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ABSTRACT

PEILIN CHEN. Statistical Estimation and Inference for the Associations of
Multivariate Recurrent Event Processes. (Under the direction of DR. YANQING

SUN )

In this dissertation, we aim to develop a brand new method with a two-stage pro-

cedure to investigate the association between multivariate recurrent event processes.

First, under the assumption of independent censoring, we model each recurrent

event process marginally through a mean rate model. There are two popular mean

rate assumptions - multiplicative or additive to an unspecified baseline rate function.

The robust semi-parametric approaches can be applied to estimate the covariate ef-

fects as well as the baseline rate function.

Second, inspired by Kendall's tau, we propose the rate ratio as an association

measurement, which is the quotient of two conditional rates - the mean rate of two

joint events over the marginal rates, both conditional on the covariates. Utilizing the

information from the first stage, an unbiased and consistent estimator of the rate ratio

is developed under the Generalized Estimation Equation method. The asymptotic

properties of the rate ratio estimators are derived theoretically. Without modeling the

joint events directly, the rate ratio can measure the association between two recurrent

processes over time.

Since the rate ratio we proposed can be parametric, time and covariate dependent,

it has a good interpretability. We developed a formal hypothesis testing procedure

to validate the parametric assumption of the rate ratio. Simulation studies shows it

is quite powerful under moderate to strong association.
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CHAPTER 1: INTRODUCTION

This chapter aims to review related works and introduce the benefits and challenges

of estimating the association between multivariate recurrent event processes. The

structure of this chapter is as following. In section 1.1 -1.2 we review the basic

background for Recurrent Event Data and popular approaches to estimate the mean

event rate or the intensity of Hazard. Literatures that focus on modeling multivariate

Recurrent Event Data are discussed in Section 1.3.

1.1 Bivariate /Multivariate Recurrent Event Data

Recurrent events involve repeat occurrences of the same type of event over time,

whereas a process that generate such data are called recurrent event process. Exam-

ples of recurrent events include multiple relapses from remission for leukemia patients,

wild fires, and hurricanes. In Recent years, recurrent event data raises in many fields

such as public health, business and industry, reliability, the social sciences, and insur-

ance, and keep receiving fast growing attention. For instance, the tumor development

time for 48 rats who were injected with a carcinogen represented Gail1980; the au-

tomobile warranty claims data for a specific car model considered by Lawless and

Nadeau (1995).

Bivariate or multivariate recurrent event processes are often encountered in longi-

tudinal data studies involving more than one type of event of interest. Unlike Life
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Data which is valid to assume events are independent, recurrent event data are usu-

ally correlated because they represent the event time measured for the same subject

over a time period.

1.2 Modeling Recurrent Event Data

Many statistical methods focus on modeling the rate or intensity of the event

recurrence. Nelson (1988, 1995) proposed the nonparametric estimation of the mean

function for general processes and Aalen (1978) studied the properties of the Nelson-

Aalen estimate in the Poisson case. Early development was extended from survival

analysis for the Cox Proportional hazards model (Cox, 1972a). Anderson and Gill

(1982) introduced the semiparametric regression model for the rate functions and

derived the asymptotic results based on the counting process theory.

Aalen (1980) proposed semiparametric additive regression models for the rate func-

tion. Later literatures worked by McKeague and Sasieni, Martinussen and Scheike

provide more comprehensive discussion of semiparametric additivie models. Studies

based on Poisson and related processes have been discussed in literatures such as An-

dersen (1982) , Cheuvarte (1988), Lawless (1987a, 1987b) Thall (1988) Lawless and

Nadeau (1995). Pepe and Cai (1993) considered robust methods for parametric or

semeparametric regression analysis for the rate and mean functions. Lin et al. (2000)

developed the asymptotic properties for the semiparametric regression analysis of Cox

proportional mean functions whereas H Scheike (2002) considered the additive model.

Event rate models recently became more popular than the intensity based model

because they are easier to interpret. Lin et al. (2000) compared the intensity and
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rate based model. In their paper, N∗(t) denotes the number of events occur over

time [0, t] and Z(·) is a p-dimensional covariate process, whereas Ft is the history of

{N∗(s), Z(s) : 0 ≤ s ≤ t} and λZ(t) is the intensity of N∗(t) associated with Ft.

The Anderson -Gill intensity model

λZ(t) = eβ
T
0 Z(t)λ0(t) (1.1)

is a special case under the assumptions that (a) E[dN∗(t)|Ft] = E[dN∗(t)|Z(t)] and

(b) E[dN∗(t)|Z(t)] = eβ
T
0 Z(t)λ0(t)dt.

Lin (2000) proposed a mean rate model

E[dN∗(t)|Z(t)] = dµZ(t) (1.2)

without assumption (a), which is impractical to verify if the time-varying covariates

adequately captured the dependence of the recurrent events. The regression coeffi-

cients in the mean event rate model nicely reflect covariate effects on the frequency.

Compared to the Anderson- Gill model (1.1), which is a special case of equation

(1.2) by taking

dµZ(t) = eβ
T
0 Z(t) dµ0(t),

dµ0(t) = λ0(t) dt,

model (1.2) is more versatile.
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1.3 Modeling Multivariate Recurrent Event

Here, we introduce the Random Effect Models for Multitype Events here. for more

details consult Cook and Lawless (2007). Let k index the subjects (or clusters) and

j index the event type. The event rate at time t for events of type j conditional on

subject and type-specific positive random effect rkj is denoted by

λkj(t|Fkt, rkj) = lim
∆t→0+

Pr(∆Nkj(t) = 1|Fkt, rkj)
∆t

(1.3)

j = 1, 2, ..., J , k = 1, 2, ..., K where rkj denote the multivariate random effect. With

multivariate random effects, it is often assumed that conditional on rkj and Fkt =

{Nkj(s), Zkj : 0 ≤ s ≤ t}, type i and type j event are independent if i 6= j, that is

λkj(t|Fkt, rkj) = rkjλkj(t|Fkt) (1.4)

Random effect models are usually parameterized by assuming rkj comes from an

underlying distribution G(rk;φ) so that E(rkj) = 1, var(rkj) = φj and cov(rkj, rij) =

φki. The corresponding likelihood conditional on rkj is

J∏
j=1

{ nkj∏
l=1

rkjλkj(tkjl|Fkt)exp
(
− rkj

∫ τk

0

λkj(u|Fkt) du
))}

, (1.5)

and the marginal likelihood for individual k as

∫ J∏
j=1

{ nkj∏
l=1

rkjλkj(tkjl|Fkt)exp
(
− rkj

∫ τk

0

λkj(u|Fkt) du
))}

dG(rk;φ) (1.6)

Analogous to the derivation above, we obtain Mixed Poisson Models as well as their

overall and marginal likelihood function by letting λkj(t|Fkt) = λkj(t). Related es-

timation approaches have been developed such as Abu-Libdeh et al. (1990),Lawless
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and Nadeau (1995), Ng and Cook (1999) and Chen et.al (2005).

If the covariance or association parameters are not of interest, modeling multivari-

ate recurrent event can be adapted from the analysis of univariate recurrent event

under the working independence assumption. Schaubel and Cai (2004, 2005) devel-

oped the estimation and inference for marginal analysis for the Cox type model and

H Scheike (2002) formulated a similar robust approach for the additive. Both of their

work did not incorporate the association structure.

1.4 Study of Associations

Association measurement such as Kendall’s tau (Oakes, 1989), the correlation coef-

ficient (Clayton, 1978), Cross Ratio (Anderson et al., 1992) and Odds Ratio (Scheike,

2012) are designed for Life Time data. These methods only considered first occur-

rence of each event type and are not suitable for censored recurrent event data. Most

recently (Ning et al., 2015) proposed a time-dependent measure, termed the rate ratio

as

ρ(s, t) =
λ1|2(s|t)
λ1(s)

, s, t ≥ 0, (1.7)

where the conditional rate function is defined as

λ1|2(s|t) = lim
∆→0+

Pr{N1(s+ ∆)−N1(s) > 0|N2(t+ ∆)−N2(t) > 0}/∆ (1.8)

to assess the local dependence between two types of recurrent event processes. A com-

posite likelihood procedure was developed for model fitting and estimation. However,

the composite likelihood based method lacks clear interpretation and is hard to con-
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struct. It is not clear how the method can be extended to a regression model of

recurrent event processes for multiple types of events when the covariates are present.

Here, we develop an alternative approach to model the rate ratio parametrically by

a score function and provide a model checking procedure to test the parametric form

of the rate ratio.



CHAPTER 2: CONDITIONAL RATE RATIO AS ASSOCIATION MEASURE
FOR MULTIVARIATE RECURRENT EVENT PROCESSES

2.1 Preliminaries

Let N∗kj(t) be a counting process registering the number of event occurrences by

time t for the jth subject in cluster k (or equivalently the type j event for subject k),

for j = 1, 2 and k = 1, ..., N . Suppose
(
N∗k1(s), N∗k2(t)

)
are i.i.d. and let Zkj(s), Zkj(t)

represents the associated covariate vector.

The event times for subjects within a cluster, which would be a family or a clinical

center, or the sequentially observed times for a subject, are naturally correlated.

Therefore we did not put any restriction here.The goal of this project is to characterize

and model the association between the occurrences of events.

The marginal conditional rate function for N∗kj(t) is defined by

µj(t|zkj) = lim
dt→0+

P{ dN∗kj(t) | Zkj = zkj}
dt

, for j = 1, 2.

Let µ2|1(s, t; zk1, zk2) = E{dN∗k2(t) = 1|dN∗k1(s) = 1, Zk1 = zk1, Zk2 = zk2} . The

conditional rate ratio is defined as

ρ(s, t; z1, z2) =
µ2|1(s, t; zk1, zk2)

µ2(t; zk2)
, for s, t ≥ 0, (2.1)

which is a measure of how the occurence of an event for subject 1 (or type 1 event)

at time s modifies the likelihood of event occurrence for subject 2 in the same cluster
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(or type 2 event of the same subject) at time t. It is natural to see that ρ(s, t; zk1, zk2)

measures the dependence of {N∗k1(·), N∗k2(·)} at time (s, t).If the two processes are

independent then ρ(s, t; zk1, zk2) = 1.

Under the definition of rate ratio,

E{dN∗k1(s)dN∗k2(t) |Zk1 = zk1, Zk2 = zk2} = ρ(s, t; zk1, zk2)µ1(s; zk1)µ2(t; zk2) dsdt,

(2.2)

where the marginal conditional rates µ1(t; zk1) and µ2(t; zk2) can be modeled, for

example, by the semiparametric models such as the additive model of H Scheike

(2002) and the multiplicative models of Lin et al. (2000). The association measure

ρ(s, t|zi1, zi2) can be modeled through parametric or semiparametric models. Conse-

quently, a two-stage estimating procedure can be adopted.

2.2 Estimation and Inference Procedures

Let Ykj(t) = I(Ckj ≥ t) be the at-risk process and Nkj(t) =
∫ t

0
Ykj(u)dN∗kj(u) be

the observed recurrent process. Let µ̂1(s; zk1) and µ̂2(t; zk2) be the estimates of the

marginal rates µ1(s; zk1) and µ2(t; zk2), respectively, which is considered as the first-

stage estimation. There are a number of options to estimate the conditional rate ratio

ρ(s, t; zi1, zi2) including nonparametric, parametric and semiparametric approaches,

each with commonly known strengths and weaknesses. The nonparametric approach

may suffer from the curse-of-dimensionality while the parametric models can be mis-

specified. On the other hand, the association measure based on parametric models

can be more interpretable.

Suppose that ρ(s, t, θ; zi1, zi2), θ ∈ Θ, is a parametric model for ρ(s, t; zi1, zi2), where
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Θ is a dimensional compact set. The estimating equation for θ can be constructed as

U(θ, µ̂1(·; zk1), µ̂2(·; zk2))=
∑N

k=1

∫ τ
0

∫ τ
0
∂ρ(s,t,θ;zk1,zk2)

∂θ

{
dNk1(s) dNk2(t)

−ρ(s, t, θ; zk1, zk2)Yk1(s)µ̂1(s; zk1)Yk2(t)µ̂2(t; zk2) ds dt
}
.

(2.3)

The model checking is an essential part of the parametric approach. We proposed

a goodness-of-fit procedure to test the parametric form of the rate ratio base on

the supremum test statistic given by T = sups,t∈[0,τ ]2 ‖V (s, t, θ̂, µ̂1(·; zk1), µ̂2(·; zk2))‖,

where

V (s, t, θ̂, µ̂1(·; zk1), µ̂2(·; zk2))

= N−1/2
∑N

k=1

∫ t
0

∫ s
0
Wn(u, v)∂ρ(u,v,θ;zk1,zk2)

∂θ

{
dNk1(u) dNk2(v)

−ρ(u, v, θ; zk1, zk2)Yk1(u)µ̂1(u; zk1)Yk2(v)µ̂2(v; zk2) du dv
}
, (2.4)

Wn(u, v) is prespecified weight function and ‖ · ‖ is the Euclidean norm. The critical

values can be approximated by implementing the Gaussian multiplier method (cf.

Sun, Li and Gilbert (2016*)).



CHAPTER 3: ESTIMATION AND INFERENCE OF THE RATE RATIO UNDER
THE ADDITIVE MARGINAL MODEL

3.1 Estimation by a two-stage approach

We illustrate the two-stage approach described in Chapter 2 when the marginal

conditional rate model is additive. Let N∗kj(t) follows the additive rates model

E[dN∗kj(t)|Zkj(t)] = dµj(t|Zkj(t)),

dµj(t|Zkj) = dµ0j(t) + βTj Zkj(t) dt, k = 1, ..., N ; j = 1, 2 (3.1)

where µ0j(t) is an unspecified baseline rate function and βj an unknown p-dimensional

vector. We consider the parametric approach by assuming ρ(s, t, θ; zk1, zk2), where θ

is the q-dimensional parameter of interest.

In the following sections, we first review the estimation procedure of βj and µ0j(t)

from the additive marginal mean rate model by adapting the method proposed by

H Scheike (2002). Then we develop the estimation procedures for parametric rate ratio

and investigate its asymptotic properties. A goodness-of-fit procedure is also proposed

to test the parametric assumption of the rate ratio. Lastly, we conduct simulations

to validate the estimation and inference procedures, with the results presented at the

end of this chapter.
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3.1.1 Review of the estimation of the marginal model

We define a zero-mean stochastic process as

Mkj(t, βj) = Nkj(t)−
∫ t

0

Ykj(u){dµ0j(u) + βTj Zkj(u) du}. (3.2)

Following the Generalized Estimating Equations proposed by (GEE; Liang and Zeger

1986), the estimating functions for µ0j(t) and βj are as

N∑
k=1

∫ t

0

Ykj(u) dMkj(u; βj) = 0, 0 ≤ t ≤ τ. (3.3)

N∑
k=1

∫ τ

0

Ykj(u)Zkj(u) dMkj(u; βj) = 0. (3.4)

respectively. By solving (3.3), we obtain the µ̂0j(t; βj) as an estimate of µ0j(t), where

µ̂0j(t; βj) =

∫ t

0

∑N
k=1[ dNkj(u)− Ykj(u)βTj Zkj(u) du]∑N

k=1 Ykj(u)
. (3.5)

With some simple algebra, equation (3.4) is equivalent to

Lj(βj) =
N∑
k=1

∫ τ

0

{Zkj(u)− Z̄j(u)}
[
dNkj(u)− Ykj(u)βTj Zkj(u) du

]
,

where Z̄j(t) =
∑N
k=1 Zkj(t)Ykj(t)∑N

k=1 Ykj(t)
. Substituting µ̂0j(t; βj) into equation (3.2) and solve

equation (3.4) gives us the estimate of βj as

β̂j =
[ N∑
k=1

∫ τ

0

Ykj(u){Zkj(u)− Z̄j(u)}⊗2 du
]−1

N∑
k=1

∫ τ

0

{Zkj(u)− Z̄j(u)} dNkj(u),

(3.6)

where a⊗2 = aaT for a vector a. Once β̂j is obtained, µ0j(t) can be estimated by

µ̂0j(t; β̂j) from equation (3.5).
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For convenience we summarize the estimation method of the additive marginal

model developed by H Scheike (2002) here.

Theorem 3.1 (H Scheike (2002) Theorem 1) Under the regularity (C.1.)-(C.5.),

β̂j converges almost surely to βj, and has the following asymptotic approximation

√
N{β̂j − βj} = A−1

j N−1/2

N∑
k=1

ξkj + op(1)

where ξkj =
∫ τ

0
{Zkj(u)− z̄j(u)} dMkj(u, βj) and z̄j(t) = lim

N→∞
Z̄j(t).

√
N(β̂j−βj) is asymptotically normal with mean zero and covariance matrix A−1

j ΣjA
−1
j ,

where

Aj = E{
∫ τ

0

{Zkj(u)− z̄j(βj, u)}⊗2 ds},

Σj = E[

∫ τ

0

{Z1j(u)− Z̄j(u)}dM1j(u, βj)

∫ τ

0

{Z1j(v)− Z̄j(v)} dM1j(v, βj)].

The asymptotic covariance matrix can by consistently estimated by Â−1
j Σ̂jÂ

−1
j , with

Âj = N−1

N∑
k=1

∫ τ

0

{Zkj(u)− Z̄j(u)}⊗2 du

Σ̂j = N−1

N∑
k=1

ξ̂⊗2
kj

ξ̂kj =

∫ τ

0

{Zkj(u)− Z̄j(u)} dM̂kj(u; β̂j),

dM̂kj(t; β̂j) = dNkj(t)− Ykj(t){ dµ̂0j(t) + β̂Tj Zkj(t) dt}.

Theorem 3.2 (H Scheike (2002) Theorem 2) Under the regularity (C.1)-(C.5),

µ̂0j(t) converges almost surely to µ0j(t) uniformly in t ∈ [0, τ ].
√
N{µ̂0j(t) − µ0j(t)}

converges weakly to a mean-zero Gaussian process with covariance function

Γj(s, t) = E[φkj(s)φkj(t)] (3.7)
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where

φkj(t) =

∫ t

0

π−1
j (u)dMkj(u; βj)−HT (t)A−1

j

∫ τ

0

{Zkj(u)− z̄j(u)} dMkj(u; βj), (3.8)

with H(t) =
∫ t

0
z̄j(u)du, z̄Tj (t) = lim

N→∞
Z̄T
j (t) and πj(t) = N−1 lim

N→∞

∑N
k=1 Ykj(t).

The consistent estimates of Γ(s, t) is denoted by Γ̂j(s, t) = N−1
∑N

k=1 φ̂kj(s)φ̂kj(t),

with φ̂kj(t) =
∫ t

0
π̂−1
j (u) dM̂kj(u; β̂j)−ĤT (t)Â−1

j

∫ τ
0
{Zkj(u)−Z̄j(u)} dM̂kj(u; β̂j), ,π̂j(t) =

N−1
∑N

k=1 Ykj(t) and Ĥ(t) =
∫ t

0
Z̄j(u) du.

3.1.2 Estimation of the rate ratio

The rate ratio can be estimated by equation (2.3), the realization of which under

model (3.1) is

U(θ, β̂1, β̂2, µ̂01(·), µ̂02(·)) =
N∑
k=1

Uk(θ, β̂1, β̂2, µ̂01(·), µ̂02(·)), (3.9)

where

Uk(θ, β̂1, β̂2, µ̂01(·), µ̂02(·)) =

∫ τ

0

∫ τ

0

∂ρ(s, t, θ;Zk1, Zk2)

∂θ

{
dNk1(s) dNk2(t)

− ρ(s, t, θ;Zk1, Zk2)Yk1(s)[ dµ̂01(s) + β̂T1 Zk1(s) ds]Yk2(t)[ dµ̂02(t) + β̂T2 Zk2(t) dt ]
}
.

Denote θ̂ the solution to U(θ, β̂1, β̂2, µ̂01(·), µ̂02(·)) = 0. We investigate the asymp-

totic properties of U(θ̂, β̂1, β̂2, µ̂01(·), µ̂02(·)) and θ̂ in Theorem 3.3 and 3.4 below.

Theorem 3.3 N−1/2{U(θ, β̂1, β̂2, µ̂01(·), µ̂02(·))−U(θ, β1, β2, µ01(·), µ02(·))} converges

to a mean-zero Gaussian process, with covariance

Ω = lim
N→∞

N−1

N∑
k=1

{
h1,Nξk1A

−1
1 + g1,N,k + h2,Nξk2A

−1
2 + g2,N,k

}⊗2

.
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The consistent estimates of Ω is

Ω̂ = N−1

N∑
k=1

{
ĥ1,N ξ̂k1Â

−1
1 + ĝ1,N,k + ĥ2,N ξ̂k2Â

−1
2 + ĝ2,N,k

}⊗2

,

where ĥj,N , ξ̂kj, ĝj,N,k(s, t) (j = 1, 2) are shown in the appendix.

Theorem 3.4
√
N(θ̂ − θ) can be approximated by a mean zero Gaussian process

√
N(θ̂ − θ) = N−1/2{I(θ)}−1

N∑
k=1

Wk(θ) + op(1), (3.10)

for which the formulae for I(θ) and Wk(θ) are given in the appendix.

The variance of
√
N(θ̂−θ) can be estimated by Φ̂ = N−1(Î)−1

∑N
k=1(Ŵk)

⊗2(ÎT )−1,

where Î and Ŵk are the empirical counterparts of I(θ) and Wk(θ).

3.1.3 Simulation studies

Before we conduct finite sample studies to investigate performance of the proposed

estimation procedure, we want to show some examples that motivate us to model the

rate ratio parametrically.

Proposition 1 Under shared frailty model

dµj(t) = Rk · {dµ0j(t) + βTj Zkj(t) dt}, (3.11)

where Rk is identically and independently distributed positive random variable, with

E(Rk)=µ and var(Rk)=σ2. The rate ratio only depends on the variance of frailty

random variable and can be explicitly expressed as

ρ(s, t, θ) = ρ = 1 +
σ2

µ2
. (3.12)
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Proposition 2 Let τ be the maximum observation time and c0 lies in the middle of

0 and τ . Suppose the shared frailty mean rate model for N∗kj(t) is

dµj(t |Zkj(t), Rk(t)) = Rk(t){dµ0j(t) + βTj Zkj(t) dt} (3.13)

where Rk(t) = I(t ≤ c0)Rk0 + I(t > c0)Rk1.

Before we exam the rate ratio in this time varying additive mean rate model, we

introduce the shifted gamma distribution. Define the probability density function of

the shifted Gamma(a, b, δ) as

f(x|a, b, δ) =
1

Γ(a)ba
(x− δ)a−1e

−(x−δ)
b , x ∈ [δ,∞), δ ≥ 0 (3.14)

for x ∈ [δ,∞), δ ≥ 0 and here Γ(·) denotes the Gamma function. Let X come from

shifted Gamma(a, b, δ) then we have E(X)=a · b+ δ and var(X)=a · b2. As we can see

when δ = 0, the shifted Gamma distribution is reduced to the gamma distribution.

If Rk0 and Rk1 are independently from the corresponding shifted gamma distribution

(a0, b0, δ0) and (a1, b1, δ1), then the rate ratio is piecewise constant:

ρ(θ, s ≤ c0, t ≤ c0) = 1 +
a0b

2
0

(a0b0 + δ0)2
,

ρ(θ, s > c0, t > c0) = 1 +
a1b

2
1

(a1b1 + δ1)2
,

ρ(θ, s ≤ c0, t > c0) = ρ(θ, s > c0, t ≤ c0) = 1. (3.15)

Proposition 3 For j = 1, 2, denote λ̃j(t|zj) the event rate of nonhomogeneous Pos-



16

sion Process Ñj(t). Let N0(t) be a nonhomogeneous Poisson process with event

rate λ0(t|zj). Assume that Ñj(t) and N0(t) be mutually independent, i.e. for any

u1, u2..., un, the random vectors {Ñ1(u1), Ñ1(u1), , ..., Ñ1(un)}, {Ñ2(u1), ..., Ñ2(un)}

and {N0(u1), ..., N0(un)} are independent to each other.

Define the counting process Nj(t) as Nj(t) = Ñj(t) + N0(t) for j = 1, 2. Since

Nj(t) is the summation of two independent Poisson processes, Nj(t) is also a Poisson

process with rate λj(t |zj) = λ̃j(t |zj) + λ0(t |zj).

Let ρ0(s, t, θ|z1, z2) and the ρ(s, t, θ| z1, z2) be the rate ratio of {N0(s), N0(t)} and

{N1(s)}, N2(t)} for s, t ≥ 0, then we have ρ(θ, s, t| z1, z2)

ρ(θ, s, t|z1, z2) = 1 +
{ρ0(θ, s, t|z1, z2)− 1}λ0(s|z1)λ0(t|z2)

λ1(s |z1)λ2(t |z2)
. (3.16)

The association is introduced by the shared counting process N0(s) and N0(t). If

ρ0(θ, s, t|z1, z2) = 1, ρ(θ, s, t|z1, z2) = 1, thus if {N0(s), N0(t)} is independent so is

{N1(s), N2(t)} .

We conduct simulation studies to evaluate the finite sample properties based on

the guidance of Proposition 1, 2 and 3. Let τ = 5, Ckj follows a uniform distribution

on [0,τ ], and covariates Zkj are from a uniform[1, 2] for j = 1, 2. The observed events

for the jth type in cluster k would be all the event times that are smaller than Ckj.

We consider I, II, III scenarios where the rate ratio is constant, time varying, and

covariate dependent. Scenario IV is an extension from II and III, with the rate ratio

depending on event time and covariates.
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(I) Constant ρ(s, t, θ) = θ0

Recall the shared frailty model in equation (3.11)

dµj(t |Rk, Zkj(t)) = Rk · { dµ0j(t) + βjZkj(t)} for j = 1, 2.

Let Rk follows i.i.d Gamma(a, b) with E(Rk) = ab and var(Rk) = ab2. By proposition

1, ρ(s, t, θ) = θ0 where θ0 = 1 + ab2/(ab)2 = 1 + 1/a.

Let β1 = 0.5, β2 = 1, µ01(t) = µ02(t) = 0.25t, 0.5t, t. The averaged observed type

1(2) events after right censoring are 2.50(4.37), 3.13(5.02) and 4.37(6.26) respectively.

To variate the strength of the association, we take Rk from the pairs of (a, b) equal

to (4, 0.25), (2, 0.5), (1.33, 0.75) and (1, 1) so that θ0 = 1.25, 1.5, 1.75 and 2

correspondingly.

By taking the expectation of Rk in equation (3.11), the mean event rate still follows

model (3.1). In the first-stage, β̂j, µ̂0j(t) are evaluated by equation (3.6) and (3.5). In

general, the estimates of β0j and µ0j(t) agree with the discussions in literatures. We

show part of the numerical results for the first-stage estimates in Table 1, from which

it is observed that β̂1 and β̂2 converges to the true values β1 = 0.5 and β2 = 1. The

mean Estimated Standard Error of βj (ESE) is very close to the Sample Standard

Error of Estimates (SSE) and Empirical Coverage Probability (CP) is around to 0.95.

We will skip the marginal model simulation result and focus on the estimation of the

parameters in the rate ratio in the studies.

In the second-stage, β̂j, µ̂0j for j = 1, 2 are plugged into equation (3.9) and the

root is derived by the Newton-Raphson method. Convergence is achieved at the

ith iteration if θ(i)−θ(i−1)

θ(i−1) < 10−5 or i > 50. In Table 2, the Bias is negligible for
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all the cases and the Standard Error of Estimates (SEE) is close to the Estimated

Standard Error (ESE). The 95% coverage probability (CP) is also around 0.95. Both

SEE and ESE decrease with a larger sample size. It is also observed that the SEE

and ESE increase when the association between the two processes becomes stronger

(i.e. θ0 is larger) and such increment is slowly reduced by increasing the sample size.

A possible interpretation is that for bivariate recurrent event processes, given the

observed dataset with a fixed sample size, less information would be obtained if the

two events are highly related. We might be able to adapt a weight function in the

estimation equation (3.9) to improve the efficiency of this estimating procedure.

(II) Time Dependent Rate Ratio ρ(θ, s, t)

For the j th individual in the kth cluster, let

Nkj(t) = Ñkj(t) +Nk0(t), for j = 1, 2 (3.17)

where {Ñk1(·), Ñk2(·), Nk0(·)} are independent Poisson process, conditional on co-

variates and frailty. Consider E{ dNk0(t) | zj, Rk} = Rk · λk0(t|Zkj(t) = zj)dt, where

λk0(t|Zkj) dt = dµ0j(t)+β0jZkj(t), and Rk is the frailty and variable is from a positive

i.i.d Distribution. Let E(Rk)=µ0 and var(Rk)=σ
2
0 the rate ratio of {Nk0(s), Nk0(t)}

can be obtained from Proposition 1 as ρ0(s, t, θ|z1, z2) = 1 + σ2
0/µ

2
0.

Denote the mean rate for Ñkj(t) as λ̃kj(t|Zkj(t) = zkj) (for j = 1, 2 and t ∈

(0, τ)) and assume λ̃kj(t|Zkj(t) = zkj) = mj(t)λk0(t|Zkj(t) = zkj), with mj(u) ≥ 0.

By equation (3.17), the mean rate of Nkj(t) is λkj(t|zkj) = [1 + mj(t)]λk0(t |zkj).

Intuitively, it suggests that the mean rate of Ñkj(t) is proportional to that of the

underline common counting process Nk0(t). Especially, mj(t) = 0 makes Nkj(t) is
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reduced to the shared frailty in equation (3.1).

Following Proposition 3, the rate ratio of {Nk1(s), Nk2(t)} can be expressed as

ρ(θ, s, t) = 1 + θ0 ×
1

(1 +m1(t))(1 +m2(s))
, (3.18)

where θ0 =
σ2
0

µ20
. Let 1/(1 + m1(t)) = −0.15t + 0.9, 1/(1 + m2(s)) = −0.15s + 0.9, by

equation (3.18) we obtain

ρ(θ, s, t) = 1 + θ0 × (−0.15t+ 0.9)(−0.15s+ 0.9). (3.19)

Let Rk are i.i.d Gamma(a, b) so that µ0 = ab and σ0 = ab2. We take (a, b) as

(4, 0.25),(2, 0.5), (1, 1) and (0.635, 1.6) and therefore the corresponding θ0 are 0.25,

0.5, 1 and 1.6. To generate moderate and frequent event observations, we take β01 =

β02 = 0 and set µ01(t) = µ02(t) to be 0.25t, 0.5t, 0.75t and t, which gives us averaged

events count as 2.13, 4.17, 5.21 and 6.39 respectively.

The Bias of the estimates (Bias), the Estimated Standard Error (ESE), the Sample

Standard Error of Estimates (SSE) and 95% Empirical Coverage Probability (CP)

are calculated from 1000 simulated datasets with sample size N = 200, 500, 800. The

bias of θ0 is low, the ESE is close to the SSE and the coverage probability is around

0.95. When the rate ratio of Nk1(·) and Nk2(·) become stronger, the ESE and SSE

both increase, which is similar to the scenario I. For details, see Table 3.

(III) Covariate Dependent Rate Ratio ρ(θ;Zk) = θ1I(Zk = 1) + θ2I(Zk = 0)

Let Zk be a cluster level binary covariate. Assume the counting process N∗kj(t)
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follows the shared frailty model

E[dN∗kj(t)|Zk, Rk] = Rk{ dµ0j(t) + βjZk(t) dt}, (3.20)

where E[Rk|Zk] = µ(Zk) and var[Rk|Zk] = σ2(Zk). Following Proposition 1, we obtain

ρ(θ;Zk) = 1 +
σ2(Zk)

µ2(Zk)
. (3.21)

We take β1 = 0.5, β2 = 1, µ01(t) = µ02(t) = 0.25t, 0.5t, 0.75t. Let Zk come from

Bernoulli(p = 0.5), so that Xk has equal chance to be 0 or 1. We generate Rk from

Gamma(4, 0.25) and Gamma(1.33, 0.75) for Zk = 1 and Zk = 0 respectively.

In equation (3.21), ρ(θ;Zk = 1) = 1.25, ρ(θ;Zk = 0) = 1.75 and therefore we

rewrite the rate ratio as

ρ(θ;Zk) = θ1I(Zk = 1) + θ2I(Zk = 0), (3.22)

with θ1 = 1.25 and θ2 = 1.75. Under this setting, the averaged observed type 1(2)

events after right censoring are 2.50(4.37), 3.13(5.02) and 4.37(6.26).

(IV) Time and Covariate Dependent Rate Ratio

Consider the bivariate counting processes {Nk1(·), Nk2(·)} constructed by the sum-

mation of two independent Poisson processes Ñkj(·) and Nk0(·), as described in Propo-

sition 3. Denote ρ0(θ, s, t|z1, z2) and ρ(θ, s, t|z1, z2) be the rate ratio of (Nk0(t), Nk0(s))

and ({Nk1(s), Nk2(t)}) respectively. Following from Proposition 3, we have

ρ(θ, s, t|z1, z2) = 1 +
{ρ0(θ, s, t|z1, z2)− 1}λ0(s|z1)λ0(t|z2)

λ1(s |z1)λ2(t |z2)
,

where λk0(s|z1) ds, λj(s|z1) ds are the conditional mean rate of Nk0(s) and Nk1(s),
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whereas λk0(t|z2) ds, λs(t|z1) dt are that of Nk0(t) and Nk2(t).

Let λk0(t|Zk, Rk) = Rk(0.25+β0jZk) and λ̃kj(t) = 0.5t, where Rk is generated from

i.i.d Gamma(a, b) and Zk is from Bernoulli(0.5). Consider (a, b) equal to (4, 0.25),

(2, 0.5) and (1.33, 0.75) such that ρ0(θ, s, t|z1, z2) = 1.25, 1.5 and 1.75. Let β01 = 0.1,

β02 = 0.2. The rate ratio of Nk1(s) and Nk2(t) is time-varying and dependent on the

covariate Zkj, where

ρ(θ, s, t|Zk) = 1 + θ
(0.25 + 0.1Zk)(0.25 + 0.2Zk)

(0.5t+ 0.25 + 0.1Zk)(0.5s+ 0.25 + 0.2Zk)
, (3.23)

with θ = σ2

µ2
= 0.25, 0.5, 0.75 and 1.

To evaluate the influence of observed event frequency on the estimating procedure,

we modified λk0(t|Zk, Rk) = Rk(0.5 + β0jZk) and kept all the other settings so that

ρ(θ, s, t|Zk) = 1 + θ
(0.5 + 0.1Zk)(0.5 + 0.2Zk)

(0.5t+ 0.5 + 0.1Zk)(0.5s+ 0.5 + 0.2Zk)
. (3.24)

1000 datasets are generated from the above settings. With the estimated β0j and

µ0j(t) plugged into equation (3.23), the estimates of σ2/µ2 can be computed. The

simulation result is summarized in Table 5. The bias is going to zero and the ESE

is getting close to SSE as sample size increase. The coverage probability is getting

around 95% for both θ.
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3.2 Hypothesis testing of the rate ratio

Although the parametric rate ratio model has better interpretability than nonpara-

metric ones, it might suffer from model misspecification and induce model bias. In

this section, we aim at providing a goodness-of-fit procedure to test the parametric as-

sumption of the rate ratio, i.e. H0 : ρ(s, t, θ; z1, z2) = θ0, under the additive marginal

mean rate model. A finite sample study is also conducted to check the performance

of the goodness-of-fit procedure.

3.2.1 Procedure description

The residual process followed by equation (2.4) under model (3.1) is defined as

V (s, t, θ̂, β̂1, µ̂01(·), β̂2, µ̂02(·))

= N−1/2
∑N

k=1

∫ t
0

∫ s
0
WN(u, v)∂ρ(u,v,θ)

∂θ

∣∣∣
θ=θ̂

{
dNk1(u)dNk2(v)

− ρ(u, v, θ̂)Yk1(u){dµ̂01(u) + β̂T1 Zk1(u) du}Yk2(v){dµ̂02(v) + β̂T2 Zk2(v) dv}
}
,

(3.25)

where WN(u, v) is a prespecified weight and for simplicity let WN(u, v) = 1. With

correctly specified marginal mean rate and ρ(s, t, θ0; zk1, zk2), one would expect the

value of equation (3.25) to fluctuate around zero at the any (s, t) ∈ [0, τ ]2.

Let T = sups,t∈[0,τ ]2 ‖ V (s, t, θ̂, β̂1, µ̂01(·), β̂2, µ̂02(·)) ‖ be the supremum test statistic

which measures the maximum observed residuals across the observable periods of

type 1(2) events. A reasonable small T value is expected from a fitting. Since the

underlying distribution of T is intractable, we apply the Gaussian multiplier method

to approximate its empirical distribution.
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The Gaussian multiplier method.

The first order Taylor expansion of equation (3.25) w.r.t θ is

V (s, t, θ̂, β̂1, µ̂01(·), β̂2, µ̂02(·))= V
(
s, t, θ, β̂1, µ̂01(·), β̂2, µ̂02(·)

)
+N−1/2

∂V
(
s, t, θ, β̂1, µ̂01(·), β̂2, µ̂02(·)

)
∂θ

N1/2(θ̂ − θ)

+ op(1), (3.26)

which can be further decomposed as

V
(
s, t, θ̂, β̂1, µ̂01(·), β̂2, µ̂02(·)

)
= V (s, t, θ, β1, µ01(·), β2, µ02(·))

+N−1/2

N∑
k=1

{
Υk1(s, t, θ) + Υk2(s, t, θ) + ζk1(s, t, θ) + ζk2(s, t, θ)

}
+ op(1), (3.27)

with details shown in Appendix C. Let T ∗ = sups,t∈[0,τ ] ‖ V ∗(s, t) ‖ and

V ∗(s, t, θ̂)

=
{
V (s, t, θ̂, β̂1, µ̂01(·), β̂2, µ̂02(·))

+N−1/2
∑N

k=1 Υ̂k1(s, t, θ̂) + ζ̂k1(s, t, θ̂) + Υ̂k2(s, t, θ̂) + ζ̂k2(s, t, θ̂)
}
Gk, (3.28)

where G = (G1, G2, G3, ...GN) is a vector of i.i.d standard normal random numbers.

Comparing equation (3.28) and (3.27), the multiplication of a Gaussian Random

variable Gk keeps V ∗(s, t, θ̂) and V̂ (s, t, θ̂, µ̂1(·;Zk1), β̂1, µ̂01(·), β̂2, µ̂02(·)) sharing the

same expectation and variance, thus T ∗ and T follows the same distribution.

The Gaussian Multiplier re-sampling method is summarized in Algorithm 1. In

a single simulation, one Gaussian random vector {G1, G2, ..., GN} is generated and
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V ∗(s, t, θ̂) is calculated from equation (3.28). By taking the maximum of V ∗(s, t, θ̂)

across all the equally distanced grids, we have one sample from the T ∗ distribution.

Repeating this simulation procedure 1000 times allows us to obtain 1000 samples and

therefore the empirical distribution of T ∗. On the other hand, the supremum test

statistic T can be obtained by taking the maximum of equation (3.25). We consider

the 95th percentile among the 1000 realizations of T ∗ as the critical value (C95) and

would reject H0 if T > C95.

3.2.2 Simulation studies

In this section, we conduct simulation studies to investigate the performance of the

proposed goodness-of-fit procedure.

For bivariate counting processes, we will firstly detect the existence of depen-

dency. The null model is the independent bivariate counting processes and the the

constant rate ratio model is treated as its alternative. Secondly, we propose the

H0 : ρ(s, t, θ; z1, z2) = θ0 and Piecewise Constant (PWC), Time Dependent (TD),

Time and Covariate Dependent (TCD) models as Ha models. The size and power of

the hypothesis test are also computed via Gaussian Multiplier Method.

3.2.2.1 Testing for independence

The first hypothesis of interest is whether {Nk1(·)} and {Nk2(·)} are independent,

which is equivalent to test H0 : ρ = 1 vs Ha : ρ 6= 1. To investigate the size, events

data are generated from an additive marginal model

dµj(t;Zkj(t)) = dµ0j(t) + βjZkj(t).
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Let τ = 5, β01 = 0.5, β02 = 1, Ckj follows Uniform[0, τ ] and covariates Zk1, Zk2 are

from a uniform distribution on [1, 2]. We take µ0j(t) = 0.25t, 0.5t, 0.75t, and t which

gives the average observed events counts range from 2.50 to 6.26. Datasets under

Ha : ρ(θ, s, t) = θ0 are generated from the shared frailty model

dµj(t;Zkj(t), Rk) = Rk{dµ0j(t) + βjZkj(t)},

where Rk from Gamma(a, b) with (a, b) = (4, 0.25), (2, 0.5), (1.33, 0.75), (1, 1). Thus

θ0 in Ha are equal to 1.25, 1.5, 1.75, 2. We compare the supreme test statistic under

ρ(θ, s, t) = θ0 to the corresponding value obtained by assuming ρ = 1 and regard the

rejection rate among 1000 simulations as the power of the test.

We only consider the case when µ0j = 0.25t, since it has the smallest number of ob-

served events and other cases would have even more rejection, i.e. higher power. The

empirical size (power) calculated as the rejection rate from 1000 simulated datasets

under H0 : ρ = 1 (Ha : ρ(s, t, θ; z1, z2) = θ0).

Table 8 shows that the proposed testing procedure has size around its nominee

value (5%). The test procedure is powerful at detecting the non-independent case

with probability above 99%.

3.2.2.2 Testing for parametric form with constant rate ratio

We are also interested in testing the parametric assumption of the rate ratio, i.e.

H0 : ρ(θ, s, t) = θ0. The null model is the shared frailty model in equation (3.11),

Shared Frailty: E[dN∗kj(u)|Rk, Zkj(u)] = Rk{dµ0j(u) + βTj Zkj(u) du}

from which ρ(s, t, θ) = θ0 where θ0 = 1 + σ2/µ2, E[Rk] = µ and var[Rk] = σ2.
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From the first section in Table 9, we see the empirical size of the test under null

model is bounded by its nominee value 0.05. Thus the hypothesis testing can control

the probability of mistakenly reject H0 : ρ(s, t, θ) = θ0 under 0.05.

To investigate the power of the test, we propose three alternative models to in-

troduce the time varying and covariate dependency cases: the Piecewise Constant

Rate Ratio Model(PWC), the Time Dependent Rate Ratio Model(TD Model) and

the Covariate Dependent Rate Ratio Model(CD Model). Alternative models and the

corresponding performance are illustrated in the following sections.

(I) The piecewise constant rate ratio model - PWC Model

Described in equation (3.29), the random effect is time varying, which is a natural

generalization of the shared frailty model

PWC: dµj(t |Rk(t), Zkj(t)) = Rk(t){dµ0j(t) + βTj Zkj(t) dt}. (3.29)

For simplicity, we consider Rk(t) come from different distributions only when t falls

in non-overlapping intervals.

Let τ = 5, Rk(t) = I(t < 2.5)Rk0 + I(t > 2.5)Rk1, where Rk0 and Rk1 are in-

dependently from the shifted Gamma(a0, b0, δ0) and Gamma(a1, b1, δ1) respectively.

The shifted Gamma Distribution with (a, b, δ) as shape, scale and shift parameters is

introduced here to avoid rare event observations. We take µ01(u) = µ02(u) = 0.125u2,

β1 = 0.5, β2 = 1, and Zk1(u), Zk2(u) from uniform[1, 2].

Table 6 summarizes the parameter settings and the corresponding Rate Ratio value.

We see the variation of the association is increasing from PWC1 to PWC4 and one
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can visualize the trend in Figure 1 as well.

Table 6: Summary of simulation settings under the piecewise constant rate ratio
model with the corresponding ρ values followed from Proposition 2.

Settings PWC1 PWC2 PWC3 PWC4
Rk0 : (a0, b0, δ0) (0.25,1,0.75) (0.5,1,0.5) (0.25,2,0.5) (0.25,2,0.5)
Rk1 : (a1, b1, δ1) (0.25,1,0.75) (0.25,1,0.75) (0.5,1,0.5) (0.25,1,0.75)
ρ(s < 2.5, t < 2.5) 1.25 1.5 2 2
ρ(s > 2.5, t < 2.5) 1 1 1 1
ρ(s > 2.5, t > 2.5) 1.25 1.25 1.5 1.25

To evaluate the power of the test, first, we generate 1000 datasets and within each

simulation, the rate ratio ρ(θ, s, t) is estimated under (H0 : ρ(s, t, θ) = θ0). The

residual process and supreme statistic T are computed and a rejection is made when

T > C95, where C95 is the 95% percentile of Gaussian Multiplier samplers. The

overall rejection rate among the 1000 datasets is considered as the empirical power of

the hypothesis test. From Table 9, the power increases with the sample size and it is

more likely to detect the divergence from H0 when the association become stronger.

(II) Time dependent rate ratio model - TD model

Assuming {Nk1(s), Nk2(t)} follows the Bivariate Counting processes below

Nk1(s) = Ñk1(s) +Nk0(s),

Nk2(t) = Ñk2(t) +Nk0(t), (3.30)

where Ñk1(·), Ñk2(·) and Nk0(·) follow Poisson Processes and are also mutually inde-

pendent.

Let λk0(t|Zkj, Rk) dt be the event rate of Nk0(t) and λk0(t|Zkj, Rk) = Rk(dµ0j(t) +

β0jZkj(t), where Rk is the frailty variable with mean µ and variance σ2. For j =
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Figure 1: Visualization of Piecewise Constant ρ(s, t, θ) (PWC) under the Additive
Marginal Models. The variation of ρ(s, t) between different pieces is growing from
PWC1 to PWC4.

1, 2 and t ∈ (0, τ), assume λ̃kj(t|Zkj(t)) = mj(t)λk0(t|Zkj(t)), with a nonnegative

multiplier function mj(t). Following simulation settings in equation 3.19 to generate

data that share the rate ratio as

TD model: ρ(θ, s, t) = 1 + θ0 × (−0.15s+ 0.9)(−0.15t+ 0.9). (3.31)

where θ0 = σ2

µ2
reflects the time varying component in ρ(θ, s, t) proportionally. To

capture different time varying levels, we take Rk from a shifted gamma distribution,

with parameters (a, b, δ) = (0.25, 2, 0.5),(0.2, 3, 0.4) (0.25, 3, 0.25) and (0.2, 4, 0.2) so

that µ = 1 and σ2 = 1, 1.8, 2.25 and 3.2. Let β01 = β02 = 0, τ = 5, Ckj be uniform

on (0, τ), and Zk1, Zk2 are i.i.d uniform(1, 2). Simulation settings are summarized in



34

Table 7 and Figure 2.

Table 7: Simulation settings of the Time Varying Rate Ratio (TD models). From
TD1 to TD4, the value of σ2/µ2 is increasing and so is the association between the
bivariate recurrent event processes.

Settings TD1 TD2 TD3 TD4
(µ, σ2) (1, 1) (1, 1.8) (1, 2.25) (1, 3.2)

σ2

µ2
1 1.8 2.25 3.2

Figure 2: The contour plot of the Rate Ratio ρ(s, t) under the additive marginal
mean rate models. The x-axis and y-axis represents the observation time for type1
and type2 events. From upper left to lower right, the heterogeneity of ρ(s, t) is
increased.

(a) TD1 contour plot (b) TD2 contour plot

(c) TD3 contour plot (d) TD4 contour plot

The variation of ρ(θ, s, t) is scaling up from TD1 to TD4, so does the empirical

power of the test shown in Table 9. From our observation, the proposed model

checking procedure performs well with a large sample size, especially when the Rate
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Ratio is very time dependent.

(III) Time and Covariates Dependent Rate Ratio Model -TCD Model

Under the same framework of the TD Model, assume Nk0(t) and Ñkj(t) are Pois-

son processes with rate conditional on covariates and unobservable frailty Rk as

λk0(t|Zkj, Rk) = Rk{0.25 + β0jZkj} and λ̃kj(t) = t respectively. The conditional

rate of Nkj(t) equals to λkj(t|Zkj, Rk) where λkj(t|Zkj, Rk) = t+ {0.25 + β0jZkj}.

Let β01 = 0.5, β02 = 1, Zkj follow uniform(1, 2). Take Rk as i.i.d Gamma(1/v, v)

with v = 0.5, 0.8, 1, 2 so that E(Rk) = 1 and var(Rk) = 0.5, 0.8, 1, 2. Denoted by

ρ(θ, s, t|Zk1, Zk2) the rate ratio of {Nk1(s), Nk2(t)}, where

ρ(θ, s, t|Zk1, Zk2) = 1 + θ
(0.25 + 0.5Zk1)(0.25 + Zk2)

(t+ 0.25 + 0.5Zk1)(s+ 0.25 + Zk2)
. (3.32)

is obtained by Proposition 3, with true θ equal to 0.5, 0.8, 1 and 2.

The average rejection of H0 : ρ(s, t, θ) = θ0 under equation (3.32) among 1000 are

summarized in Table 9. The test is powerful at detecting violation of H0 and the

rejection rate of the test is consistently increase when the sample size changed from

200 to 800.
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Algorithm 1 Gaussian Multiplier Method

For dataset m = 1, 2, ...,M

1. Calculate T by (3.2.1)

2. Consider a large integer B, say 1000. We generate a B × N matrix G com-
posed by i.i.d Standard Gaussian random numbers, so that each row is an N
dimensional vector: 

G11 G12 G13 . . . G1n

G21 G22 G23 . . . G2n

. . . . . . . . . . . . . . . . . . . . . . . . . .
GB1 GB2 GB3 . . . GBn


For each row, applying equation (3.28) to calculate the realization of V ∗(s, t)
and T ∗. Enumerate all the rows to get a list of {V ∗1 (s, t), V ∗2 (s, t), ..., V ∗B(s, t)}.

3. Denote the 95th percentile of {V ∗1 (s, t), V ∗2 (s, t), ..., V ∗B(s, t)} to be C95. We
would reject H0 if T > C95 and fail to reject H0 if T < C95.

Calculate the percentage of rejections in a total ofM datasets to find the size or the
power of test statistic.
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Table 8: Observed sizes and powers of the test statistic T via the proposed model-
checking procedure under H0 : ρ = 1 vs Ha : ρ(s, t, θ) = θ and θ > 1 , at significance
level 0.05. The numbers in the parentheses represent the count for type 1 and type 2
event across the observation period. Each entry is calculated based on 1000 Gaussian
multiplier samples with 1000 replicates.

Size
event count ρ N=200 N=500 N=800
(2.50, 4.37) 1 0.043 0.052 0.051
(3.13, 5.02) 1 0.051 0.057 0.051
(3.76, 5.64) 1 0.043 0.053 0.041
(4.37, 6.26) 1 0.045 0.049 0.054
event count Power

ρ N=200 N=500 N=800
(2.50, 4.37) 1.25 0.995 1.000 1.000

1.5 1.000 1.000 1.000
1.75 1.000 1.000 1.000

2 1.000 1.000 1.000
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Table 9: Observed sizes and powers of the test statistic T for the proposed model-
checking procedure under H0 : ρ(θ, s, t) = θ (i.e. constant) vs Ha : ρ is not constant,
at 0.05 significance level. Each entry is calculated based on 1000 Gaussian multiplier
samples with 1000 replicates.

Size

event count N ρ = 1.25 ρ = 1.5 ρ = 2 ρ = 2.25
200 0.038 0.038 0.031 0.038

(3.50, 4.67) 500 0.057 0.037 0.032 0.040
800 0.042 0.042 0.051 0.046

Power

event count N PWC1 PWC2 PWC3 PWC4
200 0.173 0.579 0.638 0.755

(2.91, 4.80) 500 0.421 0.912 0.958 0.983
800 0.622 0.979 0.990 0.999

TD1 TD2 TD3 TD4
200 0.197 0.231 0.311 0.307

(4.27, 4.27) 500 0.556 0.621 0.760 0.738
800 0.773 0.821 0.887 0.894

TCD1 TCD2 TCD3 TCD4
200 0.250 0.336 0.405 0.455

(6.67, 8.54) 500 0.514 0.678 0.756 0.823
800 0.735 0.900 0.917 0.933



CHAPTER 4: ESTIMATION AND INFERENCE OF THE RATE RATIO UNDER
THE MULTIPLICATIVE MARGINAL MODEL

4.1 Estimation by a two-stage approach

Additive and multiplicative mean rate models postulate a different relationship be-

tween the underline counting process and the covariates. The multiplicative model,

also known as Cox model is popular due to its easy implementation and clear inter-

pretation of the covariate effect. In this chapter, we develop the estimation procedure

for the rate ratio under the multiplicative marginal event rate model.

Lin et al. (2000) proposed the mean rate of the counting process N∗kj(t) as

E[dN∗kj(t)|Zkj(t)] = dµj(t;Zkj(t)),

dµj(t;Zkj(t)) = eβ
T
j Zkj(t) dµ0j(t), (4.1)

where βj is a p-dimensional vector, µ0j(t) is an unspecified baseline rate at time t.

Assume ρ(s, t, θ; zK1, zk2) is the rate ratio of N∗k1(t) and N∗k2(s). θ is the dependence

parameter which can be approximated by solving the estimation equation (2.3), with

the µ̂j(t) estimated by the method proposed by Lin et al. (2000). We adjust some

notations from Chapter 3 with a superscription c to represent estimators derived from

model (4.1).
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4.1.1 Review the estimation of the marginal model

Adapting from the approach of Lin et al. (2000), for type j event we define

dN̄·j(t) =
N∑
k=1

dNkj(t),

M c
kj(t) = Nkj(t)−

∫ t

0

Ykj(u)eβ
T
j Zkj(u) dµ01(u),

Sdj (t, β) = N−1

N∑
k=1

Ykj(t)Z
⊗d
kj (t)eβ

TZkj(t), d = 0, 1, 2 (4.2)

where a⊗0 = 1, a⊗1 = a, and a⊗2 = aaT . Let Z̃j(t, β) = S1
j (t, β)/S0

j (t, β); z̃j(t, β),

sdj (t, β) be the limit of Z̃j(β, t) and Sdj (t, β) as N →∞ respectively.

Denote β̃j the solution to Lcj(β, τ) = 0, where Lcj(β, τ) =
∑N

k=1

∫ τ
0
{Zkj(u) −

Z̃j(u, β)}dNkj(u) is the partial likelihood score function.

Under certain regularity conditions, β̃j converges almost surely to βj and
√
n(β̃j −

βj) has weak convergence to a zero-mean normal random vector with covariance

matrix Γj ≡ (Acj)
−1Σc

j(A
c
j)
−1. When β̃j is available, the baseline function µ0j(t) can

be consistently estimated by the Aalen-Breslow type estimator

µ̃0j(t, β̃j) =

∫ t

0

dN̄j(u)

NS0
j (u, β̃j)

, t ∈ [0, τ ]. (4.3)

We investigate the asymptotic properties of θ̂ under the assumption that the distri-

bution functions of the Ckj are independent from covariates and the counting process.

We recall Theorem 4.1, Theorem 4.2 due to Lin et al. (2000).

Theorem 4.1 β̃j converges almost surely to βj and
√
N(β̃j − βj) is asymptotically
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normal with covariance matrix (Acj)
−1Σc

j (A
c
j)
−1, where

Acj = E
[ ∫ τ

0

{Z1j(u)− z̃j(u, βj)}⊗2Y1j(u)eβ
T
j Z1j(u) dµ0j(u)

]
,

Σc
j = E

[ ∫ τ

0

{Z1j(u)− z̃j(u, βj)}dM c
1j(u)

∫ τ

0

{Z1j(v)− z̃j(v, βj)}dM c
1j(v)

]
. (4.4)

The asymptotic approximation of β̃j is

√
N(β̃j − βj) = (Acj)

−1N−1/2

N∑
k=1

∫ τ

0

{Zkj(u)− z̃kj(u, β̃j)} dMkj(u, βj) + op(1), (4.5)

from which the covariance matrix can be consistently estimated by Ã−1
j Σ̃jÃ

−1
j , with

Ãj = N−1

N∑
k=1

∫ τ

0

{Zkj(u)− Z̃kj(u, β̃j)}⊗2Ykj(u)eβ̃
T
j Zkj(u) dµ̃0j(u),

Σ̃j = N−1

N∑
k=1

ξ̃⊗2
kj ,

ξ̃kj =

∫ τ

0

{Zkj(u)− Z̃kj(u, β̃j)} dM̃kj(u),

M̃kj(t) = Nkj(t)−
∫ t

0

Ykj(u)eβ̃
T
j Zkj(u)dµ̃0j(u).

Theorem 4.2 For j = 1, 2, µ̃0j(t) ≡ µ̃0j(t, β̃j) converges almost surely to µ0j(t) in

t ∈ [0, τ ], and
√
N{µ̃0j(t)−µ0j(t)} converges weakly to a Gaussian process with mean

zero and covariance function given by

Γcj(s, t) = E[φckj(s)φ
c
kj(t)] at (s, t),

where

φckj(t) =

∫ t

0

dM c
kj(u; βj)

s0
j(u, βj)

−HT (t; βj)(A
c
j)
−1

∫ τ

0

{Zkj(u)− z̃kj(u, βj)} dM̃kj(u), k = 1, ..., N

(4.6)
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and

H(t; βj) =

∫ t

0

z̃j(u, βj)dµ0j(u) (4.7)

The covariance function Γcj(s, t) can be consistently estimated by

Γ̃j(s, t) = N−1

N∑
k=1

φ̃kj(s)φ̃kj(t) (4.8)

where

φ̃kj(t) =

∫ t

0

dM̃kj(u)

S0
j (u, β̃j)

− H̃T (t; β̃j)Ã
−1
j

∫ τ

0

{Zkj(u)− Z̃kj(u, β̃j)} dM̃kj(u)

and

H̃(t; β̃j) =

∫ t

0

Z̃T
j (u, β̃j)

dN̄j(u)

NS0
j (u, β̃j)

.

4.1.2 Estimation of the rate ratio

In the second stage, the dependence parameter can be estimated by the root to the

following estimation equation

U c
(
θ, β1, µ01(·), β2, µ02(·)

)
=

N∑
k=1

U c
k

(
θ, β1, µ01(·), β2, µ02(·)

)
, (4.9)

where

U c
k

(
θ, β1, µ01(·), β2, µ02(·)

)
=

∫ τ

0

∫ τ

0

∂ρ(θ, s, t)

∂θ
·{

dNk1(s) dNk2(t)− ρ(θ, s, t)Yk1(s)eβ
T
1 Zk1(s) dµ01(s)Yk2(t)eβ

T
2 Zk2(t) dµ02(t)

}
. (4.10)
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with β1, β2, µ01(·), µ02(·) replaced by estimator β̃1, β̃2, µ̃01(·), µ̃02(·) from the first

stage.

The resulting estimator θ̃ does not have an explicit form. We adapt the asymptotic

properties of β̃j and µ̃0j(·) from Theorem 4.1 and Theorem 4.2 to show the weak

covergence of θ̃.

Theorem 4.3 N−1/2
{
U c
(
θ, β̃1, µ̃01(·), β̃2, µ̃02(·)

)
− U c

(
θ, β1, µ01(·), β2, µ02(·)

)}
fol-

lows a mean zero Gaussian process and has the following approximation

N−1/2{U c(θ, β̃1, dµ̃01(·), β̃2, dµ̃02(·))− U c(θ, β1, dµ01(·), β2, dµ02(·))}

= N−1/2

N∑
k=1

{
hc1,N(A1)−1ξck1 + gc1,N,k + hc2,N(A2)−1ξk2 + gc2,N,k

}
+ op(N

−1/2), (4.11)

where

qcl (θ, s, t) = −ρ(θ, s, t)
∂ρ(θ, s, t)

∂θ
Yl1(s)eβ

T
1 Zl1(s)Yl2(t)eβ

T
2 Zl2(t),

hc1,N = N−1

N∑
l=1

∫ τ

0

∫ τ

0

qcl (θ, s, t)Z
T
l1(s) dµ01(s)dµ02(t),

hc2,N = N−1

N∑
l=1

∫ τ

0

∫ τ

0

qcl (θ, s, t)Z
T
l2(s) dµ02(t)dµ01(s),

gc1,N,k = N−1

N∑
l=1

∫ τ

0

∫ τ

0

qcl (θ, s, t) dµ02(t) dφck1(s),

gc2,N,k = N−1

N∑
l=1

∫ τ

0

∫ τ

0

qcl (θ, s, t) dµ01(s) dφck2(t). (4.12)

The right hand side in equation (4.11) can be estimated by

N−1/2

N∑
k=1

{
h̃1,N Ã

−1
1 ξ̃k1 + g̃1,N,k + h̃2,N Ã

−1
2 ξ̃k2 + g̃2,N,k

}
,

where h̃1,N , ξ̃k1, h̃2,N , ξ̃k2, g̃1,N,k, g̃2,N,k are obtained by plugging β̃j, θ̃, µ̃0j(·) and
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φ̃kj(t) into equation (4.12).

Theorem 4.4 We show in the Appendix that
√
N(θ̃ − θ) is asymptotically normal

and has the following i.i.d. approximation:

√
N(θ̃ − θ)

= N−1/2{Ic(θ, β1, µ01(·), β2, µ02(·))}−1

N∑
k=1

W c
k (θ, β1, µ01(·), β2, µ02(·)) + op(1) (4.13)

where

Ic(θ, β1, µ01(·), β2, µ02(·)) = −N−1

N∑
k=1

{∂U c
k(θ, β1, µ01(·), β2, µ02(·))

∂θ

}T
, (4.14)

and

W c
k (θ, β1, µ01(·), β2, µ02(·))

= U c
k(θ, β1, µ01(·), β2, µ02(·)) +

{
hc1,N(Ac1)−1ξck1 + gc1,N,k + hc2,N(Ac2)−1ξck2 + gc2,N,k

}
.

(4.15)

By the central limit theorem
√
N(θ̃ − θ) is asymptotically normal with mean 0 and

variance which can be estimated by Φ̃ = N−1(Ĩ)−1(
∑N

k=1 W̃
⊗2
k )(ĨT )−1, where Ĩ and

W̃k are the empirical counterparts of

Ic(θ, β1, µ01(·), β2, µ02(·))

W c
k (θ, β1, µ01(·), β2, µ02(·))

respectively, obtained by substituting θ̃, β̃1, µ̃01(·), β̃1, µ̃02(·) into equation (4.14) and

(4.15).
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4.1.3 Simulation studies

To evaluate the performance of the proposed method, we conduct a finite sample

simulation study with some shared settings. The end of study time is set as τ = 4,

censoring time follows uniform(3, 4), and covariates {Zkj} for the two types of disease

are generated from uniform(1, 2).

(I) Constant Rate Ratio

Under the shared random effect model, E[dN∗kj(t)|Rk, Zkj(t)] = Rk{eβ
T
j Zkj(t) dµ0j(t)},

where {Rk} is the cluster level random effect, and are assumed to be i.i.d from a

positive distribution with mean E(Rk) = 1 and variance var(Rk) = σ2. Proved in

Proposition1 that the Rate Ratio is reduced to ρ(θ) = 1 + σ2, which only related to

the variance of random effect Rk.

Let β1 = 0.2 β2 = 0.4. Take µ01(t) = µ02(t) = 0.125t2, 0.25t2, 0.375t2, and 0.5t2

such that the averaged observed type 1(2) events after right censoring are 2.06(2.84),

4.18(5.67), 6.25(8.48), 8.3(11.3) respectively. Rk are independently simulated from a

Gamma distribution with mean 1 and variance σ2 = 0.25, 0.5, 0.75, which leads to

ρ = 1.25, 1.5, 1.75.

In the first-stage, we estimate β1, β2 based marginal mean rate model (4.1). From

the result in Table 10, β̂1 and β̂2 converges to true the values β1 = 0.2 and β2 =

0.4, and the ESE (Estimated Standard Error) is close to SEE (Standard Error of

Estimates). The empirical coverage probability is close to its 95% nominee value.

In the second-stage, we substitute β̃1, β̃2, µ̃01(·), µ̃02(·) into the estimation equation

(4.9) and obtain θ̃ by solving U(θ, β̃1, µ̃01(·), β̃2, µ̃02(·)) = 0. The average Bias, SEE
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(Standard Error of Estimates), ESE (Estimated Standard Error), CP (coverage prob-

ability of the 95% confidence interval) of ρ are summarized in Table 11, where each

entry based on 1000 replicates.

ρ̃ is unbiased and the estimated standard error can be reduced by increasing the

sample size. Similar to the estimation result shown in table 3, the standard error

is underestimated which cause the coverage probability consistently slightly smaller

than 95%, especially when the ρ increases. One possible explanation is that the

information gains from increasing the sample size is offset by the stronger association

between two recurrent event processes. An extreme condition is that the two processes

are identical, then we are actually observing and utilizing the information for a single

process and therefore the rate ratio would be underestimated.

(II) Time varying Rate Ratio

Assume the counting process for j th type event in cluster K at time u as

Nkj(t) = Ñkj(t) +Nk0(t), for j = 1, 2

where {Ñkj(t)}, and {Nk0(t)} are mutually independent. Denote ρ0(θ, s, t) be the rate

ratio of Nk0(s) and Nk0(t). By proposition 3, we have the rate ratio of {Nk1(s), Nk2(t)}

as

ρ(θ, s, t |z1(s), z2(t)) = 1 + {ρ0(θ, s, t)− 1}λk0(s|z1(s))λk0(t|z2(t))

λk1(s|z1(s))λk2(t|z2(t))
,

where E{dNk0(s)|z1} = λk0(s|z1(s)) ds, E{dNk1(s)|z1(s)} = λk1(s|z1(s)) ds, while

E{dNk2(t)|z2(t)} = λk2(t|z2(t)) dt. It is straight forward to show λk1(s |z1(s)) =

λk0(s |z1(s)) + λ̃k1(s|z1(s)), with λ̃k1(s|z1(s)) be the mean event rate for counting



47

process Ñk1(s). The same logic applies to type 2 event.

For simulation, we start with a simple model by letting λ̃k1(s|z1(s)) = m(s)λk0(s|z1(s))

and λ̃k1(t|z2(t)) = m(t)λk0(t|z2(t)),where m(s),m(t) > 0, for s, t ∈ [0, τ ]. Therefore

the rate ratio would be

ρ(θ, s, t) = 1 + {ρ0(θ, s, t)− 1} 1

(1 +m(s))(1 +m(t))
.

By specifying m(·), the rate ratio could be designed to be time varying under certain

patterns. Here we let 1/(1+m(s)) = (−0.15s+0.9) and 1/(1+m(t)) = (−0.15t+0.9).

To specify the ρ0(θ, s, t), we assume that

E[dN∗k0(s)|Rk, Zk1(s)] = Rk · {eβ
T
1 Zk1(s) dµ01(s)},

and

E[dN∗k0(t)|Rk, Zk2(t)] = Rk · {eβ
T
2 Zk2(t) dµ02(t)},

where Rk is the cluster level random effect which is , independent and identically from

a positive distribution. The coefficient of covariates for type1 and type 2 events are

β1 = β2 = 0. Rk are generated from Gamma distribution with mean 1 and variance

0.25, 0.5, 1, 1.5, and 2, and therefore ρ0(θ, s, t) = 1.25, 1.5, 2 and 2.5. The rate ratio

ρ(θ, s, t) can be represented as

ρ(θ, s, t) = 1 + θ(−0.15s+ 0.9)(−0.15t+ 0.9), (4.16)

with the parameter θ equal to 0.25, 0.5, 1 and 1.5.

A simulation study for the Rate Ratio with sample size K = 200, 500, 800 is sum-

marized in Table 12, with each entry based on 1000 simulations. The estimator is
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unbiased and the estimated standard error is very close to its true value, with coverage

probability around 95%. The SSE and ESE is decreasing while increasing the sample

size showing that the estimation procedure is more efficient with a large sample size.

We observe consistently higher standard error when the association between bivariate

recurrent processes increases.

(III) Covariate Dependent Rate Ratio

Let Zkj = Zk denote the cluster level covariates. Assume the shared Frailty model

E[dN∗kj(t)|Zk, Rk] = Rk · eβ0jZk(t) dµ0j(t) (4.17)

where E[Rk|Zk] = µ(Zk) and var[Rk|Zk] = σ2(Zk). Following Proposition 1, ρ(s, t, θ) =

1 + σ2(Zk)
µ2(Zk)

. Denoted by the θ1 and θ2 the value of ρ(s, t, θ) when Zk = 1, 0, i.e.

ρ(s, t, θ) = θ1I(Zk = 1) + θ2I(Zk = 0). (4.18)

Let β01 = 0.2, β02(t) = 0.4. We consider µ0j(t) = 0.125t2, 0.25t2 for moderately

observed event process, whereas µ0j(t) = 0.375t2 and 0.5t2 stand for more frequently

observed ones. Zk from Bernoulli(p = 0.5) and Rk from Gamma(1/vk, vk) so that

E[Rk]=1 and var[Rk] = vk. To represent the weak and the strong association, consider

vk equal to 0.25 and 0.75 for Zk = 1 and Zk = 0 respectively which gives us θ1 = 1.25

and θ2 = 1.75 correspondingly.

Simulation result for sample size 200, 500, 800 and 1100, each with 1000 replicates

are shown in Table 13. The estimator is unbiased and the ESE is close to SEE. The

coverage probability is approaching to 0.95 when the sample size increases from 200

to 1100. The ESE and SEE of θ2 are consistently larger than that of θ1, even through
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both are reduced in a larger sample size.

(IV)Time and Covariate Dependent Rate Ratio

For j = 1, 2, we construct a bivariate counting process Nkj with Nkj(t) = Ñkj(t) +

Nk0(t). Let

E{dNk0(t)|Zkj, Rk} = λk0(t|Zkj, Rk) dt

E{dÑkj(t)|Zkj, Rk} = λ̃kj(t) dt

where λk0(t|Zkj, Rk) = Rke
β0jZkj0.25t and λ̃kj(t) = 0.25.

We takeRk from i.i.d Gamma(a, b) with (a, b) equal to (4, 0.25), (2, 0.5), (1.33, 0.75)

and (1, 1) such that ρ0(θ, s, t) = 1.25, 1.5, 1.75 and 2. Let Zk is from Bernoulli(0.5),

β01 = 0.1 and β02 = 0.2. By Proposition 3, the rate ratio of Nk1(s) and Nk2(t) is

time-varying and dependent on the covariate Zkj which is denoted by

ρ(θ, s, t|Zk1, Zk2) = 1 + θ
(0.25t e0.1Zk1)(0.25s e0.2Zk2)

(0.25 + 0.25t e0.1Zk1)(0.25 + 0.25s e0.2Zk2)
, (4.19)

where θ = ρ0(θ, s, t)− 1 = 0.25, 0.5, 0.75 and 1.

To evaluate the performance difference between moderate and high frequency event

processes, we consider λk0(t|Zkj, Rk) = Rk · 0.5eβ0jZkj . While keeping other settings

the same, the event process Nkj(t) would expect to have more observations than the

previous setting and following equation (4.19) we have

ρ(θ, s, t|Zk) = 1 + θ
(0.5t e0.1Zk1)(0.5s e0.2Zk2)

(0.25 + 0.5t e0.1Zk2)(0.25 + 0.5s e0.2Zk2)
. (4.20)

The simulation result from Table 14 shows that the estimating procedure works

well for both settings. The bias is going to zero and the ESE is getting close to SSE
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as sample size increase. The coverage probability is getting around 95% for both θ.
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4.2 Hypothesis testing of the rate ratio

4.2.1 Procedure description

For the case that the marginal mean rate model is additive, we developed a supreme

test statistic to check the null hypothesis ρ(s, t, θ) = θ. We apply the same procedure

and illustrate the test statistic below for hypothesis testing purposes. Define the

residual process under the Multiplicative Marginal Mean Rate Model as

V c(s, t, θ) =

N−1/2

N∑
k=1

∫ t

0

∫ s

0

w(u, v)
∂ρ(u, v, θ)

∂θ

∣∣∣
θ=θ

{
dNk1(u)dNk2(v)

− ρ(u, v, θ)Yk1(u)dµ01(u)eβ
T
1 Zk1(u) · Yk2(v)dµ02(v)eβ

T
2 Zk2(v)

}
. (4.21)

Denote Ṽ (s, t, θ̃) the empirical value of V c(s, t, θ) as

Ṽ (s, t, θ) =

N−1/2

N∑
k=1

∫ t

0

∫ s

0

∂ρ(u, v, θ)

∂θ

∣∣∣
θ=θ̃

{
dNk1(u)dNk2(v)

− ρ(u, v, θ̃)Yk1(u)dµ̃01(u)eβ̃
T
1 Zk1(u) · Yk2(v)dµ̃02(v)eβ̃

T
2 Zk2(v)

}
.

and the Supreme Test Statistic as

T̃ = sup
s,t∈[0,τ ]

‖ Ṽ (s, t, θ̃) ‖ . (4.22)

Similarly, to access the empirical distribution of T , firstly we approximate it by the

first-order Taylor expansion,

Ṽ (s, t, θ̃) = Ṽ (s, t, θ) +N−1/2∂Ṽ (s, t, θ̃)

∂θ
N1/2(θ̃ − θ) + op(1) (4.23)
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where

Ṽ (s, t, θ) = V c(s, t, θ) +N−1/2

N∑
k=1

{
Υ ck1(s, t) + Υ ck2(s, t)

}
+ op(1),

N−1/2∂Ṽ (s, t, θ)

∂θ
N1/2(θ̃ − θ) = N−1/2{ζck1(s, t, θ) + ζck2(s, t, θ)}+ op(1). (4.24)

Next, we apply the Gaussian multiplier method by multiplying random numbers

Gk from normal distribution, so that

Ṽ ∗(s, t)

=
{
Ṽ (s, t, θ̃) +N−1/2

N∑
k=1

Υ̂c
k1(s, t, θ̂) + Υ̂c

k2(s, t, θ̂) + ζ̂ck1(s, t) + ζ̂ck2(s, t)
}
·Gk

(4.25)

By taking the supremum of Ṽ ∗(s, t) among mesh grids of (s, t), we obtain T̃ ∗ from the

empirical distribution of sups,t∈[0,τ ] ‖ Ṽ ∗(s, t, θ) ‖. Repeating above the process 1000

times enables us to have enough observations and we would reject the H0 : ρ(s, t, θ) =

θ0 when T̃ ∗ excesses the 95th percentile of the observations.

4.2.2 Simulation studies

Here, we hope to answer two questions: (1)Are the two event processes indepen-

dent? (2) If not, is the association constant? Firstly, to detect the dependency, we

consider the independent bivariate counting processes as the null model and the con-

stant rate ratio as alternative model. Secondly, we propose the constant rate ratio

model as the null and Piecewise Constant (PWC), Time Dependent (TD), Time and

Covariate Dependent (TCD) models as the corresponding alternatives.

To investigate the performance of the model checking procedure, finite sample
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studies are conducted, with multiplicative mean rate marginal model. The size and

power of the hypothesis test are also computed via Gaussian Multiplier Method.

4.2.2.1 Test for constant association with multiplicative marginal models

We consider the Shared Frailty Model below as the null model

E[dN∗k1(s)|Rk, Zk1(s)] = Rke
βT1 Zk1(s) dµ01(s),

E[dN∗k2(t)|Rk, Zk2(t)] = Rke
βT2 Zk2(t) dµ02(t),

where Rk is independent and comes from a Gamma Distribution. Following from

Proposition 1, under the null model, we have ρ(θ, s, t) = 1 + σ2/µ2 where σ2 and µ2

represent E(Rk) and var(Rk). Let β01 = 0.2, β02 = 0.4, τ = 4 and the censoring time

follow uniform(3, 4). We take baseline rate µ01(t) = µ02(t) and set the values equal

to 0.25t2, 0.375t2, 0.5t2 to represent moderately or more frequently observed events.

The event count after censoring ranges from 4.18 to 11.30. To accommodate the

association strength, we generate Rk from Gamma distribution with E(Rk) = 1 and

var(Rk) = 0.25, 0.5, 0.75, 1 so that ρ = 1.25, 1.5, 1.75 and 2 respectively.

As we can see, the null model corresponds to H0 : ρ(θ, s, t) = θ. Implementing the

Gaussian Multiplier method enables us to approach the empirical distribution of the

supreme residuals under the H0. Therefore the rejection rate under the H0 can be

used as an empirical size of the test and should be around its nominee value. The

simulation result summarized in Table 16 shows the test has size below or around

0.05 consistently which agrees with the theoretical value.

Similar to the illustration in section 3.2.2.2, we propose the PWC, TD and TCD
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model as alternative models to exam the power of the testing procedure. The ad-

justment is concerned with the marginal mean rate, which should be multiplicative

in the following sections.

(I) The piecewise constant rate ratio model - PWC Model

Assume τ = 4 and analogous to equation (3.29),the counting process N∗kj(t) is from

E[dN∗kj(t)|Rk(t), Zkj(t)] = Rk(t){dµ0j(t)e
βTj Zkj(t)}. (4.26)

where Rk(t) = I(t < 2)Rk0 + I(t > 2)Rk1 is time varying frailty. Let β01 = 0.2,

β02 = 0.4, Ckj be uniform on (3, 4) and Zkj follows Uniform(0, 1). To modify the

events observed before censoring, we take µ0j(t) equal to 0.125t2, 0.25t2, 0.375t2,

0.5t2. Consider Rk0 and Rk1 are independently generated from Gamma(a0, b0) and

Gamma(a1, b1), where the choice of parameters represent the value of the piecewise

rate ratio. The simulation settings are summarized in the Table 15 and Figure 3.

PWC models are alternatives to the null model and therefore the residuals calcu-

lated under H0 should depart far away from zero. We would expect the supreme test

statistic to go beyond threshold with high likelihood and a high rejection rate is an

indicator of the power. 17 shows the proposed procedure can correctly detect non

constant Rate Ratio at or above 95% of the cases when sample size is large (N = 800)

and the accuracy is improved by increasing the sample size.

(II) Time dependent rate ratio - TD Model

Consider the Bivariate Counting Process described by equation (3.30). Assume the
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Poisson process Nk0(t) has conditional mean rate

E[dNk0(t)|Zkj(t), Rk] = λk0(t|Zkj(t), Rk) dt

and

λk0(t|Zkj(t), Rk) dt = Rk · dµ0j(t)e
β0jZkj(t), (4.27)

with Rk is the cluster level random effect. Let the conditional mean rate of Poisson

process be λ̃kj(t|Zkj(t)) and by assigning an appropriate value, we can generate the

counting processes Nk1(t) and Nk2(s) with rate ratio

ρ(θ, s, t) = 1 + θ(−0.15s+ 0.9)(−0.15t+ 0.9).

where θ = σ2

µ2
. To consider rare, moderate and high time dependent association, we

generate θ = 0.5, 1, 1.5, 2 by taking Rk from Gamma distribution, where the shape

and scale parameter pairs in the Gamma Distribution are (2, 0.5), (1, 1), (0.67, 1.5)

and (0.5, 2). The color plots for the four settings are also illustrated by Figure 4.

The goodness of fit procedure is more likely to detect non-constant rate ratio for a

more varying scenario or a larger sample case. It is observed in Table 18 that the time

dependent rate ratio and piecewise constant rate ratio model have similar simulation

performance.

(III) Time and covariate dependent model - TCD Model

The Time and Covariate Dependent Rate Ratio can be derived by comparing to

section 3.2.2.2. Assume the Poisson process Nk0(t) has marginal conditional rate

λ0(t) where λ0(t|Zkj(t), Rk) dt,= Rk · dµ0j(t)e
β0jZkj(t) with Rk the random frailty. By
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Proposition 1, ρ(θ, s, t|z1, z2) = 1 +σ2/µ2, where σ2 and µ represent the variance and

mean of Rk. Let the Poisson process Ñkj(t) has rate λ̃kj =1. Following Proposition

3, conditional on covariates

ρ(θ, s, t|z1, z2) = 1 + θ
λ0(s|z1)λ0(t|z2)

(1 + λ0(s|z1))(1 + λ0(t|z2))
,

where ρ(θ, s, t|z1, z2) represents the rate ratio of {Nk1(s), Nk2(t)} and θ is σ2/µ2.

To generate θ = 0.25, 0.5, 1, 2, we consider Rk be from Gamma distribution with

µ = 1 and σ2 = 0.25, 0.5, 1, 2. Let τ = 4, β01 = 0.1, β02 = 0.2 and µ0j(t) = 0.125t2,

0.25t2, 0.375t2, 0.5t2 for j = 1 or 2. Take the censoring time and covariates from

uniform distribution on (3, 4) and (1, 2) respectively. The rate ratio is in form of

ρ(θ, s, t|z1, z2) = 1 + θ
λ0(s|z1)λ0(t|z2)

(1 + λ0(s|z1))(1 + λ0(t|z2))
,

Table 19 summarizes of the simulation result for the above settings, from which

similar patterns of PWC and TD Models are shown. In general the test performs

well and can distinguish the null model and alternative models with high precision,

especially when the sample size is large or the variability of association is increasing.
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Table 15: Summary of simulation settings under the PWC model with the corre-
sponding ρ values followed from Proposition 2. The Marginal model is multiplicative.

Settings PWC1 PWC2 PWC3 PWC4
Rk0 : (a0, b0) (4, 0.25) (4, 0.25) (2, 0.5) (4, 0.25)
Rk1 : (a1, b1) (2, 0.5) (1.33,0.75) (1, 1) (1, 1)
ρ(s < 2, t < 2) 1.25 1.25 1.5 1.25
ρ(s > 2, t < 2) 1 1 1 1
ρ(s > 2, t > 2) 1.5 1.75 2 2

Figure 3: Visualization of Piecewise Constant ρ(s, t, θ) (PWC) under the Additive
Marginal Models. The variation of ρ(s, t) between different pieces is growing from
PWC1 to PWC4.
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Figure 4: The contour plot of the Rate Ratio ρ(s, t) under the Multiplicative Marginal
Models. The x-axis and y-axis represents the observation time for type1 and type2
events. From upper left to lower right, the heterogeneity of ρ(s, t) is increased.

(a) TD1 Model ρ(s, t) (b) TD2 Model ρ(s, t)

(c) TD3 Model ρ(s, t) (d) TD4 Model ρ(s, t)
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Table 16: Observed size of the test statistic T for the proposed model-checking pro-
cedure under H0 : ρ(θ, s, t) = θ is parametric vs Ha : ρ(θ, s, t) is not parametric, at
significance level 0.05. The numbers in the parentheses represent the average observed
count of type 1 and type 2 event after censoring. Each entry is calculated based on
1000 Gaussian multiplier samples and 1000 replicates.

Size
event counts µ0j(t) K ρ = 1.25 ρ = 1.5 ρ = 1.75 ρ = 2
(4.18,5.67) 0.25t2 200 0.041 0.025 0.037 0.034

500 0.038 0.042 0.033 0.033
(6.25, 8.48) 0.375t2 200 0.042 0.035 0.030 0.021

500 0.040 0.037 0.039 0.037
(8.34, 11.30) 0.5t2 200 0.040 0.037 0.003 0.030

500 0.043 0.043 0.032 0.037
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Table 17: Power of H0 : ρ(θ, s, t) = θ0 vs Ha : ρ(θ, s, t) is not parametric. The Ha

model has Piecewise Constant Rate Ratio (PWC model). Each entry is calculated
based on 1000 Gaussian multiplier samples with 1000 replicates.

Power
event counts µ0j(t) K PWC1 PWC2 PWC3 PWC4
(2.09, 2.83) 0.125t2 200 0.443 0.882 0.777 0.942

500 0.934 0.999 0.994 0.999
800 0.995 1.000 1.000 1.000

(4.16, 5.65) 0.25t2 200 0.867 0.977 0.951 0.987
500 0.998 1.000 1.000 0.999
800 1.000 1.000 1.000 1.000

(6.25, 8.48) 0.375t2 200 0.955 0.993 0.968 0.991
500 1.000 1.000 1.000 1.000
800 1.000 1.000 1.000 1.000

(8.34, 11.32) 0.5t2 200 0.985 0.994 0.986 0.995
500 1.000 1.000 0.999 1.000
800 1.000 1.000 1.000 1.000
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Table 18: Power of H0 : ρ(θ, s, t) = θ0 vs Ha : ρ(θ, s, t) is not parametric. The Ha

model is Time and Dependent (TD). Each entry is calculated based on 1000 Gaussian
multiplier samples with 1000 replicates.

Power
µ0j(t) K TD1 TD2 TDC3 TD4

0.125t2 200 0.129 0.252 0.308 0.355
500 0.295 0.560 0.706 0.782
800 0.463 0.817 0.906 0.932

0.25t2 200 0.238 0.415 0.524 0.556
500 0.587 0.862 0.929 0.940
800 0.768 0.974 0.990 0.986

0.375t2 200 0.337 0.518 0.598 0.675
500 0.748 0.933 0.961 0.947
800 0.931 0.991 0.994 0.995

0.5t2 200 0.433 0.578 0.691 0.674
500 0.826 0.949 0.962 0.968
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Table 19: Power of H0 : ρ(θ, s, t) = θ0 vs Ha : ρ(θ, s, t) is not parametric. The Ha

model is Time and Covariate Dependent (TCD). Each entry is calculated based on
1000 Gaussian multiplier samples and 1000 replicates.

Power
µ0j(t) K TCD1 TCD2 TCD3 TCD4

0.125t2 200 0.102 0.226 0.453 0.706
500 0.208 0.520 0.916 0.991

0.25t2 200 0.175 0.417 0.704 0.798
500 0.508 0.923 0.988 0.977

0.375t2 200 0.246 0.480 0.701 0.727
500 0.650 0.946 0.983 0.963

0.5t2 200 0.210 0.437 0.566 0.631
500 0.658 0.952 0.972 0.949
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APPENDIX A: PROOFS OF THE PROPOSITIONS IN CHAPTER 3

Proof of Proposition 1

By the conditional expectation property and the conditional independent increment

of Nk1, Nk2, we have :

E{dNk1(s)dNk2(t)|Zk1(s), Zk2(t)}

= E
{
E{dNk1(s)dNk2(t)|Zk1(s), Zk2(t), Rk}

}
= E

{
E{dNk1(s)|Zk1(s), Rk}E{dNk2(t)|Zk2(t), Rk}

}
= E

{
Rk{dµ01(s) + βT1 Zk1(s) ds}Rk{dµ02(t) + βT2 Zk2(t) dt}

}
= E{R2

k}{dµ01(s) + βT1 Zk1(s) ds}{dµ02(t) + βT2 Zk2(t) dt} (A.1)

and

E{dNk1(s) |Zk1(s)} = E
{
E{dNk1(s) |Zk1(s), Rk}

}
= E{Rk}{dµ01(s) + βT1 Zk1(s) ds},

E{dNk2(t) |Zk2(t)} = E
{
E{dNk2(t) |Zk2(t), Rk}

}
= E{Rk}{dµ02(t) + βT2 Zk2(t) dt}.

Therefore, follows from the definition of the rate ratio in (2.1),

ρ =
E{dNk1(s)dNk2(t) |Zk1(s), Zk2(t)}

E{dNk1(s) |Zk1(s)}E{dNk2(t) |Zk2(t)}
=

E{R2
k}

E{Rk}E{Rk}
=
µ2 + σ2

µ2
= 1 +

σ2

µ2

(A.2)

�

Proof of Proposition 2
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Similar to the proof of Proposition 1,

E{dNk1(s)dNk2(t)|Zk1(s), Zk2(t)}

= E
{
E{dNk1(s)|Zk1(s), Rk}E{dNk2(t)|Zk2(t), Rk}

}
= E{Rk(s)Rk(t)} · {dµ01(s) + βT1 Zk1(s) ds}{dµ02(t) + βT2 Zk2(t) dt} (A.3)

and

E{dNk1(s) |Zk1(s)} = E{Rk(s)}{dµ01(s) + βT1 Zk1(s) ds}

E{dNk2(t) |Zk2(t)} = E{Rk(t)}{dµ02(t) + βT2 Zk2(t) dt}. (A.4)

Since Rk(u) is piecewise constant, we have

E{Rk(s)Rk(t)} =



E(Rk0Rk0) = (a0b0 + δ0)2 + a0b
2
0 if s, t ∈ (0, c0]

E(Rk1Rk1) = (a1b1 + δ1)2 + a1b
2
1 if s, t ∈ (c0, τ ]

E(Rk0Rk1) = (a0b0 + δ0)(a1b1 + δ1) otherwise

(A.5)

E{Rk(s)}E{Rk(t)} =



E(Rk0)E(Rk0) = (a0b0 + δ0)2 if s, t ∈ (0, c0]

E(Rk1)E(Rk1) = (a1b1 + δ1)2 if s, t ∈ (c0, τ ]

E(Rk0)E(Rk1) = (a0b0 + δ0)(a1b1 + δ1) otherwise

(A.6)
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This yields the piecewise constant rate ratio below :

ρ(θ, s, t) =
E{Rk(s)Rk(t)}

E{Rk(s)}E{Rk(t)}
=



1 +
a0b20

(a0b0+δ0)2
if s, t ∈ (0, c0]

1 +
a1b21

a1b1+δ1)2
if s, t ∈ (c0, τ ]

1 otherwise

(A.7)

�

Proof of Proposition 3

By the definition of mean event rate

E[ dN1(s) dN2(t) |z1, z2]

= P{ dN1(s) = 1, dN2(t) = 1 |Z1(s) = z1, Z2(t) = z2}

= P{ dÑ1(s) + dN0(s) = 1, dÑ2(t) + dN0(t) = 1 | z1, z2}

since {Ñj(·)} and {N0(·)} are conditional independent to each other, we have

P{ dÑ1(s) + dN0(s) = 1, dÑ2(t) + dN0(t) = 1 | z1, z2}

= P{dÑ1(s) = 1, dN0(s) = 0, dÑ2(t) + dN0(t) = 1 | z1, z2}

+ P{dÑ1(s) = 0, dN0(s) = 1, dÑ2(t) + dN0(t) = 1 | z1, z2} (A.8)
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On the right hand side of (A.8),

P{dÑ1(s) = 1, dN0(s) = 0, dÑ2(t) + dN0(t) = 1|z1, z2}

= P{dÑ1(s) = 1 | z1} · P{dN0(s) = 0, dÑ2(t) = 0, dN0(t) = 1|z1, z2}

+ P{dÑ1(s) = 1 | z1} · P{dN0(s) = 0, dÑ2(t) = 1, dN0(t) = 0|z1, z2}

= λ̃1(s | z1) ds · λ0(t | z2) dt+ λ̃1(s | z1) ds · λ̃2(t | z2) dt (A.9)

Similarly,

P{dÑ1(s) = 0, dN0(s) = 1, dÑ2(t) + dN0(t) = 1| z1, z2}

= P{dÑ1(s) = 0 | z1} · P{dN0(s) = 1, dÑ2(t) = 0, dN0(t) = 1| z1, z2}

+ P{dÑ1(s) = 0 | z1} · P{dN0(s) = 1, dÑ2(t) = 1, dN0(t) = 0| z1, z2}

= 1 · ρ0(θ, s, t| z1, z2)λ0(s | z1) ds · λ0(t | z2) dt+ 1 · λ̃2(t | z2) dt λ0(s | z1) ds (A.10)

Combine equation (A.9) and (A.10) allows us to represent equation (A.8) as below

E[ dN1(s) dN2(t) |z1, z2]

= P{ dÑ1(s) + dN0(s) = 1, dÑ2(t) + dN0(t) = 1 | z1, z2}

= λ̃1(s | z1) ds · λ0(t | z2) dt+ λ̃1(s | z1) ds · λ̃2(t | z2) dt

+ 1 · ρ0(θ, s, t| z1, z2)λ0(s | z1) ds · λ0(t | z2) dt+ ·λ̃2(t | z2) dt · λ0(s | z1) ds

= {λ̃1(s | z1) + λ0(s | z1)}{λ̃0(t | z2) + λ0(t | z2)} ds dt

+ {ρ0(θ, s, t| z1, z2)− 1}λ0(s | z1)λ0(t | z2) ds dt

= λ1(s | z1)λ2(t | z2) ds dt+ {ρ0(θ, s, t| z1, z2)− 1}λ0(s | z1)λ0(t | z2) ds dt (A.11)
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and

E[ dN1(s) | z1]E[ dN2(t) | z2] = λ1(s | z1)λ2(t | z2) ds dt. (A.12)

By definition the rate ratio of bivariate counting processes {N1(s), N2(t)} is

ρ(θ, s, t| z1, z2) =
E[ dN1(s) dN2(t)| z1, z2]

E[ dN1(s)| z1]E[ dN2(t)| z2]
(A.13)

and substituting equations (A.11) and (A.12) into the (A.13) gives us

ρ(θ, s, t| z1, z2) = 1 + {ρ0(θ, s, t| z1, z2)− 1}λ0(s|z1)λ0(t| z2)

λ1(s| z2)λ2(t| z2)

The rate ratio of N1(s) and N2(t) depends on that of N0(s) and N0(t). If N0(s) and

N0(t) are independent, ρ0(θ, s, t|z1, z2) would be 1, which leads to ρ(θ, s, t|z1, z2) = 1 as

well. If the occurrence of events at time s, t are positively correlated, ρ0(θ, s, t|z1, z2)

will be greater than 1 and therefore ρ(θ, s, t|z1, z2) > 1. For negatively associated

event occurrence, both ρ0(θ, s, t|z1, z2) and ρ(θ, s, t|z1, z2) will be both less than 1.

�

APPENDIX B: PROOFS OF THE THEOREMS IN CHAPTER 3

Condition I.

Adapting from H Scheike (2002), we show the asymptotic properties of the first-

stage estimators in our proposed method. The following regularity conditions are

assumed for j = 1, 2:

C.1. {N∗kj(·), Ckj, Zkj(·)} are independent and identically distributed for k = 1, 2, ..., N .
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C.2. Pr(Ckj > τ) > 0, where τ is predetermined constant; Nkj(τ) < η < ∞ are

bounded by a constant almost surely

C.3. Nkj(τ) are bounded by a constant;

C.4. |Zkj(0)|+
∫ τ

0
| dZkj(s)| < cZ <∞, almost surely, where cZ > 0 is a constant.

C.5. Denote the positive-definiteness matrix Aj as

Aj = E{
∫ τ

0

{Zkj(u)− z̄j(βj, u)}⊗2 ds},

where z̄j(t) = lim
N→∞

Z̄j(t) and Z̄j(t) =
∑N
k=1 Zkj(t)Ykj(t)∑N

k=1 Ykj(t)
.

Proof of Theorem 3.1

Denote the likelihood function as

Lj(βj) =
N∑
k=1

∫ τ

0

{Zkj(u)− Z̄j(u)} dMkj(u, βj), (A.14)

and with the first order Taylor expansion with respect to βj gives us

(β̂j − βj) = Â−1
j (β∗)N−1

∫ τ

0

{Zkj(u)− Z̄j(u)} dMkj(u, βj), (A.15)

where

dMkj(t; βj) = dNkj(t)− Ykj(t){dµ0j(t) + βTj Zkj(t) dt}

Âj(βj) = −N−1

N∑
k=1

∫ τ

0

{Zkj(u)− Z̄j(β̂j, u)}⊗2 du,

with β∗ a value falls between β̂j and βj.
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By (C.4) and the strong law of large numbers (SLLN), β̂j converges almost surely

to βj. From the Slutsky’s theorem and (A.15),
√
N(β̂j−βj) is asymptotically normal

with mean zero and covariance matrix A−1
j ΣjA

−1
j , where

Σj = E[

∫ τ

0

{Z1j(u)− Z̄j(u)}dM1j(u, βj)

∫ τ

0

{Z1j(v)− Z̄j(v)} dM1j(v, βj)].

From (A.15) it is straight forward to show

√
N{β̂j − βj} = A−1

j N−1/2

N∑
k=1

ξkj + op(1). (A.16)

where

ξkj =

∫ τ

0

{Zkj(u)− z̄j(u)} dMkj(u, βj). (A.17)

The asymptotic covariance matrix of
√
N(β̂j − βj) can be consistently estimated by

Â−1
j Σ̂jÂ

−1
j , with the corresponding estimators

dM̂kj(t; β̂j) = dNkj(t)− Ykj(t){dµ̂0j(t) + β̂Tj Zkj(t) dt},

ξ̂kj =

∫ τ

0

{Zkj(u)− Z̄j(u)} dM̂kj(u; β̂j),

Σ̂j = N−1

N∑
k=1

ξ̂⊗2
kj .

�

Proof of Theorem 3.2

Consider

µ̂0j(t)− µ0j(t) = {µ̂0j(t; β̂j)− µ̂0j(t; βj)}+ {µ̂0j(t; βj)− µ0j(t)} (A.18)
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By the first order Taylor approximation, we have

µ̂0j(t; β̂j)− µ̂0j(t; βj) = −(β̂j − βj)
∫ t

0

Z̄T
j (u) du+ op(N

−1), (A.19)

µ̂0j(t; βj)− µ0j(t) = N−1

N∑
k=1

∫ t

0

dMkj(u; βj)

π̂j(u)
+ op(N

−1). (A.20)

Using the strong convergence of βj in Theorem 3.1 and the Uniform SLLN (Pollard

1990), {µ̂0j(t; β̂j) − µ̂0j(t; βj)} converges almost surely to 0 uniformly in t ∈ [0, τ ].

Similarly, µ0j(t; βj) converges strongly to µ0j(t) uniformly.

By the Triangle Inequality,

|µ̂0j(t)− µ0j(t)| ≤ |µ̂0j(t; β̂j)− µ̂0j(t; βj)|+ |µ̂0j(t; βj)− µ0j(t)|.

Therefore, µ̂0j(t) converges almost surely to µ0j(t) uniformly in t ∈ [0, τ ] as well.

Substituting (A.19), (A.20) into (A.18) and multiplying both sides by
√
N gives,

√
N{µ̂0j(t)− µ0j(t)} = N−1/2

N∑
k=1

φkj(t) + op(1), (A.21)

where

φkj(t; βj) =

∫ t

0

dMkj(u; βj)

πj(u)
−HT (t)A−1

j

∫ τ

0

{Zkj(u)− z̄j(u)} dMkj(u, βj), (A.22)

with H(t) =
∫ t

0
z̄j(u) du.

Thus
√
N{µ̂0j(t)−µ0j(t)} converges weakly to a mean-zero Gaussian process with

covariance function Γj(s, t) = E[φ1j(s; βj)φ1j(t; βj)], which can be consistently ap-

proximated by

Γ̂j(s, t) = N−1

N∑
k=1

φ̂kj(s; β̂j)φ̂kj(t; β̂j),
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where

φ̂kj(t; β̂j) =

∫ t

0

dM̂kj(u; β̂j)

π̂j(u)
− ĤT (t)Â−1

j

∫ τ

0

{Zkj(u)− Z̄j(u)} dM̂kj(u; β̂j),

with

π̂j(t) = N−1

N∑
k=1

Ykj(t),

ĤT (t) =

∫ t

0

Z̄T
j (u) du.

�

Proof of Theorem 3.3

To prove the asymptotic of
{
U(θ, β̂1, µ̂1(·), β̂2, µ̂2(·)) − U(θ, β1, µ01(·), β2, µ02(·))

}
where U(θ, β̂1, µ̂01(·), β̂2, µ̂02(·)) =

∑N
k=1 Uk(θ, β̂1, µ̂01(·), β̂2, µ̂02(·)), we consider the

following decomposition:

Uk(θ, β̂1, µ̂01(·), β̂2, µ̂02(·))

= Uk(θ, β1, µ01(·), β2, µ02(·))

+ {Uk(θ, β̂1, µ̂01(·), β̂2, µ̂02(·))− Uk(θ, β1, µ01(·), β̂2, µ̂02(·))}

+ {Uk(θ, β1, µ01(·), β̂2, µ̂02(·))− Uk(θ, β1, µ01(·), β2, µ02(·))} (A.23)

The third term in (A.23) can be further expressed as

∫ τ

0

∫ τ

0

−∂ρ(s, t, θ)

∂θ
ρ(s, t, θ)·{

Yk2(t){dµ̂02(t) + β̂T2 Zk2(t) dt− dµ02(t)− βT2 Zk2(t) dt}Yk1(s){dµ01(s) + βT1 Zk1(s) ds}
}
,

(A.24)
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by replacing (β̂2−β2) and µ̂0j(t)−µ0j(t) with (A.16) and (A.21) respectively, we have

Uk(θ, β1, µ01(s), β̂2, µ̂02(t))− Uk(θ, β1, dµ01(s), β2, dµ02(t))

=

∫ τ

0

∫ τ

0

−∂ρ(s, t, θ)

∂θ
ρ(s, t, θ)Yk1(s){dµ01(s) + βT1 Zk1(s) ds}

Yk2(t)
{
ZT
k2(t)dtA−1

2 N−1

N∑
l=1

ξl2 +N−1

N∑
l=1

dφl2(t; β2)
}

+ op(N
−1) (A.25)

Similarly {Uk(θ, β̂1, µ̂01(s), β̂2, µ̂02(t))−Uk(θ, β1, µ01(s), β̂2, µ̂02(t))} in (A.23) is equiv-

alent to

∫ τ

0

∫ τ

0

−∂ρ(s, t, θ)

θ
ρ(s, t, θ)Yk1(s)Yk2(t)[ dµ02(t) + βT2 Zk2(t)dt ]

{
ZT
k1(s) dsA−1

1 N−1

N∑
l=1

ξl1 +N−1

N∑
l=1

dφl1(s; β1)
}

+ op(N
−1) (A.26)

It follows from (A.25), (A.26) and the definition in (3.9) that

N−1/2
{
U(θ, β̂1, µ̂01(·), β̂2, µ̂02(·))− U(θ, β1, µ01(·), β2, µ02(·))

}
= N−1/2

N∑
k=1

{
h1,Nξk1A

−1
1 + g1,N,k + h2,Nξk2A

−1
2 + g2,N,k

}
+ op(N

−1/2) (A.27)

where the terms are denoted by

ql(s, t) = −∂ρ(s, t, θ)

∂θ
ρ(s, t, θ)Yl1(s)Yl2(t),

h1,N = N−1

N∑
l=1

∫ τ

0

∫ τ

0

ql(s, t){dµ02(t) + βT2 Zl2(t) dt}ZT
l1(s) ds,

h2,N = N−1

N∑
l=1

∫ τ

0

∫ τ

0

ql(s, t){dµ01(s) + βT1 Zl1(s) ds}ZT
l2(t) dt,

g1,N,k = N−1

N∑
l=1

∫ τ

0

∫ τ

0

ql(s, t){dµ02(t) + βT2 Zl2(t) dt} dφk1(s; β1),

g2,N,k = N−1

N∑
l=1

∫ τ

0

∫ τ

0

ql(s, t){dµ01(s) + βT1 Zl1(s) ds} dφk2(t; β2).
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Deriving from (A.27) the covariance matrix can be estimated by

Ω̂ = N−1

N∑
k=1

{
ĥ1,N ξ̂k1Â

−1
1 + ĝ1,N,k + ĥ2,N ξ̂k2Â

−1
2 + ĝ2,N,k

}⊗2

, (A.28)

with

q̂l(s, t) = −∂ρ(s, t, θ)

∂θ
ρ(s, t, θ)Yl1(s)Yl2(t)

ĥ1,N = N−1

N∑
l=1

∫ τ

0

∫ τ

0

ql(s, t){dµ̂02(t) + β̂T2 Zl2(t) dt}ZT
l1(s) ds,

ĥ2,N = N−1

N∑
l=1

∫ τ

0

∫ τ

0

ql(s, t){dµ̂01(s) + β̂T1 Zl1(s) ds}ZT
l2(t) dt,

ĝ1,N,k = N−1

N∑
l=1

∫ τ

0

∫ τ

0

ql(s, t){dµ̂02(t) + β̂T2 Zl2(t) dt} dφ̂k1(s; β̂1),

ĝ2,N,k = N−1

N∑
l=1

∫ τ

0

∫ τ

0

ql(s, t){dµ̂01(s) + β̂T1 Zl1(s) ds} dφ̂k2(t; β̂2).

(A.29)

�

Proof of Theorem 3.4

Denote

Wk(θ, β1, µ01(·), β2, µ02(·))

= Uk(θ, β1, µ01(·), β2, µ02(·)) +
{
h1,Nξk1A

−1
1 + g1,N,k + h2,Nξk2A

−1
2 + g2,N,k

}
, (A.30)

which follows from equation (A.27) and let

I(θ, β1, µ01(·), β2, µ02(·)) = −N−1

N∑
k=1

(∂Uk(θ, β1, µ01(·), β2, µ02(·))
∂θ

)T
. (A.31)

The First-order Taylor expansion of the estimation equation around the true values
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gives us,

√
N(θ̂ − θ)

= N−1/2{I(θ, β1, µ01(·), β2, µ02(·))}−1

N∑
k=1

Wk(θ, β1, µ01(·), β2, µ02(·)) + op(1).

(A.32)

By the central limit theorem that
√
N(θ̂ − θ) is asymptotically normal with mean 0

and its variance that can be estimated by Φ̂ = N−1(Î)−1
∑N

k=1(Ŵk)
⊗2{(ÎT )}−1, with

Î = I
(
θ̂, β̂1, µ̂01(·), β̂2, µ̂02(·)

)
,

Ŵk = Wk(θ̂, β̂1, µ̂01(·), β̂2, µ̂02(·)),

obtained with the plugged in estimators θ̂, β̂1, µ̂01(·), β̂1, µ̂02(·), ξ̂k1 and ξ̂k2.

�

APPENDIX C: PROOFS OF THE MODEL CHECKING PROCEDURE IN

CHAPTER 3

Recall (3.26)

V (s, t, θ̂, µ̂1(·;Zk1), µ̂2(·;Zk2))= V
(
s, t, θ, µ̂1(·;Zk1), µ̂2(·;Zk2)

)
+N−1/2

∂V
(
s, t, θ, µ̂1(·;Zk1), µ̂2(·;Zk2)

)
∂θ

N1/2(θ̂ − θ)

+ op(1),
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Note that V
(
s, t, θ, µ̂1(·;Zk1), µ̂2(·;Zk2)

)
can be further decomposed by

V
(
s, t, θ, µ̂1(·;Zk1), µ̂2(·;Zk2)

)
= V

(
s, t, θ, µ1(·;Zk1), µ2(·;Zk2)

)
+ V

(
s, t, θ, µ̂1(·;Zk1), µ̂2(·;Zk2)

)
− V

(
s, t, θ, µ1(·;Zk1), µ̂2(·;Zk2)

)
+ V

(
s, t, θ, µ1(·;Zk1), µ̂2(·;Zk2)

)
− V

(
s, t, θ, µ1(·;Zk1), µ2(·;Zk2)

)
. (A.33)

Applying the same techniques in the proof of Theorem 3.3, the third and forth lines

in equation (A.33) are

√
N
{
V
(
s, t, θ, µ̂1(·;Zk1), µ̂2(·;Zk2)

)
− V

(
s, t, θ, µ1(·;Zk1), µ̂2(·;Zk2)

)}
=

N∑
k=1

∫ t

0

∫ s

0

∂ρ(u, v, θ;Zk1, Zk2)

θ
ρ(u, v, θ;Zk1, Zk2)

Yk1(u)Yk2(v)[ dµ02(v) + βT2 Zk2(v)dv ]
{
ZT
k1(s) dsA−1

1 N−1

N∑
l=1

ξl1 +N−1

N∑
l=1

dφl1

}
+ op(N

−1), (A.34)

and

√
N
{
V
(
s, t, θ, µ1(·;Zk1), µ̂2(·;Zk2)

)
− V

(
s, t, θ, µ1(·;Zk1), µ2(·;Zk2)

)}
=

N∑
k=1

∫ t

0

∫ s

0

∂ρ(u, v, θ;Zk1, Zk2)

∂θ
ρ(u, v, θ;Zk1, Zk2)

Yk2(v)Yk1(u){µ01(u) + βT1 Zk1(u) du }
{
ZT
k2(v) dv A−1

2 N−1

N∑
l=1

ξl2 +N−1

N∑
l=1

dφl2

}
+ op(N

−1). (A.35)
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Combine (A.34) and (A.35), we have

√
N
{
V
(
s, t, θ, µ̂1(·;Zk1), µ̂2(·;Zk2)

)
− V

(
s, t, θ, µ01(·;Zk1), µ02(·;Zk2)

)}
=

N∑
k=1

{
h1,N(s, t)ξk1A

−1
1 + g1,N,k(s, t) + h2,N(s, t)ξk2A

−1
2 + g2,N,k(s, t)

}
+ op(N

−1) (A.36)

where

ql(u, v) = −∂ρ(u, v, θ)

∂θ
ρ(u, v, θ)Yl1(u)Yl2(v)

h2,N(s, t) = N−1

N∑
l=1

∫ t

0

∫ s

0

w(u, v)ql(u, v){dµ01(u) + βT1 Zl1(u) du}ZT
l2(u) dv

g2,N,k(s, t) = N−1

N∑
l=1

∫ t

0

∫ s

0

w(u, v)ql(u, v){dµ01(u) + βT1 Zl1(u) du} dφk2(v)

h1,N(s, t) = N−1

N∑
l=1

∫ t

0

∫ s

0

w(u, v)ql(u, v){dµ02(v) + βT2 Zl2(v) dv}ZT
l1(u) du

g1,N,k(s, t) = N−1

N∑
l=1

∫ t

0

∫ s

0

w(u, v)ql(u, v){dµ02(v) + βT2 Zl2(v) dv} dφk1(u) (A.37)

To simplify the notation, we define

Υk1(s, t, θ) = N−1
{
h1,N(s, t)ξk1A

−1
1 + g1,N,k(s, t)

}
+ op(N

−1)

Υk2(s, t, θ) = N−1
{
h2,N(s, t)ξk2A

−1
2 + g2,N,k(s, t)

}
+ op(N

−1) (A.38)

so that (A.36) can be rewritten as

V
(
s, t, θ, µ̂1(·;Zk1), µ̂2(·;Zk2)

)
− V

(
s, t, θ, µ01(·), µ02(·)

)
= N−1/2

N∑
k=1

{Υk1(s, t, θ) + Υk2(s, t, θ)}+ op(1). (A.39)
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Following the empirical approximation of
√
N(θ̂ − θ) in equation (3.10),

N−1/2∂V (s, t, θ, µ̂1(·;Zk1), µ̂2(·;Zk2))

∂θ
N1/2(θ̂ − θ)

= Ψθ(s, t)
{
−N−1/2{I(θ, β1, µ01(·), β2, µ02(·))}−1

N∑
k=1

Wk(θ, β1, µ01(·), β2, µ02(·))
}

+ op(1), (A.40)

where Ψθ(s, t) = limN→∞N
−1/2 ∂V̂ (s,t,θ)

∂θ
. We reform (A.40) as

N−1/2
∂V
(
s, t, θ, β̂1, µ̂01(·), β̂2, µ̂02(·)

)
∂θ

N1/2(θ̂ − θ) = N−1/2{ζk1(s, t, θ) + ζk2(s, t, θ)}

(A.41)

where

ζk1(s, t, θ) = −Ψθ(s, t){I(θ, β1, µ01(·), β2, µ02(·))}−1N−1
{
h1,Nξk1A

−1
1 + g1,N,k

}
ζk2(s, t, θ) = −Ψθ(s, t){I(θ, β1, µ01(·), β2, µ02(·))}−1N−1

{
h2,Nξk2A

−1
2 + g2,N,k

}
(A.42)

Plugging (A.39) and (A.41) back into equation (3.26) gives us (3.27)

V
(
s, t, θ̂, µ̂1(·;Zk1), µ̂2(·;Zk2))

= V (s, t, θ, µ1(·;Zk1), µ2(·;Zk2))

+N−1/2

N∑
k=1

{
Υk1(s, t, θ) + Υk2(s, t, θ) + ζk1(s, t, θ) + ζk2(s, t, θ)

}
+ op(1).

APPENDIX D: THE PROOFS OF THEOREMS IN CHAPTER 4

Condition II.

In this section, we investigate the asymptotic properties of θ̂c under the indepen-
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dent censoring assumption and that the distribution functions of the censoring times

are independent from covariates. Following regularity conditions in Lin et al. (2000):

(C∗.1) {Nkj(·), Ykj(·), Zkj(·)}(k = 1, 2, ..., N ; )(j = 1, 2) are independent and identi-

cally distributed;

(C∗.2) Pr(Ckj > τ) > 0, where τ is predetermined constant;

(C∗.3)Nkj(τ) are bounded by a constant;

(C∗.4)Zkj(·) has bounded total variation, i.e. |Zkjl(0)| +
∫

0
τ |dZkjl(t)| ≤ Cz for all

j = 1, 2 and k = 1, 2, ..., N , where Zkjl is the lth component of dZkj and Cz is a

constant.

(C∗.5) Acj ≡ E
[ ∫ τ

0
{Zkj(u) − z̄j(βj, u)}⊗2Ykj(u)eβ

T
j Zkj(u) dµ0j(u)

]
is positive definite,

where E is the expectation.

We summarize the asymptotic properties of β̂cj in the following theorem, where the

subscription c denote that the estimator is derived when the marginal model is mul-

tiplicative.

Proof of Theorem 4.1

Adapting A.2 in Lin et al. (2000), the partial likelihood score function for βj is

Lj(βj, τ), where

Lcj(βj, τ) =
N∑
k=1

∫ τ

0

{Zkj(u)− Z̃j(βj, u)} dM c
kj(u; βj),

with M c
kj(t; βj) = Nkj(t)−

∫ t
0
Ykj(u)eβ

T
j Zkj(u).

It is shown that N−1/2Lcj(βj, t)(0 ≤ t ≤ τ) converges weakly to a continuous zero-
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mean Gaussian process with covariance function

Σc
j(s, t) = E[

∫ s

0

{Z1j(u)− z̃j(βj, u)}dM c
1j(u)

∫ t

0

{Z1j(v)− z̃j(βj, v)} dM c
1j(v)],

0 ≤ s, t ≤ τ,

between time points s and t.

By Taylor series expansion,

√
N(β̃j − βj) = Ã−1

j (β∗)N−1/2

N∑
k=1

{Zkj(u)− Z̃j(βj, u)} dM c
kj(u), (A.43)

where Ãj(βj) = −N−1∂Lcj(βj, τ)/∂βj, and β∗ is on the line segment between β̃j and

βj, with β̃j is the solution to Lcj(βj, τ) = 0.

The almost sure convergence of β̃j and Ãj(βj) for βj and Acj imply that
√
N(β̃j−βj)

converges in distribution to a mean-zero normal random vector with covariance matrix

(Acj)
−1Σc

j(A
c
j)
−1 and Σc

j = Σc
j(τ, τ). For future reference, we denote the asymptotic

approximation as

√
N(β̃j − βj) = (Acj)

−1N−1/2

N∑
k=1

ξckj(u; βj) + op(1). (A.44)

where

ξckj(u; βj) =

∫ τ

0

{Zkj(u)− z̃j(u; βj)} dM c
kj(u; βj).

The consistency estimators of Aj and Σj are denoted by

Ãj = N−1

∫ τ

0

{Zkj(u)− Z̃j(β̃j, u)}⊗2Ykj(u)eβ̃
T
j Zkj(u) dµ̃0j(u),

Σ̃j = N−1

N∑
k=1

ξ̃⊗2
kj ,
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with

ξ̃kj = N−1

N∑
k=1

∫ τ

0

{Zkj(u)− Z̃kj(u, β̃j)} dM̃kj(u; β̃j),

M̃kj(t; β̃j) = Nkj(t)−
∫ t

0

Ykj(u)eβ̃
T
j Zkj(u) dµ̃0j(u). (A.45)

�

Proof of Theorem 4.2

Let µ̃0j(t) ≡ µ̃0j(t, β̃j) =
∫ t

0

dN̄j(u)

NS0
j (u,β̃j)

and decompose µ̃0j(t) as

µ̃0j(t)− µ0j(t) =
{
µ̃0j(t, β̃j)− µ̃0j(t, βj)

}
+
{
µ̃0j(t, βj)− µ0j(t)

}
. (A.46)

The uniform strong law of large numbers Pollard (1990) implies S0
j (βj, t)→ s0

j(βj, t)

and N̄j(t)/N → E[Nj(t)] uniformly in t and βj, and hence the uniform convergence of

µ̃0j(t, βj) =
∫ t

0

dN̄j(u)

NS0
j (u,βj)

to µ0j(t) =
∫ t

0

s0j (u,βj)

s0j (u,βj)
dµ0j(u). Furthermore, we can represent

the second term in (A.46) as

µ̃0j(t, βj)− µ0j(t) =

∫ t

0

dN̄j(u)

NS0
j (u, βj)

− dµ0j(u)

= N−1

∫ t

0

∑N
k=1 dM

c
kj(u; βj)

S0
j (u, βj)

,

= N−1

∫ t

0

∑N
k=1 dM

c
kj(u; βj)

s0
j(u, βj)

+ op(N
−1). (A.47)
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The first term in (A.46) can be rewritten as

µ̃0j(t, β̃j)− µ̃0j(t, βj) =

∫ t

0

dN̄j(u)

NS0
j (u, β̃j)

− dN̄j(u)

NS0
j (u, βj)

,

=

∫ t

0

−Z̃T
j (u, βj)

dN̄j(u)

NS0
j (u, βj)

(β̃j − βj) + op(N
−1),

= −
∫ t

0

z̃j(u, βj) dµ0j(t, βj)(β̃j − βj) + op(N
−1).

The asymptotic approximation of {β̃j − βj} in (A.44) entails

µ̃0j(t, β̃j)− µ̃0j(t, βj)

= [Hc(t; βj)]
T (Acj)

−1N−1

N∑
k=1

∫ τ

0

{Zkj(u)− z̃j(u, βj)} dM c
kj(u; βj) + op(N

−1),

(A.48)

with Hc(t; βj) =
∫ t

0
z̃j(u, βj) dµ0j(u, βj). Plugging (A.48), (A.47) into equation (A.46)

and multiplying both sides by
√
N yield

√
N
{
µ̃0j(t)− µ0j(t)

}
= N−1/2

N∑
k=1

φckj(t; βj) + op(1), (A.49)

where

φckj(t; βj)

=

∫ t

0

dM c
kj(u; βj)

s0
j(u, βj)

− [Hc(t; βj)]
T (Acj)

−1

N∑
k=1

∫ τ

0

{Zkj(u)− z̃j(u, βj)} dM c
kj(u; βj).

(A.50)

Since φkj(t) is independent mean-zero normal random variable,
√
N
{
µ̂0j(t)−µ0j(t)

}
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converges to a zero-mean Gaussian process with covariance function at (s, t) as

Γj(s, t) ≡ E[φckj(s; βj)φ
c
kj(t; βj)], (A.51)

which can be approached by its consistent estimator

Γ̃j(s, t) = N−1

N∑
k=1

φ̃kj(s; βj)φ̃kj(t; βj),

where

φ̃kj(t) =

∫ t

0

dM̃kj(u)

S0
j (β̃j, u)

− [H̃(t)]T Ã−1
j

N∑
k=1

∫ τ

0

{Zkj(u)− Z̃kj(u, β̃j)} dM̃kj(u; β̃j),

and

H̃(t) =

∫ t

0

Z̃j(u, β̃j) dµ̃0j(t, β̃j). (A.52)

�

Proof of Theorem 4.3

Considering the decomposition:

U c
k(θ, β̃1, µ̃01(·), β̃2, µ̃02(·))− Uk(θ, β1, µ01(·), β2, µ02(·))

=
{
Uk(θ, β̃1, µ̃01(s), β̃2, µ̃02(·))− Uk(θ, β1, µ01(·), β̃2, dµ̃02(t))

}
+
{
Uk(θ, β1, µ01(·), β̃2, µ̃02(·))− Uk(θ, β1, µ01(·), β2, µ02(·))

}
(A.53)

The first term on the right hand side of (A.53) is equivalent to

∫ τ

0

∫ τ

0

−ρ(θ, s, t)
∂ρ(θ, s, t)

∂θ
Yk2(t)eβ̃

T
2 Zk2(t) dµ̃02(t){

Yk1(s)eβ̃
T
1 Zk1(s) dµ̃01(s)− Yk1(s)eβ

T
1 Zk1(s) dµ01(s)

}
(A.54)
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In (A.54), Yk1(s)eβ̃
T
1 Zk1(s) dµ̃01(s)− Yk1(s)eβ

T
1 Zk1(s) dµ01(s) can be further rewritten as

Yk1(s)
{
eβ̃

T
1 Zk1(s) dµ̃01(s)− eβT1 Zk1(s) dµ̃01(s) + eβ

T
1 Zk1(s) dµ̃01(s)− eβT1 Zk1(s) dµ01(s)

}
= Yk1(s)

{
eβ

T
1 Zk1(s)ZT

k1(s) dµ̃01(s)(β̂1 − β1) + eβ
T
1 Zk1(dµ̃01(s)− dµ01(s))

}
+ op(β̃1 − β1)⊗2

Applying the asymptotic properties of the first-stage estimators from (A.44) and

(A.49) gives

Yk1(s)eβ̃
T
1 Zk1(s) dµ̃01(s)− Yk1(s)eβ

T
1 Zk1(s) dµ01(s)

= Yk1(s)
{
eβ

T
1 Zk1(s)ZT

k1(s) dµ01(s)(Ac1)−1N−1

N∑
l=1

ξcl1 + eβ
T
1 Zk1(s)N−1

N∑
l=1

dφcl1(s)
}

+ op(N
−1). (A.55)

By Combining (A.54) (A.55), and (A.57) we have

{
U c
k(θ, β̃1, µ̃01(s), β̃2, µ̃02(·))− U c

k(θ, β1, µ01(·), β̃2, dµ̃02(t))
}

=

∫ τ

0

∫ τ

0

−ρ(θ, s, t)
∂ρ(θ, s, t)

∂θ
Yk1(s)eβ

T
1 Zk1(s) · Yk2(t)eβ

T
2 Zk2(t)

·N−1

N∑
l=1

{
ZT
k1(s) dµ01(s) dµ02(t)A−1

1 ξcl1 + dφcl1(s) dµ02(t)
}

+ op(1) (A.56)

In a similar fashion,

Yk2(t)eβ̃
T
2 Zk2(t) dµ̃02(t)− Yk2(t)eβ

T
2 Zk2(t) dµ02(t)

= Yk2(t){eβT2 Zk2(t)ZT
k2(t) dµ02(t)(Ac2)−1N−1

N∑
l=1

ξcl2 + eβ
T
2 Zk2(t)N−1

N∑
l=1

dφcl2(t)}

+ op(N
−1). (A.57)

Since the Yk2(t)eβ̃
T
2 Zk2(t) dµ̃02(t) and Yk1(s)eβ̃

T
1 Zk1(s) dµ̃01(s) only have op(N

−1) differ-
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ence compared to their true values, the product term has negligible difference of even

higher orders.

The second part of (A.53) via a similar technique can be proved as

{
U c
k(θ, β1, dµ01(s), β̃2, dµ̃02(t))− U c

k(θ, β1, dµ01(s), β2, dµ02(t))
}

=

∫ τ

0

∫ τ

0

−ρ(θ, s, t)
∂ρ(θ, s, t)

∂θ
Yk1(s)eβ

T
1 Zk1(s) · Yk2(t)eβ

T
2 Zk2(t)

·N−1

N∑
l=1

{
ZT
k2(t) dµ01(s) dµ02(t)(Ac2)−1ξcl2 + eβ

T
2 Zl2(t) dµ01(s) dφcl2(t)

}
+ op(1)

(A.58)

Since

U c(θ, β̃1, µ̃01(·), β̃2, µ̃02(·))− U c(θ, β1, µ01(·), β2, µ02(·))

=
N∑
k=1

{
U c
k(θ, β̃1, µ̃01(·), β̃2, µ̃02(·))− U c

k(θ, β1, µ01(·), β2, µ02(·))
}

by exchanging the order of the double summations, as well as switching the notations

between l and k, it can be shown that

N−1/2{U c(θ, β̃1, µ̃01(s), β̃2, µ̃02(t))− U c(θ, β1, µ01(·), β2, µ02(·))}

= N−1/2

N∑
k=1

{
hc1,N(Ac1)−1ξck1 + gc1,N + h2,N(Ac2)−1ξck2 + gc2,N

}
+ op(1). (A.59)
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where

qcl (θ, s, t) = −ρ(θ, s, t)
∂ρ(θ, s, t)

∂θ
Yl1(s)eβ

T
1 Zl1(s)Yl2(t)eβ

T
2 Zl2(t),

hc1,N = N−1

N∑
l=1

∫ τ

0

∫ τ

0

qcl (θ, s, t)Z
T
l1(s) dµ01(s)dµ02(t),

gc1,N = N−1

N∑
l=1

∫ τ

0

∫ τ

0

qcl (θ, s, t) dµ02(t) dφck1(s),

hc2,N = N−1

N∑
l=1

∫ τ

0

∫ τ

0

qcl (θ, s, t)Z
T
l2(t) dµ02(t)dµ01(s),

gc2,N = N−1

N∑
l=1

∫ τ

0

∫ τ

0

qcl (θ, s, t)dµ01(s) dφck2(t). (A.60)

�

Proof of Theorem 4.4

By the first order Taylor expansion of the estimation equation,

√
N(θ̃ − θ)

= {−N−1∂U(θ, β1, dµ01(·), β2, dµ02(·))
∂θ

}−1N−1/2U(θ, β̂1, µ̂01(·), β̂2, µ̂02(·)) + op(N
−1/2)

(A.61)

Denote

Ic(θ, β1, µ01(·), β2, µ02(·)) = −N−1

N∑
k=1

(∂Uk(θ, β1, µ01(·), β2, µ02(·))
∂θ

)T
(A.62)
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and applying (A.59) and (A.62), (A.61) can be rewritten as

√
N(θ̃ − θ)

= N−1/2{Ic(θ, β1, µ01(·), β2, µ02(·))}−1

N∑
k=1

W c
k (θ, β1, µ01(·), β2, µ02(·)) + op(1),

(A.63)

where

W c
k (θ, β1, µ01(·), β2, µ02(·))

=
{
U c
k(θ, β1, µ01(·), β2, µ02(·)) + hc1,N(Ac1)−1ξck1 + gc1,N + hc2,N(Ac2)−1ξck2 + gc2,N

}
.

(A.64)

By the central limit theorem that
√
N(θ̂ − θ) is asymptotically normal with mean 0

and a variance that can be estimated by Φ̃ = N−1Ĩ−1(
∑N

k=1 W̃
⊗2
k )(ĨT )−1, where Ĩ

and W̃k are the empirical counterparts of

I(θ, β1, µ01(·), β2, µ02(·))

and

Wk(θ, β1, µ01(·), β2, µ02(·)),

respectively, obtained by plugging in the estimators of θ̃, β̃1, µ̃01(·), β̃1, µ̃02(·).


