
NON-PARAMETRIC ESTIMATION OF INFORMATION-THEORETIC
QUANTITIES IN ENTROPIC PERSPECTIVE

by

Jialin Zhang

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial ful�llment of the requirements
for the degree of Doctor of Philosophy in

Applied Mathematics

Charlotte

2019

Approved by:

Dr. Zhiyi Zhang

Dr. Jiancheng Jiang

Dr. Jun Song

Dr. Arindam Mukherjee



ii

c©2019
Jialin Zhang

ALL RIGHTS RESERVED



iii

ABSTRACT

JIALIN ZHANG. NON-PARAMETRIC ESTIMATION OF
INFORMATION-THEORETIC QUANTITIES IN ENTROPIC PERSPECTIVE.

(Under the direction of DR. ZHIYI ZHANG)

Introduced by Shannon [1], mutual information is a fundamental brick of informa-

tion theory for its essential role in measuring association on non-ordinal alphabets.

Mutual information being zero is a golden property as it indicates a probabilistic

independent between the distributions. This article o�ers asymptotic chi-square dis-

tributions for the plug-in estimator and a non-parametric estimator of mutual infor-

mation. The established distributions allow new tests of independence in entropic

perspective.
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CHAPTER 1: Introduction

1.1 Challenges in Big Data

Recent advancement in information technology increases the capability to obtain,

exchange, and store data, hence the term big data. In analyzing these data, at least

two fundamental issues immediately present themselves: 1) high dimensionality, and

2) discrete and non-ordinal nature.

Speci�cally, the vastly complex data space suggests that a data observation can

only be appropriately registered in a very high-dimensional space, so much so that

the dimensionality could essentially be in�nite. On such spaces, the usual statistical

methodologies quickly run into estimation and fundamental conceptual problems.

Besides, the generality of the data space suggests that possible data values may

not have an inherent order among themselves, for example, di�erent gene types in

the human genome, di�erent words in a text, and various species in an ecological

population.

The absence of inherent order immediately challenges the concept of a random

variable. Namely, random variable, a function from the sample space to the real space,

does not naturally exist on non-ordinal data spaces. Consequently, many familiar

and fundamental concepts of Statistics and Probability no longer exist, for example,
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moments, correlation, tail, characteristic function. As a result, to characterize the

probability distributions on non-ordinal alphabets, inter-disciplinary research between

Statistics, Probability, and Information Theory is needed.

1.2 Entropy, Mutual Information, and their Estimation

In 1948, Shannon introduced the concept of entropy and mutual information in his

landmark paper [1], where he de�ned Shannon's entropy as:

H =
∑
k

pk ln pk.

Compared to classical concepts (e.g., moments), entropy is calculated by probabili-

ties (or ordered probabilities), and it does not rely on metric information, and thus it

could exist in non-ordinal alphabets. Without using any metric information, entropy

describes the level of dispersion in the probability distribution. In general, the larger

the entropy, the heavier the dispersion. For example, a probability distribution with

an e�ective cardinality K = 4 can produce a maximum possible entropy of ln 4, and

the maximum is achieved when the population distribution is uniform. And thus

entropy can be considered as the moments on non-ordinal alphabets. Based on en-

tropy, various information-theoretic quantities were proposed, for example, mutual

information, Kullback-Leibler divergence, and entropic moments. These quantities

characterize the information from a non-ordinal perspective, and they could be useful

under much broader conditions. For example, mutual information could capture the
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associations among both non-ordinal and ordinal random elements (or random vari-

ables) no matter if the relationship between the ordinal random variables is linear or

nonlinear. For another example, entropic moments could serve as a characterization

of distributions in place of characteristic functions in classic Statistics, and entropic

moments exist in both non-ordinal and ordinal spaces where the characteristic func-

tions only exist in ordinal spaces.

Most of the existing information-theoretic quantities are linear functions of entropy.

As a result, the estimation of entropy plays a central role in practice in Information

Theory. However, the estimation of entropy is technically di�cult problems due to

the curse of �High Dimensionality� and �Discrete and Non-ordinal Nature�. For about

50 years since [1], advances in this area have been slow to come. Naively, people have

been using the plug-in estimator (or the maximum likelihood estimator)

Ĥ =
∑

p̂k ln p̂k.

When the K is �nite, [2] showed that the bias of Ĥ is

E(Ĥ)−H = −K − 1

2n
+

1

12n2

(
1−

K∑
k=1

1

pk

)
+O

(
n−3
)
.

Plentiful estimators tried to add bias corrections to the plug-in estimators when

K is �nite. Such attempts include Miller-Madow (1955) estimator (ĤMM) and the
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Jackknife (1977) estimator (ĤJK). let K̂ be the number of categories observed in the

sample, and

ĤMM = Ĥ +
K̂ − 1

2n
.

It can be shown that, for �nite K, the bias of ĤMM is

E(ĤMM)−H =
1

12n2

(
1−

K∑
k=1

1

pk

)
+O

(
n−3
)
.

ĤJK is calculated in three steps:

1. for each i ∈ {1, 2, . . . , n} construct Ĥ(i), which is a plug-in estimator based on

a sub-sample of size n− 1 obtained by leaving the ith observation out;

2. obtain Ĥ(i) = nĤ − (n− 1)Ĥ(i) for i = 1, · · · , n; and then

3. compute the jackknife estimator

ĤJK =

∑n
i=1 Ĥ(i)

n
. (1.2.1)

Equivalently, (1.2.1) can be written as

ĤJK = nĤ − (n− 1)

∑n
i=1 Ĥ

(i)

n
.

The jackknife estimator of entropy was �rst described by [3]. When K < ∞, it can
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be shown that the bias of ĤJK is

E
(
ĤJK

)
−H = O

(
n−2
)
.

ĤMM and ĤJK reduce the rate of bias to a higher order power-decaying. While

researchers were seeking for unbiased estimators, [4] proved that for �nite K, an

unbiased estimator for entropy does not exist. As a result, it is only possible to reduce

the bias to a smaller extent. Inspired by Turing's formula, [5] showed that Shannon's

entropy is algebraically equivalent to a function of entropic moments (ζv), which the

uniformly minimum-variance unbiased estimators (UMVUEs) were established in [6]

for the �rst (n− 1) moments, ζ1, · · · , ζn−1. Based on these UMVUEs, Ĥz, the state-

of-the-art entropy estimator, is developed as

Ĥz(·) =
n−1∑
v=1

1

v

n1+v[n− (1 + v)]!

n!

∑
k

[
p̂k

v−1∏
j=0

(
1− p̂k −

j

n

)]
. (1.2.2)

The bias of Ĥz is

E(Ĥz)−H = O
(

(1− p∧)n

n

)
,

where p∧ = min{pk > 0}. When K is �nite, Ĥz reduces the bias of entropy estimation

from power decaying to exponentially decaying. Compared to Ĥ and ĤMM , of which

the biases are in�nity with a �nite sample, Ĥz has an exponentially decaying bias

under the same condition.
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For �nite K, the asymptotic normalities for Ĥ, ĤMM , and ĤJK are straight forward,

and the asymptotic normality for Ĥz was provided in [7]. When K is countable

in�nite, asymptotic distributions with certain conditions for Ĥ, ĤMM , ĤJK , and Ĥz are

established recently in [8], [9], and [10]. Additional discussions on entropy estimation

could also be found in [11] and [12].

The progress in entropy estimation allows further investigations on the estimation

of mutual information. In Chapter 2, two mutual information estimators and their

asymptotic properties are discussed.



CHAPTER 2: Asymptotic Distributions for Mutual Information Estimators

Let X = {xi; i = 1, · · · , K1} and Y = {yj; j = 1, · · · , K2} be two �nite alphabets

with cardinalities K1 <∞ and K2 <∞ respectively. Consider the Cartesian product

X × Y with a joint probability distribution p = {pi,j}. Let the two marginal distri-

butions be respectively denoted by px = {pi,·} and py = {p·,j} where pi,· =
∑

j pi,j and

p·,j =
∑

i pi,j. Assume that pi,· > 0 and p·,j > 0 for all 1 ≤ i ≤ K1 and 1 ≤ j ≤ K2,

and that there are K =
∑

i,j 1[pi,j > 0] non-zero entries in {pi,j}. We re-enumerate

these K positive probabilities in one sequence and denote it as {pk; k = 1, · · · , K}.

Shannon's entropies for X , Y , and X × Y , and mutual information between X

and Y are de�ned as

H(X) = −
∑

i pi,· ln pi,·,

H(Y ) = −
∑

j p·,j ln p·,j,

H(X, Y ) = −
∑

i

∑
j pi,j ln pi,j = −

∑K
k=1 pk ln pk,

MI(X, Y ) = H(X) +H(Y )−H(X, Y ).

(2.0.1)
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For every pair of i and j, let fi,j be the observed frequency of the random pair

(X, Y ) taking value (xi, yj), where i = 1, · · · , K1 and j = 1, · · · , K2, in an iid sample

of size n from X × Y under p; and let p̂i,j = fi,j/n be the corresponding relative

frequency. Consequently we write p̂ = {p̂i,j}, p̂x = {p̂i,·} and p̂y = {p̂·,j} as the sets

of observed joint and marginal relative frequencies. The objective of interest is to

estimate the mutual information MI.

Let

M̂I = M̂I(X, Y ) = Ĥ(X) + Ĥ(Y )− Ĥ(X, Y ) (2.0.2)

where Ĥ(X) = −
∑

i p̂i,· ln p̂i,·, Ĥ(Y ) = −
∑

j p̂·,j ln p̂·,j, and Ĥ(X, Y ) = −
∑

i,j p̂i,j ln p̂i,j.

M̂I is the so-called plugin estimator of mutual information, or maximum likelihood

estimator when K is �nite.

Let

M̂Iz = M̂Iz(X, Y ) = Ĥz(X) + Ĥz(Y )− Ĥz(X, Y )

=
∑n−1

v=1
1
v

{
nv+1[n−(v+1)]!

n!

∑K1

i=1

[
p̂i,·
∏v−1

k=0

(
1− p̂i,· − k

n

)]}

+
∑n−1

v=1
1
v

{
nv+1[n−(v+1)]!

n!

∑K2

j=1

[
p̂·,j
∏v−1

k=0

(
1− p̂·,j − k

n

)]}

−
∑n−1

v=1
1
v

{
nv+1[n−(v+1)]!

n!

∑K1

i=1

∑K2

j=1

[
p̂i,j
∏v−1

k=0

(
1− p̂i,j − k

n

)]}
.

(2.0.3)
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M̂Iz is the mutual information estimator in Turing's perspective. It is showed

in [13] that M̂I has a power decaying bias and M̂Iz has an exponentially decaying

bias. We then introduce the asymptotic properties for the two mutual information

estimators. The demonstration is given in two parts, depending on if the underlying

mutual information is zero.

2.1 When Mutual Information is Not Zero

When MI 6= 0, [13] provided the asymptotic normality of M̂I and M̂Iz. Let g(v)

and Σ(v) be as de�ned in [13], their main theoretical results are summarized into the

well-proven Proposition 1 and Theorem 1 below.

Proposition 1 Provided that gτ (v)Σ(v)g(v) > 0,

√
n
(
M̂I −MI

)
[gτ (v)Σ(v)g(v)]−

1
2

L−→ N(0, 1). (2.1.1)

Theorem 1 Provided that gτ (v)Σ(v)g(v) > 0,

√
n
(
M̂Iz −MI

)
[gτ (v)Σ(v)g(v)]−

1
2

L−→ N(0, 1). (2.1.2)

The normality of Proposition 1 and Theorem 1 are useful in providing con�dence

intervals for MI > 0 or in testing H0 : MI = c > 0 for any c > 0. It is much more

often of interest in the practice to test H0 : MI = 0. However, Proposition 1 and

Theorem 1 cannot be used to test the hypothesis H0 : MI = 0. The normality of
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Proposition 1 is based on a �rst-order delta method which requires gτ (v)Σ(v)g(v) > 0.

It is demonstrated in Proposition 3 that this condition does not hold when MI = 0.

In the following sub-section, we o�er two chi-square tests for H0 : MI = 0 based on

M̂I and M̂Iz respectively, to complement what is not covered by the normality of

Proposition 1 and Theorem 1.

2.2 When Mutual Information is Zero

The said tests are summarized in Proposition 2 and Theorem 2 below.

Proposition 2 Provided that MI = 0,

χ2
1 = 2nM̂I

L−→ χ2 ((K1 − 1)(K2 − 1)) (2.2.1)

Theorem 2 Provided that MI = 0,

χ2
2 = 2nM̂Iz + (K1 − 1)(K2 − 1)

L−→ χ2 ((K1 − 1)(K2 − 1)) (2.2.2)

The chi-square test in Proposition 2 is a well-known test, and its proof is a direct

application of the log likelihood ratio test established by [14]. The proof is given in

Chapter 3.
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The chi-square test in Theorem 2 is the focal point of this article. The proof of

Theorem 2 is non-trivial and is a part of the main results given in Chapter 3.



CHAPTER 3: Main Results

3.1 Proof of the Assumption in First Order Delta Method does not Hold when

MI = 0

We �rst demonstrate that the assumption of the �rst order delta method is violated

when MI = 0.

Proposition 3 If MI = 0, then gτ (v)Σ(v)g(v) = 0.

To prove Proposition 3, it is necessary to recall several notations in [13],

1. a re-enumeration of {pi,j; i = 1, · · · , K1 and j = 1, · · · , K2} in the form of

{pk; k = 1, · · · , K}, where K = K1 ×K2 (note that if MI = 0, K = K1 ×K2 is

equivalent to K =
∑

i,j 1[pi,j > 0]), and

2. a partition of the index set {(i, j); i = 1, · · · , K1 and j = 1, · · · , K2}, denoted

as

{S1, · · · , SK1} and {T1, · · · , TK2}, where

(a) Ss = {k; pk ∈ {ps,j; j = 1, · · · , K2}} for each s, s = 1, · · · , K1; and

(b) Tt = {k; pk ∈ {pi,t; i = 1, · · · , K1}} for each t, t = 1, · · · , K2.

Let v = (p1, · · · , pK−1)τ , G(v) = MI = H(X) + H(Y ) − H(X, Y ) and g(v) =
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∇G(v) = (∂G(v)/∂p1, · · · , ∂G(v)/∂pK−1)τ , it was shown in [13] that

∂

∂pk
G(v) =

ln[(pK1,·)(p·,K2)(pk)]− ln[(pi,·)(p·,j)(pK)], if k ∈ Si 6= SK1 and k ∈ Tj 6= TK2

ln[(p·,K2)(pk)]− ln[(p·,j)(pK)], if k ∈ SK1 and k ∈ Tj 6= TK2

ln[(pK1,·)(pk)]− ln[(pi,·)(pK)], if k ∈ Si 6= SK1 and k ∈ TK2

(3.1.1)

where pK = 1−
∑

k 6=K pk.

Proof of Proposition 3. If MI = 0 then X and Y are independent, i.e., pi,j = pi,·p·,j

for all (i, j). Consider the three cases of (3.1.1) separately. If k ∈ Si 6= SK1 and

k ∈ Tj 6= TK2 , then pk = pi,·p·,j and pK = pK1,·p·,K2 , and therefore ∂G(v)/∂pk = 0.

If k ∈ SK1 and k ∈ Tj 6= TK2 , then pK = pK1,·p·,K2 and pk = p·,jpK1,j, and therefore

∂G(v)/∂pk = 0. If k ∈ Si 6= SK1 and k ∈ TK2 , then pK = pK1,·p·,K2 and pk =

pi,·p·,K2 , and therefore ∂G(v)/∂pk = 0. It follows that g(v) = ∇G(v) = 0 and hence

gτ (v)Σ(v)g(v) = 0. 2

3.2 Proof of the Asymptotic Distribution for M̂I when MI = 0

Proof of Proposition 2

Consider the test H0 : pi,j = pi,.p.,j;
∑
pi,. = 1,

∑
p.,j = 1. For a random sample of

size n, let fi,., f.,j, and fk be the observed frequency of the i-th marginal category of
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X, the j-th marginal category of Y , and the k-th joint category, respectively. The

generalized likelihood-ratio is

L =
supθ∈Θ0

L(θ|x)

supθ∈Θ L(θ|x)

=

n!
f1!···fK !

(
p̂
f1,.
1,. · · · p̂

fK1,.

K1,.

)(
p̂
f.,1
.,1 · · · p̂

f.,K2
.,K2

)
n!

f1!···fK !
p̂f11 · · · p̂

fK
K

=

(
p̂
f1,.
1,. · · · p̂

fK1,.

K1,.

)(
p̂
f.,1
.,1 · · · p̂

f.,K2
.,K2

)
p̂f11 · · · p̂

fK
K

And

−2 lnL = −2 ln

(
p̂
f1,.
1,. · · · p̂

fK1,.

K1,.

)(
p̂
f.,1
.,1 · · · p̂

f.,K2
.,K2

)
p̂f11 · · · p̂

fK
K

= −2

(∑
i

fi,. ln p̂i,. +
∑
j

f.,j ln p̂.,j −
∑
i,j

fi,j ln p̂i,j

)

= 2n

(
−
∑
i

p̂i,. ln p̂i,. −
∑
j

p̂.,j ln p̂.,j +
∑
i,j

p̂i,j ln p̂i,j

)

= 2nM̂I

By [14], −2 lnL ∼ χ2 with degrees of freedom (K1 − 1)(K2 − 1). 2

3.3 Proof of the Asymptotic Distribution for M̂Iz when MI = 0

The proof of Theorem 2 needs several additional notations and lemmas. Con-

sider a single alphabet X and the associated probability distribution p = {pk; k =

1, · · · , K}. Suppose an iid sample of size n results in letter frequencies {Yk; k ≥ 1}



16

and relative frequencies p̂ = {p̂k; k ≥ 1}. Let Ĥ = H(p̂) and

Ĥz = Ĥz(p̂) =
n−1∑
v=1

1

v
Zv (3.3.1)

where

Zv =
∞∑
k=1

[
p̂k

v−1∏
j=0

(
1− p̂k −

j

n

)]
=
∞∑
k=1

{
p̂k

v−1∏
j=0

[(
1− p̂k −

j

n

)
1

1− j+1
n

]}
. (3.3.2)

Lemma 1 For any p ∈ (0, 1),

1.
∑∞

v=1(1− p)v−1 = 1/p,

2.
∑∞

v=1 v(1− p)v−1 = 1/p2,

3.
∑∞

v=1 v
2(1− p)v−1 = 2/p3 − 1/p2, and

4.
∑∞

v=1 v
3(1− p)v−1 = 6/p4 − 6/p3 + 1/p2.

Proof of Lemma 1.

1.

∞∑
v=1

(1− p)v−1 =
1

1− (1− p)
=

1

p
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2.

∞∑
v=1

v(1− p)v−1 =
1

p

(
∞∑
v=1

v(1− p)v−1 − (1− p)
∞∑
v=1

v(1− p)v−1

)

=
1

p

(
∞∑
v=1

v(1− p)v−1 −
∞∑
v=1

v(1− p)v
)

=
1

p

(
∞∑
v=0

(v + 1)(1− p)v −
∞∑
v=1

v(1− p)v
)

=
1

p

(
(1− p)0 +

∞∑
v=1

(v + 1)(1− p)v −
∞∑
v=1

v(1− p)v
)

=
1

p

(
(1− p)0 +

∞∑
v=1

(1− p)v
)

=
1

p

∞∑
v=0

(1− p)v

=
1

p

∞∑
v=1

(1− p)v−1

=
1

p2

3.

∞∑
v=1

v2(1− p)v−1 =
1

p

(
∞∑
v=1

v2(1− p)v−1 − (1− p)
∞∑
v=1

v2(1− p)v−1

)

=
1

p

(
∞∑
v=0

(v + 1)2(1− p)v −
∞∑
v=1

v2(1− p)v
)

=
1

p

(
(1− p)0 +

∞∑
v=1

(v + 1)2(1− p)v −
∞∑
v=1

v2(1− p)v
)

=
1

p

(
(1− p)0 +

∞∑
v=1

(2v + 1)(1− p)v
)
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=
1

p

∞∑
v=0

(2v + 1)(1− p)v

=
1

p

∞∑
v=1

(2v − 1)(1− p)v−1

=
1

p

(
2
∞∑
v=1

v(1− p)v−1 −
∞∑
v=1

(1− p)v−1

)

=
1

p

(
2

p2
− 1

p

)
=

2

p3
− 1

p2

4.

∞∑
v=1

v3(1− p)v−1 =
1

p

(
∞∑
v=1

v3(1− p)v−1 − (1− p)
∞∑
v=1

v3(1− p)v−1

)

=
1

p

(
∞∑
v=1

v3(1− p)v−1 −
∞∑
v=1

v3(1− p)v
)

=
1

p

(
∞∑
v=0

(v + 1)3(1− p)v −
∞∑
v=1

v3(1− p)v
)

=
1

p

(
(1− p)0 +

∞∑
v=1

(v + 1)3(1− p)v −
∞∑
v=1

v3(1− p)v
)

=
1

p

(
(1− p)0 +

∞∑
v=1

(
(v + 1)3 − v3

)
(1− p)v

)

=
1

p

(
(1− p)0 +

∞∑
v=1

(
3v2 + 3v + 1

)
(1− p)v

)

=
1

p

∞∑
v=0

(
3v2 + 3v + 1

)
(1− p)v

=
1

p

∞∑
v=1

(
3(v − 1)2 + 3(v − 1) + 1

)
(1− p)v−1

=
1

p

∞∑
v=1

(
3v2 − 3v + 1

)
(1− p)v−1



19

=
1

p

(
3
∞∑
v=1

v2(1− p)v−1 − 3
∞∑
v=1

v(1− p)v−1 +
∞∑
v=1

(1− p)v−1

)

=
1

p

(
6

p3
− 3

p2
− 3

p2
+

1

p

)
=

6

p4
− 6

p3
+

1

p2

2

Lemma 2 (Weierstrass Product Inequality) For any set of real numbers, {ai; i =

1, · · · , n}, such that ai ∈ [0, 1] for each i, 1−
∑n

i=1 ai ≤
∏n

i=1(1−ai) ≤ 1/(1+
∑n

i=1 ai).

Proof of Lemma 2.

Part 1: To show

1−
n∑
i=1

ai ≤
n∏
i=1

(1− ai).

When n = 1,

1− a1 ≤ 1− a1

is true. For any positive integer k, when n = k, suppose

1−
k∑
i=1

ai ≤
k∏
i=1

(1− ai)
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is true, then for n = k + 1

1−
k+1∑
i=1

ai =1−
k∑
i=1

ai − ak+1

≤
k∏
i=1

(1− ai)− ak+1

≤
k∏
i=1

(1− ai)− ak+1

k∏
i=1

(1− ai)

≤
k+1∏
i=1

(1− ai).

Therefore Part 1 is true by induction.

Part 2: To show

n∏
i=1

(1− ai) ≤
1

1 +
∑n

i=1 ai

When n = 1, since (1− a1)(1 + a1) = 1− a2
1 ≤ 1,

1− a1 ≤
1

1 + a1

is true. For any positive integer k, when n = k, suppose

k∏
i=1

(1− ai) ≤
1

1 +
∑k

i=1 ai
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is true, then for n = k + 1

k+1∏
i=1

(1− ai) =
k∏
i=1

(1− ai) · (1− ak+1)

≤ 1− ak+1

1 +
∑k

i=1 ai

≤ 1− ak+1 + ak+1

1 +
∑k

i=1 ai + ak+1

=
1

1 +
∑k+1

i=1 ai
.

Therefore Part 2 is true by induction. 2

Lemma 3 2n(Ĥz − Ĥ)
p→ K − 1.

Proof of Lemma 3. Consider

2n(Ĥz − Ĥ)

=2n

(
K∑
k=1

p̂k ln p̂k +
n−1∑
v=1

1

v
Zv

)

=2n
K∑
k=1

{
p̂k

{
−
∞∑
v=1

1

v
(1− p̂k)v +

n−1∑
v=1

{
1

v

v−1∏
j=0

[(
1− p̂k −

j

n

)
1

1− j+1
n

]}}}

=2n
K∑
k=1

{
p̂k

{
−
∞∑
v=1

1

v
(1− p̂k)v +

∞∑
v=1

{
1

v

v−1∏
j=0

[(
1− p̂k −

j

n

)
1

1− j+1
n

]}}}

= : 2n
K∑
k=1

{dk}.
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Note that

∞∑
v=1

{
1

v

v−1∏
j=0

[(
1− p̂k −

j

n

)
1

1− j+1
n

]}
=

n−1∑
v=1

{
1

v

v−1∏
j=0

[(
1− p̂k −

j

n

)
1

1− j+1
n

]}

is because
∏v−1

j=0

[(
1− p̂k − j

n

)
1

1− j+1
n

]
= 0 when v ≥ n.

For any pair of (k, v), let

f1(k, v) =
1

v
(1− p̂k)v =

1

v

v−1∏
j=0

(1− p̂k)

f2(k, v) =


1
v

∏v−1
j=0

[(
1− p̂k − j

n

)
1

1− j+1
n

]
, if v ≤ n(1− p̂) + 1

0, if v ≥ n(1− p̂).

For any k, ndk can be re-expressed as

ndk = np̂k

(
−
∞∑
v=1

f1(k, v) +
∞∑
v=1

f2(k, v)

)

= np̂k

∞∑
v=1

(−f1(k, v) + f2(k, v))

= np̂k

∞∑
v=1

f1(k, v)

(
f2(k, v)

f1(k, v)
− 1

)
.

The ratio of f2(k, v) to f1(k, v) can be written as, f2(k, v)/f1(k, v) = 0 if v ≥ n(1 −

p̂) + 2, otherwise

f2(k, v)

f1(k, v)
=

1
v

∏v−1
j=0

[(
1− p̂k − j

n

)
1

1− j+1
n

]
1
v

∏v−1
j=0(1− p̂k)
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=
v−1∏
j=0

[(
1− j

n(1− p̂k)

)
1

1− j+1
n

]

=

∏v−1
j=0

[
1− j

n(1−p̂k)

]
∏v−1

j=0

(
1− j+1

n

) .

Noting that

v−1∑
j=0

j

n(1− p̂k)
=

v(v − 1)

2n(1− p̂k)
and

v−1∑
j=0

j + 1

n
=
v(v + 1)

2n
,

by the Weierstrass Product Inequality, it follows that, for each v ≤ n(1− p̂k) + 1,

1− v(v − 1)

2n(1− p̂k)
≤

v−1∏
j=0

[
1− j

n(1− p̂k)

]
≤ 1

1 + v(v−1)
2n(1−p̂k)

(3.3.3)

and

1− v(v + 1)

2n
≤

v−1∏
j=0

(
1− j + 1

n

)
≤ 1

1 + v(v+1)
2n

. (3.3.4)

By the �rst inequality of (3.3.3) and the second of (3.3.4), a lower bound for f2(k, v)/f1(k, v),

for each v ≤ n(1− p̂k) + 1, is established as

f2(k, v)

f1(k, v)
≥

1− v(v−1)
2n(1−p̂k)

1

1+
v(v+1)

2n

=

[
1− v(v − 1)

2n(1− p̂k)

] [
1 +

v(v + 1)

2n

]
= 1− v(v − 1)

2n(1− p̂k)
+
v(v + 1)

2n
− v2(v2 − 1)

4n2(1− p̂k)
. (3.3.5)
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In fact, noting that the expression on the far left of (3.3.3) takes on negative values

for v ≥ n(1− p̂k) + 2, that the expression on the far right of (3.3.4) remains positive

for all v ≥ 1, and that f2(k, v)/f1(k, v) ≥ 0, the inequality in (3.3.5) holds for all

v ≥ 1.

It therefore follows that, applying Lemma 1 whenever necessary,

ndk = np̂k

∞∑
v=1

f1(k, v)

(
f2(k, v)

f1(k, v)
− 1

)

≥ np̂k

∞∑
v=1

f1(k, v)

[
− v(v − 1)

2n(1− p̂k)
+
v(v + 1)

2n
− v2(v2 − 1)

4n2(1− p̂k)

]

= np̂k

∞∑
v=1

{[
1

v
(1− p̂k)v

] [
− v(v − 1)

2n(1− p̂k)
+
v(v + 1)

2n
− v2(v2 − 1)

4n2(1− p̂k)

]}

= np̂k

∞∑
v=1

{
(1− p̂k)v

[
− v − 1

2n(1− p̂k)
+
v + 1

2n
− v(v2 − 1)

4n2(1− p̂k)

]}

= p̂k

∞∑
v=1

{
(1− p̂k)v

[
− v − 1

2(1− p̂k)
+
v + 1

2
− v(v2 − 1)

4n(1− p̂k)

]}

= p̂k

∞∑
v=1

{
− 1

2

[
v(1− p̂k)v−1 − (1− p̂k)v−1

]
+

1− p̂k
2

[
v(1− p̂k)v−1 + (1− p̂k)v−1

]
− 1

4n

[
v3(1− p̂k)v−1 − v(1− p̂k)v−1

]}
= p̂k

{
− 1

2

[
∞∑
v=1

v(1− p̂k)v−1 −
∞∑
v=1

(1− p̂k)v−1

]

+
1− p̂k

2

[
∞∑
v=1

v(1− p̂k)v−1 +
∞∑
v=1

(1− p̂k)v−1

]

− 1

4n

[
∞∑
v=1

v3(1− p̂k)v−1 −
∞∑
v=1

v(1− p̂k)v−1

]}

= p̂k

{
− 1

2

(
1

p̂2
k

− 1

p̂k

)
+

1− p̂k
2

(
1

p̂2
k

+
1

p̂k

)
− 1

4n

(
6

p̂4
k

− 6

p̂3
k

+
1

p̂2
k

− 1

p̂2
k

)}
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= −1

2

(
1

p̂k
− 1

)
+

1− p̂k
2

(
1

p̂k
+ 1

)
− 1

4n

(
6

p̂3
k

− 6

p̂2
k

)
= − 1

2p̂k
+

1

2
+

1− p̂k
2p̂k

+
1− p̂k

2
− 1

4n

(
6

p̂3
k

− 6

p̂2
k

)
=

1− p̂k
2
− 3

2n

(
1

p̂3
k

− 1

p̂2
k

)
=: Ak,n.

Therefore,

2n(Ĥz − Ĥ) = 2n
∑
k

dk

≥ 2
∑
k

Ak,n

= K − 1− 3

2n

∑
k

(
1

p̂3
k

− 1

p̂2
k

)

≥ K − 1 (3.3.6)

On the other hand, it is proved in [5] and [2] that (recall that p∧ = min pk)

E[Ĥz −H] = O
(

(1− p∧)n

n

)
,

and

E[H − Ĥ] =
K − 1

2n
− 1

12n2

(
1−

K∑
k=1

1

pk

)
+O

(
n−3
)
,
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hence

2nE
[
Ĥz − Ĥ

]
p−→ K − 1. (3.3.7)

Since (3.3.6) and (3.3.7), by Markov's inequality,

2n(Ĥz − Ĥ)
p−→ K − 1.

2

Proof of Theorem 2. By Proposition 2 and noting that

2nM̂I = 2n
(
Ĥ(X) + Ĥ(Y )− Ĥ(X, Y )

)
= 2n

[
−(Ĥz(X)− ĤX)− (Ĥz(Y )− Ĥ(Y )) + (Ĥz(X, Y )− Ĥ(X, Y ))

]
+ 2nM̂Iz,

and applying Lemma 3, it follows that

2nM̂Iz + (K1 − 1)(K2 − 1) ∼ 2nM̂I
L−→ χ2((K1 − 1)(K2 − 1)).

2
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3.4 Examples

[13] gave three examples involving evaluation of gene-to-gene association. We re-

work these examples to demonstrate the usage of the proposed new test. Three genes

were under consideration, and they were coded as TMEM30A, MTCH2, and ENAH.

In Example 1, readings of TMEM30A and MTCH2 were analyzed. In Examples 2

and 3, readings on two di�erent probes, designed for the same gene ENAH, on the

same microchip were analyzed.

Example 1 TMEM30A and MTCH2. Using the results of [13], M̂I = 0.1459

and M̂Iz = 0.0552, χ2
1 = 2nM̂I = 55.7338 and χ2

2 = 2nM̂Iz + (K1 − 1)(K2 − 1) =

102.0864. With degrees of freedom 81, the respective p-values are 0.9856 and 0.0567.

At α = 0.05, neither test rejects H0 : MI = 0.

Example 2 ENAH and ENAH with K = K1 × K2. Using the results of [13],

M̂I = 0.2060 and M̂Iz = 0.1157, χ2
1 = 2nM̂I = 78.692 and χ2

2 = 2nM̂Iz + (K1 −

1)(K2−1) = 125.1974. With degrees of freedom 81, the respective p-values are 0.5519

and 0.0012. χ2
2 detects an association with strong evidence and χ2

1 fails to do so by

far. Since in this case it is known a priori that an association exists, this example

illustrates the added utility of χ2
2.

Example 3 ENAH and ENAH with K ≤ K1×K2. In this example, [13] assumes

that several cells in the join alphabet are associated with zero probabilities. This
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assumption is invalid since, if it were the case, then under the null hypothesis of

H0 : MI = 0 (X and Y are independent) either some of the marginal probabilities

of X or Y would have to be zeros. However every (of the ten) marginal categories is

covered by observations, that is to say, none of the marginal probabilities can be zero.

Without the assumption of zero probabilities, the chi-square tests of Proposition 2

and Theorem 2 give identical results as in Example 2.



CHAPTER 4: Simulation Study

To further explore and study the property of M̂Iz, various tests of independence

were compared in the simulation study to evaluate the size and power of the tests

under di�erent sample sizes.

Particularly, �ve tests of independence were compared:

1. Pearson Chi-square Test:

Test Statistic:

χ2
Pearson =

K∗∑
k=1

(Ok − Ek)2

Ek
∼ χ2 ((K∗1 − 1)(K∗2 − 1)) . (4.0.1)

Calculating χ2
Pearson requires all the denominators Ek's to be positive, where

each Ek is calculated by nmultiplies the corresponding p̂i,.p̂.,j. When the sample

size is not su�ciently large, many p̂i,.'s and p̂.,j's could be zero, and it makes

Pearson's test invalid. Moreover, it is commonly suggested that each cell should

have at least �ve observations to use Pearson's test. In order to fairly compare

other tests with Pearson's test under each situation, all the original samples

in the simulation were adjusted. Particularly, in each bivariate sample data

frequency table, all rows (and columns) with total frequencies less than 5 were
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combined to the row (and column) with the least total frequency among the

rows (and columns) with at least �ve total frequency. If there are two or more

such rows (or columns), one is selected randomly. For example, suppose the

sample data frequency table is Table 4.1. The frequencies of X = 3 and 4 are

less than 5, and the frequency of X = 5 is the category with the least frequency

that is at least 5. As a result, the adjusted sample regarding the frequencies of

X is described in Table 4.2. For the frequency of Y , the frequencies of Y = 2

and 4 are less than 5, and the frequencies of Y = 1 and 3 are the same. In

the example, Y = 1 is randomly selected to be combined with low-frequency

categories. And the adjusted sample is as described in Table 4.3. Note that

after the adjustment, the cardinality of X, Y , and X×Y are reduced from 5, 4,

and 20 to 3, 2, and 6. Because of the possible adjustment, K∗, K∗1 , and K
∗
2 are

used instead of K, K1, and K2 in (4.0.1). In the following simulation settings,

the cardinality of X and Y are 10 and 15, and sample sizes are started from

100. Therefore it is guaranteed that there is always at least one category in X

and Y with a frequency of 5 or more.

Table 4.1: Original Sample Frequency Table

Y
1 2 3 4

X

1 4 0 6 0
2 1 1 3 1
3 2 2 0 0
4 0 0 0 0
5 3 0 1 1
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Table 4.2: Partially Adjusted Sample (X categories with low frequencies combined)

Y
1 2 3 4

X
1 4 0 6 0
2 1 1 3 1
5 5 2 1 1

Table 4.3: Adjusted Sample (X and Y categories with low frequencies combined)

Y
1 3

X
1 4 6
2 3 3
5 8 1

2. Test of independence using M̂I and Proposition 2:

Test Statistic:

χ2
MIhat = 2nM̂I(original sample) ∼ χ2 ((K1 − 1)(K2 − 1)) ,

and

χ2∗
MIhat = 2nM̂I(adjusted sample) ∼ χ2 ((K∗1 − 1)(K∗2 − 1)) .

Two tests of independence using M̂I are examined. M̂I does not require non-zero

marginal sample probabilities as that of Pearson's test. To make a complete

comparison, tests using M̂I on both original sample and adjusted sample are

included.

3. Test of independence using M̂Iz
1 and Theorem 2:

1The computation of M̂Iz has been implemented in R and can be found in R package �Entropy-
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Test Statistic:

χ2
MIz = 2nM̂Iz(original sample) + (K1 − 1)(K2 − 1) ∼ χ2 ((K1 − 1)(K2 − 1)) ,

and

χ2∗
MIz = 2nM̂Iz(adjusted sample) + (K∗1 − 1)(K∗2 − 1) ∼ χ2 ((K∗1 − 1)(K∗2 − 1)) .

For the same reason (to make a complete comparison), tests using M̂Iz on both

original sample and adjusted sample are included.

4.1 Simulation Settings

The two marginal distributions are

pi,. =
1

10
, i = 1, 2, · · · , 10;

and

p.,j =
16− j

120
, j = 1, 2, · · · , 15.

When evaluating the size of tests,

pi,j = pi,.p.,j.

Estimation�.
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When evaluating the power of tests,

pi,j =
150− 15(i− 1)− j + 1

11325
(triangle distribution).

For both evaluation, the simulations were conducted with sample size n = 100,

200, 300, . . . , 14900, 15000. And for each sample size, the simulation was iterated for

50000 times.

4.2 Simulation Results

The simulation results are presented in Figure 4.1 and 4.2. To help understand the

legend, pearson.reject_vec, miz.reject_vec, miz.reject_adj_vec, mihat.reject_vec,

and mihat.reject_adj_vec stand for testing using χ2
Pearson, χ

2
MIz, χ

2∗
MIz, χ

2
MIhat, and

χ2∗
MIhat, respectively.

The sizes of all tests reached the neighborhood of α when n is more than 4500;

therefore Figure 4.1 did not include the simulation results when n is more than 6500.

Based on Figure 4.1, Pearson's test on adjusted (combined) samples converged to α

faster than other tests. The two sets of tests using estimators of mutual information

converged to α at a similar rate. Although M̂Iz has a smaller bias over M̂I, surprisingly

that the simulation showed that testing independence using M̂I has better size than

that of using M̂Iz when the sample size is relatively small.

The powers of all tests using mutual information estimators are consistently higher

than the power of Pearson's test. It suggests that when the sample size is su�ciently
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Figure 4.1: Size of di�erent tests under di�erent sample size when α = 0.05.

Figure 4.2: Power of di�erent tests under di�erent sample size when α = 0.05 under
a joint triangle distribution.

large, a test using either M̂I or M̂Iz should be adopted instead of Pearson's test.

Moreover, when the sample size is moderate (n from 1500 to 4500 in the designed
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simulation), testing using M̂Iz and M̂I have similar size, but the power of using M̂Iz

is higher.



CHAPTER 5: Conclusion and Future Work

In conclusion, the asymptotic distributions for M̂I and M̂Iz are o�ered under the

situation that MI = 0. Based on the simulation study, when the sample size is su�-

ciently large, testing independence using mutual information estimators are preferred

because they have higher powers than Pearson's test. When the sample size is mod-

erate, Pearson test's size has a faster convergence rate to α and is preferred. When

the sample size is small, although Pearson's test also has a faster convergence rate of

size, it is frequently incalculable without a merge of empty cells.

M̂Iz is known to have a faster-decaying bias compared to M̂I, whereas the size of

test of independence with M̂I has a faster converging rate when the sample size is

relatively small. It leads to my conjecture that additional bias correction terms are

needed in Theorem 2 to improve its performance under small samples, which will be

future work. Furthermore, it is worthy of investigating why Pearson's test has such

a fast converging rate in the size of test. Finally, Theorem 2 could be generated as

a new test of goodness-of-�t using Kullback-Leibler divergence K̂Lz [15], one could

study its property and compare it with other goodness-of-�t tests.
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