂1 + q̂1

p̂K + q̂K

) Np∑
i=1

(p̂k − I[υi = `k])

= − 1
2(Np − 1)

K−1∑
k=1

ln
(
p̂1 + q̂1

p̂K + q̂K

)Npp̂k −
Np∑
i=1

I[υi = `k]


= − 1
2(Np − 1)

K−1∑
k=1

ln
(
p̂1 + q̂1

p̂K + q̂K

)
(Xk −Xk) = 0

Next, we see that

1
2
(
p̂(−i) − p̂

)τ
∇2B (ξi, q̂)

(
p̂(−i) − p̂

)

= − 1
4(Np − 1)2


(∑K−1

k=1 p̂k − I[υi = `k]
)2

ξi,K + q̂K
+

K−1∑
k=1

(p̂2
k − I[υi = `k])2

ξi,k + q̂k



where ξi,k and ξi,K are the corresponding elements of the ξi vector. We know that

(
K−1∑
k=1

p̂k − I[υi = `k]
)2

=
K−1∑
k=1

(p̂k − I[υi = `k])2+
∑
m 6=n

(p̂n−I[υi = `n])(p̂m−I[υi = `m])
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Thus

B̂2p = B̂0
2 −

Np − 1
Np

Np∑
i=1

(
B̂

(−i)
2 − B̂0

2

)

= B̂0
2 −

Np − 1
Np

Np∑
i=1

(1
2
(
p̂(−i) − p̂

)τ
∇2B (ξi, q̂)

(
p̂(−i) − p̂

))

= B̂0
2 + 1

4Np(Np − 1)

Np∑
i=1

∑K−1
k=1 (p̂k − I[υi = `k])2

ξi,K + q̂K

+ 1
4Np(Np − 1)

Np∑
i=1

∑
m 6=n(p̂n − I[υi = `n])(p̂m − I[υi = `m])

ξi,K + q̂K

+ 1
4Np(Np − 1)

Np∑
i=1

K−1∑
k=1

(p̂2
k − I[υi = `k])2

ξi,k + q̂k

= B̂0
2 + 1

4Np(Np − 1)

K−1∑
k=1

Np∑
i=1

(
p̂2
k − I[υi = `k]

)2
(

1
ξi,K + q̂K

+ 1
ξi,k + q̂k

)

+ 1
4Np(Np − 1)

∑
m6=n

Np∑
i=1

(p̂n − I[υi = `n])(p̂m − I[υi = `m])
ξi,K + q̂K

= B̂0
2 + 1

4Np(Np − 1)

K−1∑
k=1

(
Xk(p̂k − 1)2 + (Np −Xk)p̂2

k

)

×
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

+ 1
4Np(Np − 1)

∑
m6=n

(Xm(p̂m − 1)p̂n +Xn(p̂n − 1)p̂m + (Np −Xm −Xn)p̂np̂m)
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×
(

1
pK + qK +O(N−1/2)

)

Taking the 1
Np

inside yields

B̂0
2 + 1

4(Np − 1)

K−1∑
k=1

(
p̂k(p̂k − 1)2 + (1− p̂k)p̂2

k

)

×
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

+ 1
4(Np − 1)

∑
m 6=n

((p̂m − 1)p̂np̂m + (p̂n − 1)p̂np̂m + (1− p̂m − p̂n)p̂np̂m)

×
(

1
pK + qK +O(N−1/2)

)

= B̂0
2 + 1

4(Np − 1)

K−1∑
k=1

p̂k(1− p̂k)
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

− 1
4(Np − 1)

∑
m6=n

p̂np̂m

(
1

pK + qK +O(N−1/2)

)

= B̂0
2 + 1

4(Np − 1)

K−1∑
k=1

(pk +O(N−1/2))(1− pk +O(N−1/2))

×
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)
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− 1
4(Np − 1)

∑
m6=n

(pn +O(N−1/2))(pm +O(N−1/2))
(

1
pK + qK +O(N−1/2)

)

The proof for (4.21) follows analogously.

Lemma 11. √
Np(B̂2p − B̂0

2) p→ 0 (4.22)

and

√
Np(B̂JK2 − B̂2p) p→ 0 (4.23)

and therefore

√
Np(B̂JK2 − B̂0

2) p→ 0

Proof. From Lemma 10, we have

√
Np(B̂2p − B̂0

2)

=

√
Np

4(Np − 1)

K−1∑
k=1

(pk +O(N−1/2))(1− pk +O(N−1/2))

×
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

−

√
Np

4(Np − 1)
∑
m 6=n

(pn +O(N−1/2))(pm +O(N−1/2))
(

1
pK + qK +O(N−1/2)

)



59

= O(N−1/2)→ 0

Similarly,

√
Np(B̂JK2 − B̂2p)

≈

√
λNq

4(Nq − 1)

K−1∑
k=1

(qk +O(N−1/2))(1− qk +O(N−1/2))

×
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

−

√
λNq

4(Nq − 1)
∑
m 6=n

(qn +O(N−1/2))(qm +O(N−1/2))
(

1
pK + qK +O(N−1/2)

)

= O(N−1/2)→ 0

Given Theorem 19, Lemmas 9 and 11 along with Slutzky’s theorem, the next theorem

follows immediately to yield the asymptotic normality of ĴSBA2 .

Theorem 20. Provided that (a+ b)τ (v)Σ(v)(a+ b)(v) > 0,

√
Np((ÂJK2 + B̂JK2)− (A+B))√

(a+ b)τ (v)Σ(v)(a+ b)(v)
L−→ N(0, 1) (4.24)
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Using Corollary 3 and the symmetry of the partial derivatives, the asymptotic normality

of the plug-in Â0
2 + B̂0

2 and hence also ĴSBA2 falls through when p = q. The following

theorem is stated toward finding the asymptotic behavior of ĴSBA2 = ÂJK2 + B̂JK2

when p = q.

Theorem 21. When p = q,

Np
(
Â0

2 + B̂0
2

)
L−→ 1

8 (1 + λ)χ2
K−1

where λ is as in Condition 1. If λ = 1, this becomes

Np
(
Â0

2 + B̂0
2

)
L−→ 1

4χ
2
K−1

Proof. Since p = q, we have v defined as

v = {p1, . . . , pK−1, p1, . . . , pK−1}

Additionally, assume throughout the proof that λ is as in Condition 1. By Taylor

Series Expansion,

Np
(
Â0

2 + B̂0
2

)
= Np(A+B)(v̂)

= Np(A+B)(v) +Np(v̂− v)τ∇(A+B)(v)

+ 1
2
√
Np(v̂− v)τ∇2(A+B)(v)

√
Np(v̂− v) +O(N−1/2)
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Since p = q, (A+ B)(v) = 0 by Theorem 1, and ∇(A+ B)(v) = (a+ b)(v) = 0 by

Corollary 3. Obviously the O(N−1/2) term goes to 0 in probability. Thus the only

term we are left to contend with is

1
2
√
Np(v̂− v)τ∇2((A+B)(v))

√
Np(v̂− v) (4.25)

Using the multivariate normal approximation to the multinomial distribution, we have

√
Np(v̂− v) L−→MVN(0,Σ(v)) (4.26)

where Σ(v) is as in (4.17), except we note that

Σq(v) = λΣq(v) = λ



p1(1− p1) −p1p2 . . . −p1pK−1

−p2p1 p2(1− p2) . . . −p2pK−1

... ... ... ...

−pK−1p1 −pK−1p2 . . . pK−1(1− pK−1)


since p = q. Putting together (4.26) and Slutsky’s Theorem, we have

√
Np(v̂− v)Σ(v)−1/2 L−→MVN(0, I2K−2) := Z2 (4.27)

Noting this fact, we rewrite (4.25) as

1
2
√
Np

(
Σ(v)−1/2(v̂− v)

)τ (
Σ(v)1/2

)τ
∇2((A+B)(v))Σ(v)1/2

√
Np

(
Σ(v)−1/2(v̂− v)

)

Because we know (4.27), this leaves us with finding the asymptotic behavior of

(
Σ(v)1/2

)τ
∇2((A+B)(v))Σ(v)1/2 (4.28)

First, note that
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Σ(v) =

Σp(v) 0

0 Σp(v)


IK−1 0

0 λIK−1


and so we can rewrite (4.28) as

diag{IK−1,
√
λIK−1}

(
Σ(v)1/2

−λ

)τ
∇2((A+B)(v))Σ(v)1/2

−λdiag{IK−1,
√
λIK−1}

We first find the value of

(
Σ(v)1/2

−λ

)τ
∇2((A+B)(v))Σ(v)1/2

−λ (4.29)

Let

∇2(A+B)(v) =

 Θ(v) −Θ(v)

−Θ(v) Θ(v)


(2K−2)×(2K−2)

where, since p = q,

Θ(v) = 1
4



1
p1

+ 1
pK

1
pK

. . .
1
pK

1
pK

1
p2

+ 1
pK

. . .
1
pK

... ... ... ...

1
pK

1
pK

. . .
1

pK−1
+ 1
pK


(K−1)×(K−1)

First, we show that

Σp(v)1/2Θ(v)Σp(v)1/2 = 1
4IK−1
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This is equivalent to showing that

(4Θ(v))−1 = Σp(v)

An analogous proof of this fact is given in the proof of Theorem 17 and is therefore

omitted here. Assuming the veracity of this fact, we have

(
Σ(v)1/2

−λ

)τ
∇2((A+B)(v))Σ(v)1/2

−λ

=

Σp(v)1/2 0

0 Σp(v)1/2


 Θ(v) −Θ(v)

−Θ(v) Θ(v)


Σp(v)1/2 0

0 Σp(v)1/2



=


Σp(v)1/2Θ(v)Σp(v)1/2 −Σp(v)1/2Θ(v)Σp(v)1/2

−Σp(v)1/2Θ(v)Σp(v)1/2 Σp(v)1/2Θ(v)Σp(v)1/2



=



1
4IK−1 −1

4IK−1

−1
4IK−1

1
4IK−1


Hence,

diag{IK−1,
√
λIK−1}

(
Σ(v)1/2

−λ

)τ
∇2((A+B)(v))Σ(v)1/2

−λdiag{IK−1,
√
λIK−1}

=

IK−1 0

0
√
λIK−1




1
4IK−1 −1

4IK−1

−1
4IK−1

1
4IK−1


IK−1 0

0
√
λIK−1
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=


1
4IK−1 −

√
λ

4 IK−1

−
√
λ

4 IK−1
λ

4 IK−1


Therefore

(4.25) = 1
2
(√

NpΣ(v)−1/2(v̂− v)
)τ 1

4


IK−1 −

√
λIK−1

−
√
λIK−1 λIK−1


(√

NpΣ(v)−1/2(v̂− v)
)

=: 1
8
(√

NpΣ(v)−1/2(v̂− v)
)τ

V
(√

NpΣ(v)−1/2(v̂− v)
)

which, using spectral decomposition, is equal to

1
8
(√

NpΣ(v)−1/2(v̂− v)
)τ

QτΛQ
(√

NpΣ(v)−1/2(v̂− v)
)

where Λ = diag{ζ1, . . . , ζ2K−2} with ζi being the eigenvalues of V; and Q a (2K −

2)× (2K − 2) square matrix with columns that are the eigenvectors of V such that

QτQ = I2K−2. By the Continuous Mapping Theorem, this converges in law to

1
8(QZ2)τΛ(QZ2) =: 1

8(W)τΛ(W) = 1
8

(2K−2∑
i=1

ζiW2
i

)

Note that since Q is a constant, we have

E(W) = E(QZ2) = QE(Z2) = 0

and

V ar(W) = V ar(QZ2) = QτV ar(Z2)Q = QτI2K−2Q = I2K−2
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and so W also hast distribution standard multivariate normal. Hence for each i,

Wi ∼ N(0, 1). Therefore we only need to find ζi, the eigenvalues of V. This is done

by solving the following equation:

0 = det{V− ζI2K−2} = det


(1− ζ)IK−1 −

√
λIK−1

−
√
λIK−1 (λ− ζ) IK−1



= det {(1− ζ) (λ− ζ) IK−1 − λIK−1}

= ((1− ζ) (λ− ζ)− λ)K−1 det (IK−1)

Hence we have

0 = (ζ(ζ − (λ+ 1)))K−1

which means that ζ = 0 or ζ = 1 + λ for K − 1 times. Thus

1
8(QZ2)τΛ(QZ2) = 1

8

(2K−2∑
i=1

ζiW2
i

)
∼ 1

8 (1 + λ)χ2
K−1

Lemma 12. When p = q,

Np(ÂJK2 − Â0
2) p→ −1

4(1 + λ)
K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m 6=n

pnpm
pK


where λ is as in Condition 1. If λ = 1, this becomes

−1
2

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m6=n

pnpm
pK
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Proof. Using Lemma 8,

Np(ÂJK2 − Â0
2) = Np

(
ÂJK2p − Â2p + ÂJK2q − Â2q

)

= − Np

4(Np − 1)

K−1∑
k=1

(pk +O(N−1/2))(1− pk +O(N−1/2))

×
(

1
pK +O(N−1/2) + 1

pk +O(N−1/2)

)

+ Np

4(Np − 1)
∑
m6=n

(pn +O(N−1/2))(pm +O(N−1/2))
(

1
pK +O(N−1/2)

)

− λNq

4(Nq − 1)

K−1∑
k=1

(qk +O(N−1/2))(1− qk +O(N−1/2))

×
(

1
qK +O(N−1/2) + 1

qk +O(N−1/2)

)

+ λNq

4(Nq − 1)
∑
m6=n

(qn +O(N−1/2))(qm +O(N−1/2))
(

1
qK +O(N−1/2)

)

→ −1
4

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
+ 1

4
∑
m 6=n

pnpm
pK

− λ

4

K−1∑
k=1

qk(1− qk)
(

1
qK

+ 1
qk

)
+ λ

4
∑
m 6=n

qnqm
qK

Since p = q, this is equivalent to
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− 1
4

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
+ 1

4
∑
m 6=n

pnpm
pK

− λ

4

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
+ λ

4
∑
m 6=n

pnpm
pK

= −1
4(1 + λ)

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m 6=n

pnpm
pK



Lemma 13. When p = q,

Np(B̂JK2 − B̂0
2) p−→ 1

8(1 + λ)
K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m 6=n

pnpm
pK


where λ is as in Condition 1. If λ = 1, this becomes

1
4

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m 6=n

pnpm
pK



Proof. Observe that

B̂JK2 = B̂2p −
Nq − 1
Nq

Nq∑
j=1

(
B̂2p(−j) − B̂2p

)

= B̂0
2 −

Np − 1
Np

Np∑
j=1

(
B̂

(−i)
2 − B̂0

2

)
− Nq − 1

Nq

Nq∑
j=1

(
B̂2p(−j) − B̂2p

)
Then using this and Lemma 10, we have

Np(B̂JK2 − B̂0
2)
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≈ Np

4(Np − 1)

K−1∑
k=1

(pk +O(N−1/2))(1− pk +O(N−1/2))

×
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

− Np

4(Np − 1)
∑
m 6=n

(pn +O(N−1/2))(pm +O(N−1/2))
(

1
pK + qK +O(N−1/2)

)

+ λNq

4(Nq − 1)

K−1∑
k=1

(qk +O(N−1/2))(1− qk +O(N−1/2))

×
(

1
pK + qK +O(N−1/2) + 1

pk + qk +O(N−1/2)

)

− λNq

4(Nq − 1)
∑
m6=n

(qn +O(N−1/2))(qm +O(N−1/2))
(

1
pK + qK +O(N−1/2)

)

p−→ 1
4

K−1∑
k=1

pk(1− pk)
(

1
pK + qK

+ 1
pk + qk

)
− 1

4
∑
m6=n

pnpm

(
1

pK + qK

)

+ λ

4

K−1∑
k=1

qk(1− qk)
(

1
pK + qK

+ 1
pk + qk

)
− λ

4
∑
m 6=n

qnqm

(
1

pK + qK

)

Since p = q, this is equivalent to
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1
8

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m6=n

pnpm
pK



+ λ

8

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m 6=n

pnpm
pK



= 1
8(1 + λ)

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m6=n

pnpm
pK



The next Corollary follows directly from Lemmas 12 and 13.

Corollary 5. When p = q,

Np((ÂJK2 + B̂JK2)− (Â0
2 + B̂0

2))

p−→ −1
8(1 + λ)

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m6=n

pnpm
pK


where λ is as in Condition 1. If λ = 1, this becomes

−1
4

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m6=n

pnpm
pK



Using Slutsky’s Theorem combined with Theorem 21 and Corollary 5, we obtain the

following conclusion.

Theorem 22. When p = q,
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Np(ÂJK2 + B̂JK2) + 1
8(1 + λ)

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m 6=n

pnpm
pK



L−→ 1
8 (1 + λ)χ2

K−1

where λ is as in Condition 1. If λ = 1, this becomes

Np(ÂJK2 + B̂JK2) + 1
4

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m 6=n

pnpm
pK



L−→ 1
4χ

2
K−1



CHAPTER 5: HYPOTHESIS TESTING AND CONFIDENCE INTERVALS

Using the asymptotic distributions noted in Theorems 18 and 22, a hypothesis test of

H0 : p = q can easily be derived.

5.1 One-Sample

For the one-sample situation, we have the test statistic

T1 = 8N(ÂJK1 + B̂JK1) +
K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m 6=n

pnpm
pK

 (5.1)

where {p1, . . . , pK} is the known distribution we are testing against. T1 is distributed

χ2
K−1 under the null hypothesis. We reject when T1 > χ2

K−1,α.

When p and q are not equal, confidence intervals can be derived using the asymptotic

standard normal approximations noted in Theorem 16. Therefore in the one-sample

context, the (1− α)% confidence interval for A+B is

ÂJK1 + B̂JK1 ± zα/2

√
(a+ b)τ (q̂)Σ(q̂)(a+ b)(q̂)

N

5.2 Two-Sample

In the two-sample situation, we need to estimate the constant

K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m 6=n

pnpm
pK


for the test statistic because we do not have a known distribution. Toward that end,

let
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r̂k = (Xk + Yk) + I[(Xk + Yk) = 0]
Np +Nq

for 1 ≤ k ≤ K, be the estimates of the probabilities of the mixed distribution between

p and q.

We use these estimates rk for the test statistic

T2 = 8
1 + λ

Np(ÂJK2 + B̂JK2) +
K−1∑
k=1

r̂k(1− r̂k)
( 1
r̂K

+ 1
r̂k

)
−
∑
m6=n

r̂nr̂m
r̂K

 (5.2)

Under the null hypothesis of H0 : p = q, for all 1 ≤ k ≤ K

r̂k → pk = qk

which means that T2 asymptotically distributed χ2
K−1. If λ = 1, this becomes

T2 = 4Np(ÂJK2 + B̂JK2) +
K−1∑
k=1

r̂k(1− r̂k)
( 1
r̂K

+ 1
r̂k

)
−
∑
m6=n

r̂nr̂m
r̂K


We reject when T2 > χ2

K−1,α.

When p and q are not equal, confidence intervals can be derived using the asymptotic

standard normal approximations noted in Theorem 20. Thus, in the two-sample

context, the (1− α)% confidence interval for A+B is

ÂJK2 + B̂JK2 ± zα/2

√√√√(a+ b)τ (v̂)Σ(v̂)(a+ b)(v̂)
Np



CHAPTER 6: IF K IS UNKNOWN

The situation which may arise is when the number of categories K is known to be

finite, but the value itself is not known. The jackknife estimators presented here

are not dependent on K being known, but for hypothesis testing it is necessary to

determine the degrees of freedom for the critical value (χ2
K−1). In general, estimating

K with the observed number of categories is not very accurate. Some alternatives

have been given in [24], and will be described briefly here so that they may be used in

the hypothesis testing.

Let Kobs = ∑
k I[Yk > 0] and Mr = ∑

k I[Yk = r]. The latest version of the estimator

proposed by Chao is

K̂Chao1a =



Kobs +
(
N − 1
N

)
M2

1
2M2

if M2 > 0

Kobs +
(
N − 1
N

)
M1(M1 − 1)

2 if M2 = 0

(6.1)

The paper [24] suggests three other estimators in Turing’s perspective that will be

given here as options to use when K is unknown. Let ζν = ∑K
k=1 pk(1− pk)ν for any

integer ν. It can be verified that

Zν =
∑
k

p̂k ν∏
j=1

(
1− Yk − 1

N − j

)
is a uniformly minimum variance unbiased estimator (UMVUE) of ζν for ν, 1 ≤ ν ≤

N − 1. Let νN be such that



74

νN = N −max{Yk; k ≥ 1}

Then

K ≈ Kobs + ζN−1

1− ζνN
/ζνN−1

(6.2)

and that

It can be easily verified that ZN−1 = M1/N = T , where T is Turing’s formula. Replace

ζN−1 by ZN−1 = T , and ζνN
/ζνN−1 by ZνN

/ZνN−1 into (6.2) to give the base estimator

K̂0 = Kobs + T

1− ZνN
/ZνN−1

(6.3)

The next estimator is a stretched version of the base estimator. Let wN ∈ (0, 1) be a

user-chosen parameter, here demonstrated in the form

wN = T β (6.4)

where T is Turing’s formula. Then the stretched estimator is defined as

K̂1 = Kobs + T(
1− ZνN

ZνN−1

)(
1− (1− wN)νN

N

) (6.5)

According to [24], the stretched estimator has an improved performance over the base

estimator when the distribution is not uniform, but it over-estimates K when there is

uniformity. To adjust for this possibility, let

uN = |(N − 1) ln(Z1)− ln(ZN−1)|

It can be shown that uN is closer to 0 under a uniform distribution. Let
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β[ = min{uN , β}

and

w[N = T β
[

Then the suppressed estimator is defined as

K̂2 = Kobs + T(
1− ZνN

ZνN−1

)(
1− (1− w[N)νN

N

) (6.6)

[24] states that K̂0, K̂1, and K̂2 are all consistent estimators for K. These estimators,

along with Chao’s estimator, which performs nearly identically to the base estimator

K0, will be used in the next chapter’s simulations.



CHAPTER 7: SIMULATION STUDIES

The simulations are organized as follows. The scenarios considered are for K = 30

and K = 100, across three distributions: uniform, triangle, and power decay. There

will be one section for each of these six distributions. In each section, first graphs will

be shown of sample size N vs the average error for the plug-in estimator in red, and

the average error for the jackknifed estimator proposed in this paper in blue. This is

intended to exemplify the improved bias correction of the jackknife estimator.

Then, tables of the outcomes for different sample sizes, of testing the hypothesis

H0 : p = q will be shown, which include both when the null hypothesis is true and

when it is not. When the null hypothesis is true, the rates of rejection by sample size

are given on the left side of the following tables. On the right side of the tables, the

results are given for when p 6= q. T1 and T2 from (5.1) and (5.2), respectively, will be

used as the test statistics for the jackknife estimator test. This is then compared with

the corresponding hypothesis test that can be performed with the plug-in estimator.

For the two-sample case, results for both the same sample size and different sample

sizes will be given.

Additionally, results will be given for the possible scenario that K is unknown, using

Kobs, K̂Chao1a, K̂0, K̂1, K̂2 from (6.1), (6.3), (6.5), (6.6) given in the previous chapter.

Where necessary, the β value from (6.4) used here is 1/3.
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7.1 Uniform Distribution: K=30

Suppose that K = 30 and that we have two equal uniform distributions, p = q =

{1/30, . . . 1/30}. The actual value of Jensen-Shannon Divergence in this case is

obviously 0. The error tables are as follows.

Figure 7.1: One-Sample
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Figure 7.2: Two-Sample

Now suppose for q, that we subtract 1/200 from {q1, . . . , q15}, and add 1/200 to

{q16, . . . , q30}. This adjusted q distribution juxtaposed on the uniform p looks some-

thing like this:
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Figure 7.3

Here, between uniform p and this adjusted q given in Figure 7.3, the actual value of

Jensen-Shannon Divergence is 0.002831143. For the alternative hypothesis when H0 is

false, q is given by Figure 7.3.

Figure 7.4: One-Sample, K known
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Figure 7.5: One-Sample, Kobs

Figure 7.6: One-Sample, K̂Chao1a
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Figure 7.7: One-Sample, K̂0

Figure 7.8: One-Sample, K̂1
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Figure 7.9: One-Sample, K̂2

Figure 7.10: Two-Sample, K known
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Figure 7.11: Two-Sample, Kobs

Figure 7.12: Two-Sample, K̂Chao1
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Figure 7.13: Two-Sample, K̂0

Figure 7.14: Two-Sample, K̂1
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Figure 7.15: Two-Sample, K̂2

Figure 7.16: Two Sample Sizes, K known
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Figure 7.17: Two Sample Sizes, Kobs

Figure 7.18: Two Sample Sizes, K̂Chao1
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Figure 7.19: Two Sample Sizes, K̂0

Figure 7.20: Two Sample Sizes, K̂1
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Figure 7.21: Two Sample Sizes, K̂2

Clearly the jackknife estimator test converges to the size of the test α = 0.05 more

quickly than the plug-in estimator. And when the plug-in estimator test converges to

α = 0.05, the powers of the two tests are approximately equal.
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7.2 Uniform Distribution: K=100

Next, suppose that K = 100 and we have two equal uniform distributions, p = q =

{1/100, . . . , 1/100}. Again we have the actual value of Jensen-Shannon Divergence at 0.

The error tables are as follows, plug-in estimator in red and jackknife estimator in blue.

Figure 7.22: One-Sample
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Figure 7.23: Two-Sample

Now suppose for q, that we subtract 1/600 from {q1, . . . , q50}, and add 1/600 to

{q51, . . . , q100}. This adjusted q distribution juxtaposed on the uniform p looks some-

thing like this:
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Figure 7.24

Here, between uniform p and this adjusted q given in Figure 7.24, the actual value of

Jensen-Shannon Divergence is 0.003500705. For the alternative hypothesis when H0 is

false, q is given by 7.24.

Figure 7.25: One-Sample, K known
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Figure 7.26: One-Sample, Kobs

Figure 7.27: One-Sample, K̂Chao1a



93

Figure 7.28: One-Sample, K̂0

Figure 7.29: One-Sample, K̂1
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Figure 7.30: One-Sample, K̂2

Figure 7.31: Two-Sample, K known
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Figure 7.32: Two-Sample, Kobs

Figure 7.33: Two-Sample, K̂Chao1a
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Figure 7.34: Two-Sample, K̂0

Figure 7.35: Two-Sample, K̂1
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Figure 7.36: Two-Sample, K̂2

Figure 7.37: Two Sample Sizes, K known
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Figure 7.38: Two Sample Sizes, Kobs

Figure 7.39: Two Sample Sizes, K̂Chao1
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Figure 7.40: Two Sample Sizes, K̂0

Figure 7.41: Two Sample Sizes, K̂1
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Figure 7.42: Two Sample Sizes, K̂2

7.3 Triangle Distribution: K=30

Next, suppose that K = 30 and we have two equal triangle distributions, p = q =

{1/240, 2/240, . . . , 15/240, 15/240, . . . , 2/240, 1/240}. Again we have the actual value

of Jensen-Shannon Divergence at 0. The error tables are as follows, plug-in estimator

in red and jackknife estimator in blue.
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Figure 7.43: One-Sample

Figure 7.44: Two-Sample

Now suppose for q, that we adjust q to be {1/240−1/1000, 2/240−2/1000, . . . , 15/240−
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15/1000, 15/240 + 15/1000, . . . , 2/240 + 2/1000, 1/240 + 1/1000}. This adjusted q

distribution juxtaposed on the original triangle p is demonstrated by the following:

Figure 7.45

Here, the value of Jensen-Shannon divergence between these two distributions given

in Figure 7.45 is 0.007324147. For the alternative hypothesis when H0 is false, q is

given by Figure 7.45.

Figure 7.46: One-Sample, K known
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Figure 7.47: One-Sample, Kobs

Figure 7.48: One-Sample, K̂Chao1a
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Figure 7.49: One-Sample, K̂0

Figure 7.50: One-Sample, K̂1
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Figure 7.51: One-Sample, K̂2

Figure 7.52: Two-Sample, K known
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Figure 7.53: Two-Sample, Kobs

Figure 7.54: Two-Sample, K̂Chao1a
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Figure 7.55: Two-Sample, K̂0

Figure 7.56: Two-Sample, K̂1
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Figure 7.57: Two-Sample, K̂2

Figure 7.58: Two Sample Sizes, K known
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Figure 7.59: Two Sample Sizes, Kobs

Figure 7.60: Two Sample Sizes, K̂Chao1a
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Figure 7.61: Two Sample Sizes, K̂0

Figure 7.62: Two Sample Sizes, K̂1
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Figure 7.63: Two Sample Sizes, K̂2

7.4 Triangle Distribution: K=100

Now, suppose that K = 100 and that we have two equal triangle distributions,

p = q = {1/2550, 2/2550, . . . , 50/2550, 50/2550, . . . , 2/2550, 1/2550}. The actual

value of Jensen-Shannon Divergence is 0. The error tables are as follows, plug-in

estimator in red and jackknife estimator in blue.
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Figure 7.64: One-Sample

Figure 7.65: Two-Sample

Now suppose for q, that we adjust q to be {1/2550−1/5000, 2/2550−2/5000, . . . , 50/2550−
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50/5000, 50/2550 + 50/5000, . . . , 2/2550 + 2/5000, 1/2550 + 1/5000}. This adjusted q

distribution juxtaposed on the original triangle p is demonstarted by the following:

Figure 7.66

Here, the value of Jensen-Shannon divergence between these two distributions given

in Figure 7.66 is 0.03531168. For the alternative hypothesis when H0 is false, q is

given by Figure 7.66.
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Figure 7.67: One-Sample, K known

Figure 7.68: One-Sample, Kobs
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Figure 7.69: One-Sample, K̂Chao1a

Figure 7.70: One-Sample, K̂0
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Figure 7.71: One-Sample, K̂1

Figure 7.72: One-Sample, K̂2
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Figure 7.73: Two-Sample, K known

Figure 7.74: Two-Sample, Kobs
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Figure 7.75: Two-Sample, K̂Chao1a

Figure 7.76: Two-Sample, K̂0
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Figure 7.77: Two-Sample, K̂1

Figure 7.78: Two-Sample, K̂2
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Figure 7.79: Two Sample Sizes, K known

Figure 7.80: Two Sample Sizes, Kobs
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Figure 7.81: Two Sample Sizes, K̂Chao1a

Figure 7.82: Two Sample Sizes, K̂0
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Figure 7.83: Two Sample Sizes, K̂1

Figure 7.84: Two Sample Sizes, K̂2

7.5 Power Decay Distribution: K=30

Next, suppose that K = 30 and we have two equal power decay distributions,

p = q = {c1/12, c1/22, c1/32, . . . , c1/302}, where c1 is the adjusting constant to

ensure the distribution sums to 1. Again we have the actual value of Jensen-Shannon

Divergence at 0. The error tables are as follows, plug-in estimator in red and jackknife
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estimator in blue.

Figure 7.85: One-Sample
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Figure 7.86: Two-Sample

Now suppose for q, that we adjust p to be {c2/12.2, c2/22.2, c2/32.2, . . . , c2/302.2}, where

c2 is correspondingly adjusted to make the probabilities sum to 1. This adjusted q

distribution juxtaposed on the original triangle p is demonstrated by the following:



125

Figure 7.87

Here, the value of Jensen-Shannon divergence between these two distributions given

in Figure 7.87 is 0.002538236. For the alternative hypothesis when H0 is false, q is

given by Figure 7.87.

Figure 7.88: One-Sample, K known
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Figure 7.89: One-Sample, Kobs

Figure 7.90: One-Sample, K̂Chao1a
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Figure 7.91: One-Sample, K̂0

Figure 7.92: One-Sample, K̂1
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Figure 7.93: One-Sample, K̂2

Figure 7.94: Two-Sample, K known
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Figure 7.95: Two-Sample, Kobs

Figure 7.96: Two-Sample, K̂Chao1a
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Figure 7.97: Two-Sample, K̂0

Figure 7.98: Two-Sample, K̂1
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Figure 7.99: Two-Sample, K̂2

Figure 7.100: Two Sample Sizes, K known
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Figure 7.101: Two Sample Sizes, Kobs

Figure 7.102: Two Sample Sizes, K̂Chao1a
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Figure 7.103: Two Sample Sizes, K̂0

Figure 7.104: Two Sample Sizes, K̂1
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Figure 7.105: Two Sample Sizes, K̂2

7.6 Power Decay Distribution: K=100

Next, suppose that K = 100 and we have two equal power decay distributions,

p = q = {c3/12, c3/22, c3/32, . . . , c3/1002}, where c3 is the adjusting constant to en-

sure the distribution sums to 1. Again we have the actual value of Jensen-Shannon

Divergence at 0. The error tables are as follows, plug-in estimator in red and jackknife

estimator in blue.
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Figure 7.106: One-Sample

Figure 7.107: Two-Sample

Now suppose for q, that we adjust p to be {c4/12.2, c4/22.2, c4/32.2, . . . , c4/1002.2},
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where c4 is correspondingly adjusted to make the probabilities sum to 1. This adjusted

q distribution juxtaposed on the original triangle p is demonstrated by the following:

Figure 7.108

Here, between uniform p and this adjusted q given in Figure 7.108, the actual value

of Jensen-Shannon Divergence is 0.00310155. For the alternative hypothesis when H0

is false, q is given in Figure 7.108.
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Figure 7.109: One-Sample, K known
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Figure 7.110: One-Sample, Kobs
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Figure 7.111: One-Sample, K̂Chao1a
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Figure 7.112: One-Sample, K̂0
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Figure 7.113: One-Sample, K̂1
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Figure 7.114: One-Sample, K̂2
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Figure 7.115: Two-Sample, K known
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Figure 7.116: Two-Sample, Kobs
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Figure 7.117: Two-Sample, K̂Chao1a
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Figure 7.118: Two-Sample, K̂0
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Figure 7.119: Two-Sample, K̂1
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Figure 7.120: Two-Sample, K̂2
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Figure 7.121: Two Sample Sizes, K known
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Figure 7.122: Two Sample Sizes, Kobs
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Figure 7.123: Two Sample Sizes, K̂Chao1a
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Figure 7.124: Two Sample Sizes, K̂0
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Figure 7.125: Two Sample Sizes, K̂1
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Figure 7.126: Two Sample Sizes, K̂2



CHAPTER 8: EXAMPLES WITH REAL DATA

8.1 ONE-SAMPLE

The demographics of the immigrants to the U.S. are dynamic, changing from year to

year. A goodness of fit test of one time frame against an earlier time frame can be

used to test whether or not the changes over time are statistically significant. Here,

suppose we have U.S. immigration population data by race from the year 2011, and

can obtain a sample from the year 2016 of size N = 1000. The population data from

2011 is as follows:

Figure 8.1

To conduct the hypothesis test, we assume that the year 2011 distribution proportions

are the “known” distribution. Using this and the sample from 2016, we obtain

ÂJK1 + B̂JK1 = 0.003043507. Since this is a one-sample situation, we use T1 from

(5.1), which yields
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T1 = 8N(ÂJK1 + B̂JK1) +
K−1∑
k=1

pk(1− pk)
(

1
pK

+ 1
pk

)
−
∑
m 6=n

pnpm
pK



= 30.34806

This is clearly greater than the critical value χ2
K−1,0.01 = 16.81189383, with K = 7,

and the p-value is 0.0000337494. Therefore we can say with 99% confidence that there

is a statistically significant change in race demographics in the U.S. from the year

2011 to 2016.

The 2016 population data is eventually obtained, and is given in the following table:

Figure 8.2

The true Jensen-Shannon Divergence between the two populations is 0.0014745343,

and so clearly the test correctly rejected the null hypothesis.



157

8.2 TWO-SAMPLE

Every country in the world has its own unique partition of individuals which subscribe

to particular religions (or lack thereof), which can be conceived of as a multinomial

distribution. Estimating Jensen-Shannon Divergence could be applicable in this

context, measuring the “difference” or “distance” between two of these distributions

for two different countries. With this in mind, two samples of size Np = Nq = 500

were obtained from the religious demographics of Australia and Canada during the

year 2011. The possible categories of religion that the individuals sampled could

choose from are:

Figure 8.3

To test whether the religious make-up of the two countries is indeed different, a

hypothesis test is conducted using the two aforementioned samples, which yields

ÂJK2 + B̂JK2 = 0.04388825. Using T2 from (5.2), with λ = Np/Nq = 1, and noting

that K = 26, we have
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T2 = 4Np(ÂJK2 + B̂JK2) +
K−1∑
k=1

r̂k(1− r̂k)
( 1
r̂K

+ 1
r̂k

)
−
∑
m6=n

r̂nr̂m
r̂K



= 112.7308

Comparing this to the critical value of χ2
K−1,0.01 = 44.31410490, and noting that the

p-value is 0, clearly results in a rejected hypothesis. Therefore, we can say with

99% confidence that the two populations of Australia and Canada have different

distributions over types of religion.

The population data from which the samples came is displayed in the following table:
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Figure 8.4

The true Jensen-Shannon Divergence for this population is 0.03423257. Therefore the

test correctly rejected the null hypothesis.
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APPENDIX A: ADDITIONAL PROOFS

Lemma 14. Let v and v̂ be defined as in (2.7) and (2.8), respectively. Additionally,

note that we can write

A(v) = 1
2

(
K−1∑
k=1

pk ln(pk) +
(

1−
K−1∑
k=1

pk

)
ln
(

1−
K−1∑
k=1

pk

))

+ 1
2

(
K−1∑
k=1

qk ln(qk) +
(

1−
K−1∑
k=1

qk

)
ln
(

1−
K−1∑
k=1

qk

))

and

B(v) = −
K−1∑
k=1

pk + qk
2 ln

(
pk + qk

2

)

−

(
1−∑K−1

k=1 pk
)

+
(
1−∑K−1

k=1 qk
)

2 ln

(
1−∑K−1

k=1 pk
)

+
(
1−∑K−1

k=1 qk
)

2


Then the first and second partial derivatives for each pk and qk are

∂

∂pk
A(v) = 1

2 ln
(
pk
pK

)
(A.1)

∂

∂qk
A(v) = 1

2 ln
(
qk
qK

)
(A.2)

∂

∂pk
B(v) = ∂

∂qk
B(v) = −1

2 ln
(
pk + qk
pK + qK

)
(A.3)

and
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∂2

∂p2
k

A(v) = 1
2

(
1
pk

+ 1
pK

)
(A.4)

∂2

∂q2
k

A(v) = 1
2

(
1
qk

+ 1
qK

)
(A.5)

∂2

∂pki
∂pkj

A(v) = 1
2pK

(A.6)

∂2

∂qki
∂qkj

A(v) = 1
2qK

(A.7)

∂2

pkqk
B(v) = ∂2

∂p2
k

B(v) = ∂2

∂q2
k

B(v) = −1
2

(
1

pk + qk
+ 1
pK + qK

)
(A.8)

∂2

∂pki
∂qkj

B(v) = ∂2

∂pki
∂pkj

B(v) = ∂2

∂qki
∂qkj

B(v) = − 1
2(pK + qK) (A.9)

Proof. For each k, 1 ≤ k ≤ K − 1,

∂

∂pk
A(v) = 1

2

(
1 + ln(pk) +

(
−1− ln

(
1−

K−1∑
k=1

pk

)))

= 1
2 (ln(pk)− ln(pK))

and

∂

∂pk
B(v) = −1

2

(
1 + ln

(
pk + qk

2

))
− 1

2

(
1 + ln

(
1−

∑K−1
k=1 pk +∑K−1

k=1 qk
2

))

= −1
2

(
ln
(
pk + qk

2

)
− ln

(
1−

∑K−1
k=1 pk +∑K−1

k=1 qk
2

))



162

= −1
2

(
ln
(
pk + qk

2

)
− ln

(
pK + qK

2

))

The partials with respect to qk are obtained similarly by symmetry. The second

derivatives follow immediately from the first derivatives.

Lemma 15.

E

(
K−1∑
k=1

(p̂k − pk)
)2

=
K−1∑
k=1

pk(1− pk)
Np

−
∑
j 6=k

pjpk
Np

Proof.

E

(
K−1∑
k=1

(p̂k − pk)
)2

= V ar

(
K−1∑
k=1

p̂k

)

=
K−1∑
k=1

V ar(p̂k) +
∑
j 6=k

Cov(pj, pk)

=
K−1∑
k=1

pk(1− pk)
Np

−
∑
j 6=k

pjpk
Np

The following lemma comes from [9] and is used only for reference.

Lemma 16. Let G and H be arbitrary nonsingular matrices with H having rank one,

then

(G + H)−1 = G−1 − 1
1 + g

G−1HG−1 (A.10)

where g = tr{HG−1}.
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