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ABSTRACT

LI LIU. Optimal Strategies in ”Locks, Bombs and Testing” (LBT) Problem for the
Case of Independent Protection. (Under the direction of DR. ISAAC SONIN)

This thesis constructs a Defense/Attack resource allocation model. Defender uses

”locks” to protect their boxes from Attacker, and Attacker uses ”bombs” to destroy

as many boxes as possible. The first models of such type were given by E. Borel

(1921). Later such models were extensively analyzed at the initial stage of Game

Theory development under the general title (Colonel) Blotto game. Previous LBT

model focuses on violence patterns produced by attackers with different levels of ca-

pacity to see whether rebel capacity influences how rebels fight (the attack timing).

We sought to extend this problem into a situation with an extra setting where rebels

can test vulnerability of boxes before placing bombs. In previous problem the goal

was to find violence patterns produced by rebels. Here, we are interested in the opti-

mal strategy of placing bombs. Further, our problem discusses the optimal strategy

for defenders to allocate locks even when attackers have already applied their best

strategy for placing bombs.

After posing the basic problem we then examine several specific cases with dependent

and independent, identical and non-identical, locks distribution in valued boxes by

using Bayes’ Posterior distribution and Monte Carlo simulations.

Key words: Defense/Attack model, Blotto game, Search, Testing, game theory.

Classification
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CHAPTER 1: INTRODUCTION

1.1 Motivation and Goal

The LBT model is motivated by the paper ”Rebel Capacity, Intelligence Gathering,

and the Timing of Combat Operations”, K. Sonin, J. Wilson, A. Wright.(SWW)[1].

Classic counterinsurgency claims rebel forces execute attacks in an unpredictable man-

ner to limit the government’s ability to anticipate and defend against them. SWW

focuses on the question whether rebel capacity influences how rebels fight (the at-

tack timing). With the help of data on opium production and farmgate prices from

Afghanistan, SWW find high capacity rebels produce patterns of violence that are

less random and exhibit temporal clustering.

The LBT model inherits this background setting and adds a new feature where

rebels being able to test the vulnerability of the government and take action after

receiving signals from test. Let’s place above background into the following situation.

Suppose two parties are in confrontation.

Defenders (Government): Defenders use locks to protect n boxes(sites, cities). Due

to limited sources, they can only protect some of these boxes with locks. The proba-

bility that a lock can stop explosion of bombs is 1.

Attackers (Rebel): Attackers have m bombs, and the probability of explosion for a

single bomb is p (p ≤ 1). They test n boxes and receive a signal from each box that
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help determine the existence of locks. The signal can be positive or negative. If the

signal is positive, it indicates that a lock probably exists; otherwise it does not exist.

Attackers need to decide where to place m bombs, particularly, how many of them

should be in the same box.

Remark 1: Attackers can and will test every box trying to find boxes without locks.

But testing of each box is not perfect: A test can give plus for a box without a lock

and minus for a box with a lock. Thus we introduce probability of true positive (sen-

sitivity a) and true negative (specificity b)

Remark 2: The defenders can decide how to distribute the locks. For the case of k

locks allocated to n boxes, there is a dependency model A(n, k). The case of locks

placed into n boxes independently with a certain probability is model B(n, λ). This

paper is mainly focusing on the B(n, λ) model .

Attackers have the following main goal:

Functional F1: to maximize the expected number of destroyed boxes.

We discuss two models in this paper.

The first is the Symmetric LBT (S-LBT) model, where allocation of locks and testing

has a strictly symmetrical structure.

The second is the General LBT (G-LBT) model. Where some of the various state-

ments about this model remain true when testing is symmetrical but the prior distri-

bution of locks for Defenders can be different from a uniform distribution and there

are different kinds of boxes with possibly different values of benefits and costs for

Defender and/or Attacker. This is a natural assumption when the importance, the
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value of different boxes for Defender/Attacker can vary. This immediately transforms

the symmetric model into a full-fledged game with equilibrium points defined by ran-

domized strategies, etc. The simplest example of such a game in A(n, k) is a problem

where the values of three boxes are (2, 1, 1) and then, having one lock, Defender will

distribute it at random with probabilities (1−2α, α, α). In response, Attacker, having

for example, one bomb, will use probabilities (1 − 2β, β, β) to plant a bomb. The

unique Nash equilibrium point in this and the more general model can be found in

an explicit form.

Remark 3 Game LBT Model is difficult and not solved completely. There is a com-

pletely solved case - Symmetric LBT (S-LBT), which consists of two parts: A(n, k)

([SonSon][12]) and B(n, λ) in this paper. For General LBT (G-LBT), when model

parameters are increasing, the model becomes rather difficult, here we just discuss it

under some special settings.

1.2 Symbols and outline

We consider random variables Ti, Si, Ci, i = 1, 2, ..., n taking two values 0 and 1;

Ti =


1 when the ith box contains a lock

0 when the ith box contains no lock

Si =


1(or +) when the ith box is tested as positive, indicating lock is in present

0(or −) when the ith box is tested as negative, indicating lock is not in present
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Ci =


1 when the ith box is destroyed

0 when the ith box is not destroyed

n: Number of boxes

m: Number of bombs

x: Number of boxes with a minus signal

t: Number of boxes containing a lock with minus signal p: Probability of explosion

a = P (S = 1|T = 1): Sensitivity

b = P (S = 0|T = 0): Specificity

Sometimes, the complement of an event D is denoted as D′.

Dissertation Outline

In this dissertation, Chapter 2-3 consider optimal strategy of Attackers under dif-

ferent settings of LBT model.

In Chapter 4, in the general setting, the Nash Equilibrium point is discussed.



CHAPTER 2: INDEPENDENT IDENTICAL LOCKS ALLOCATION UNDER
SYMMERTIC LBT MODEL

2.1 Parameter notation and model building

1 B(n, λ) model

Under Symmetric LBT (S-LBT) model setting, where allocation of locks and test-

ing has strictly symmetrical structure, we will discuss posterior distribution of locks

given signal, and optimal strategy of attackers.

Define signal vector s = (s1, s2, ...sn), with si either be − or +. And r.v. N is number

of boxes with minus signals among all n boxes.

The symmetry in S-LBT model implies two useful formulas:

P (s1, s2, ..., sn) = P (N = x)/

(
n

x

)
(1)

P (Ti = 0|s1, s2, ..., sn) = P (Ti = 0|si, N = x) (2)

B(n, λ) model assumes that the chance that a randomly selected box containing

a lock is the same (λ). Thus locks are identically and independently distributed in

any boxes. To be noticed, when number of locks (k) is fixed, we would have A(n, k)

model. We will compare results under these two models.

2 Probability Space

We have probability space {(γ, s)}, where γ is a vector of distribution of locks. In

B(n, λ) model, number of Locks K is a random variable. Suppose K = k and there are
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n boxes in total, then locks’ position vector γ = (i1, i2, ...ik) with 1 ≤ i1 < i2 < ... <

ik ≤ n, where ik stands the kth lock’s position among n boxes. And s = (s1, s2, ..., sn)

is a vector of signals. The probability of each outcome p(γ, s) = b0(γ)P (s|γ), where

b0(γ) is prior distribution of locks, and P (s|γ) = P (S1 = s1, ...Sn = sn|γ)

2.2 Lock’s distribution given signal in model B(n, λ)

2.2.1 Conditional probability of signal given lock’s position

Let us introduce r.v.s N1, the number of minuses in locked boxes. N2, the number

of minuses in unlocked boxes. And N = N1 +N2 is the total number of minuses after

testing. Number of Locks K is a random variable. Suppose we have K = k locks

in total, so probability of having k locks is p(k) =
(
n
k

)
λk(1 − λ)(n−k). Then r.v.N1

(number of false minus) is from binomial distribution with k trials, and probability

of success 1− a, N1 ∼ Bin(k, 1− a)

r.v. N2 (number of true minus) is from binomial distribution with (n− k) trials, and

probability of success b. N2 ∼ Bin(n− k, b).

N1 and N2 are independent. Thus distribution of N is P (N = x) = gB(x) =∑
k p(k)gn,k(x), where gn,k(x) is calculated for a fixed k.

When K = k, r.v. N has distribution gn,k(x) ≡ g(x), obtained by convolution for-

mula. And then gB(x) ≡ P (N = x) can be calculated by the second formula below
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g(x) ≡ gn,k(x) =
∑
j

p1(j)p2(x− j) (3)

=
∑
t

p1(x− t)p2(t) (4)

=

min(k,x)∑
i=0

(
k

i

)
(1− a)iak−i

(
n− k
x− i

)
bx−i(1− b)n−k−x+i. (5)

Thus gB(x) =
∑

k p(k)gn,k(x)

.

And we use notation t = N1(γ, s), x = N(s).

Proposition 1. For B(n, λ) model,

(a). When r.v. K = k, and locks’ distribution vector is γ(k), for all signal vector s

with N1(γ, s) = t, and N(s) = x,, probability of signal vector s is

P (s|γ(k)) = P (s|N1 = t, N = x,K = k) = p(t, x|k)

= (1− a)ta(k−t)b(x−t)(1− b)(n−k−(x−t)) (6)

(b). When r.v. K = k, locks’ joint distribution

s(t, x|k) = P (N1 = t, N1 +N2 = x|k) = P (N1 = t, N2 = x− t|k)

= p1(t)p2(x− t)

=

(
k

t

)
(1− a)tak−t

(
n− k
x− t

)
bx−t(1− b)n−k−x+t (7)

(c). Unconditional locks’ joint distribution for B(n, λ) is

sB(t, x) =
∑
k

s(t, x|k)p(k)

=
∑
k

(
k

t

)
(1− a)tak−t

(
n− k
x− t

)
bx−t(1− b)n−k−x+tp(k) (8)
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(d). Conditional locks’ distribution for B(n, λ) is

sB(t|x) =
sB(t, x)

gB(x)

=

∑
k p(k)s(t, x|k)∑
k p(k)gn,k(x)

=

∑
k

(
k
t

)
(1− a)tak−t

(
n−k
x−t

)
bx−t(1− b)n−k−x+tp(k)∑

k p(k)
∑min(k,x)

i=0

(
k
i

)
(1− a)iak−i

(
n−k
x−i

)
bx−i(1− b)n−k−x+i

(9)
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Example 1, B(n, λ). With λ = .5, n = 7, a = 7/12, b = 9/12, find conditional

distribution sB(t|x)

Figure 1: sB(t|x) for λ = 0.5, row is x, column is t

Example 2, B(n, λ). For λ = .7, n = 7, a = 7/12, b = 9/12

Figure 2: sB(t|x) for λ = 0.7, row is x, column is t
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2.2.2 Posterior distribution for B(n, λ)

Given a signal vector s, and suppose number of locks K = κ is fixed, if prior distri-

bution b0(γ(κ)) is uniform, then b0(γ(κ)) = p(κ)/
(
n
κ

)
. Then what is the distribution

of κ locks’ position γ = γ(κ)?

In order to solve this problem, we need to introduce ADL (aposterior distribution

of locks) first. For both S- and G-LBT models we describe above, our notation imply

the following basic equalities:

P (Si = 1|Ti = 1) = a, P (Si = 0|Ti = 0) = b, P (Ci = 1|Ti = 1) = 0, P (Ci = 1|Ti = 0, ui) = p(ui),(10)

where ui is the number of bombs in box i, and p(u) is the probability of distribution

of an unlocked box with u bombs. The independece of explosions implies that p(u) =

1 − qu, q = 1 − p. Note that function p(u) is increasing and concave upward, and

∆p(u) ≡ p(u + 1) − p(u) is decreasing. This property of diminishing utility of each

extra bomb plays an important role in the structure of optimal strategy.

One interest in all models is posterior probabilities P (Ti = 0|s), s = (s1, ..., sn) and

a more general aposterior distribution of locks (ADL) with

b(γ|s) = P (Ti = 1, i ∈ γ, Ti = 0, i /∈ γ|Si = si, i = 1, ..., n) (11)

The following theorem (theorem 1) describes ADL (posterior distribution of locks)

b(γ(κ)|s) for an arbitrary and uniform b0(γ(κ)). With uniform prior distribution all

signals with the same values N1 = t, N = x have the same probability and as a result

b(γ(κ)|s) = b(γ(κ)|t, x). For all possible allocation of κ locks, the ADL b(γ(κ)|s) is

presented on element of an upper triangular
(
n
κ

)
× 2n-dimensional array B(γ(κ)|s),
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where γ(κ) takes all
(
n
κ

)
possible values.

In this background setting, the number of locks is rv K with Binomial distribution

with n trials and probability of success λ. Thus, rv K has distribution p(k) =

p(k|n, λ), k = 0, 1, ..., n. When K = k, rv N has conditional distribution gn,k(x), and

then gB(x) ≡ P (N = x) can be calculated by the second formula below

gA(x) ≡ gn,k(x) =
∑
j

p1(j)p2(x− j) ≡
∑
t

p1(x− t)p2(t), gB(x) =
n∑
k=0

p(k)gn,k(x).(12)

Summation over j in the convolution formula above is taken over values j such that

0 ≤ j ≤ k, 0 ≤ x− j ≤ n− k. Similar holds for summation over t, where 0 ≤ x− t ≤

k, 0 ≤ t ≤ n− k. Further, in all convolution formulas we may not specify the exact

range of summation assuming that all probabilities involved in sums are well defined.
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Theorem 1. ADL in case B(n, λ).

a) For a prior b0(γ(κ)), and any position γ and signal s, according to definition of

ADL (formula 11), the ADL b(γ|s) is given by Bayes’ formula

b(γ(κ)|s) =
b0(γ(κ))P (s|γ(κ))∑

k

∑
σ b0(σ(k))P (s|σ(k))

(13)

Where P (s|γ(κ)) = P (s|N1 = t, N = x,K = k) ≡ p(t, x|k) is given by formula (6)

with t = t(γ, s), x = N(s)

b) For the uniform distribution b0(γ(k)) = p(k)/
(
n
k

)
: for any signal s holds formula

(2); for any position γ and signal s, with t(γ, s) = t,

b(γ(κ)|s) = b(γ(κ)|t, x) ≡ p(κ)sB(t, x|κ)

gB(x)
(
x
t

)(
n−x
κ−t

) , (14)

Proof. of Theorem 1. The first equality in point a) represents Bayes’ formula. The

equality b(γ|s) = p(t, x) and formula (6) were proved in Introduction.

To prove b), note that

sB(t, x) =
∑

k

(
k
t

)
(1−a)tak−t

(
n−k
x−t

)
bx−t(1− b)n−k−(x−t)p(k). Using the following equal-

ity, (
n

k

)(
k

t

)(
n− k
x− t

)
=

(
n

x

)(
x

t

)(
n− x
k − t

)
, (15)

and the uniform prior b0(γ(κ)) = p(κ)/
(
n
κ

)
. Hence b(γ(κ)|s) takes form b(γ(κ)|s) =

p(κ)P (s|γ(κ))/(nκ)∑
k

∑
σ p(k)P (s|σ(k))/(nk)

. To estimate the sum in the denominator, let us prove the fol-

lowing equalities:
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k

∑
σ

b0(σ)P (s|σ) =
∑
k

p(k)(
n
k

) ∑
t

∑
σ:t(σ,s)=t

p(t, x|k)

=
∑
k

p(k)(
n
k

) ∑
t

p(t, x|k)|σ : t(σ, s) = t|

=
∑
k

p(k)(
n
k

) ∑
t

p(t, x|k)

(
x

t

)(
n− x
k − t

)
By equality 15

=
∑
k

p(k)(
n
k

) ∑
t

s(t, x|k)
(
n
k

)(
n
x

)
=

∑
k

p(k)(
n
x

) ∑
t

s(t, x|k)

=
∑
k

p(k)(
n
x

) gn,k(x)

=
gB(x)(

n
x

) .

Where gB(x) =
∑

k p(k)gn,k(x)

Thus

b(γ(κ)|s) =
p(κ)P (s|γ(κ))/

(
n
κ

)∑
k

∑
σ p(k)P (s|σ(k))/

(
n
k

)
=

p(κ)

(nκ)
s(t,x|κ)

(κt)(
n−κ
x−t)

gB(x)

(nx)
By equality 15

=

p(κ)

(nx)
s(t,x|κ)

(xt)(
n−x
κ−t)

gB(x)

(nx)

=
p(κ)s(t, x|κ)

gB(x)
(
x
t

)(
n−x
κ−t

)
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Example 3, B(n, λ). For a = 7/12, b = 9/12, n = 7, λ = 0.7, number of locks

κ = 2, p = 0.6. Column is x (number of minus), and row is t (number of minus in

locks)

Figure 3: b(γ(κ)|s)

Note, when N = x = 5, N1 = t = 1, b(γ(2)|x = 5, t = 1) = p(2)s(t=1,x=5|2)
gB(5)(5

1)(
2
1)

= 0.00266

Given a fixed x, κ (x = 5,κ = 2), and suppose these 5 minus boxes are arranged in

the first 5 places. Since B(γ(2)|x = 5) is the probability of locks’ position among n

boxes.

i 1 2 3 4 5 6 7

s, x = 5 − − − − − + +

γ, t = 0 ⊗ ⊗

B(γ(2)|x = 5) = P (L1 = i1, L2 = i2|x = 5), i1 < i2

= b(γ(2)|x = 5, t = i)

=



b(γ(2)|x = 5, t = 0) i1 = 6, i2 = 7

b(γ(2)|x = 5, t = 1) i2 is selected from box 6, 7

b(γ(2)|x = 5, t = 2) None of i1, i2 are selected from box 6, 7
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We get table and histogram for B(γ(2)|x = 5) (possibility that lock is in position

i1, i2)

Figure 4: B table and histogram
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While in case A(n, k), when all settings keeps the same as Example 3, (a = 7/12,

b = 9/12, n = 7, k = 2, p = 0.6) When N = x = 5, N1 = t = 1, we have

Figure 5: b(γ|s)

Note, when N = x = 5, N1 = t = 1, b(γ|x = 5, t = 1) = P (L1 = i1, L2 = i2|x =

5, t = 1) = s(t=1|x=5)

(5
1)(

2
1)

= 0.06031017,

Given a fixed x (x = 5), and suppose these 5 minus boxes are arranged in the first 5

places. Since B(γ|x = 5) is the probability of locks’ position among n boxes.

i 1 2 3 4 5 6 7

s, x = 5 − − − − − + +

γ, t = 0 ⊗ ⊗

B(γ|x = 5) = P (L1 = i1, L2 = i2|x = 5), i1 < i2

= b(γ(2)|x = 5, t = i)

=



b(γ|x = 5, t = 0) i1 = 6, i2 = 7

b(γ|x = 5, t = 1) i2 is selected from box 6, 7

b(γ|x = 5, t = 2) None of i1, i2 are selected from box 6, 7
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We get table and histogram for B(γ|x = 5) (possibility that lock is in position

i1, i2). After comparing the histogram for model A(n, k) and B(n, λ), we find that

A(n, k) model has a more obvious difference for those two locks’ position between

pair (1, 2), (1, 3), (1, 4), (1, 5) and (6, 7)

Figure 6: when k = 2, likelihood of lock’s position in 7 boxes

Figure 7: when k = 2, histogram of lock’s position
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2.3 Optimal strategy for attackers

Now we know the posterior distribution of locks given information of signal. The

next thing to consider is to realize Goal F1: How to maximize expected number of

destroyed boxes?

2.3.1 Ratio for signal in B(n, λ)

Since signal test is not perfect (sensitivity and specificity are less than 1), we

introduce ratio r(λ) here, to obtain efficient information of signals by comparing

probability of no lock in this position given negative signal with positive signal.

Proposition 2. a) The ratio r ≡ rB(λ) is given by formula

rB(λ) =
P (T = 0|S = 0)

P (T = 0|S = 1)
≡ p−(λ)

p+(λ)
=

b

(1− b)
λa+ (1− λ)(1− b)
λ(1− a) + (1− λ)b

, (16)

b) the probabilities used in (16) are given by formulas

p−(λ) =
(1− λ)b

λ(1− a) + (1− λ)b
, p+(λ) =

(1− λ)(1− b)
λa+ (1− λ)(1− b)

, (17)

c) if a + b > 1, then function rB(λ) is increasing from 1 to a
1−a

b
1−b = c1c2 = c > 1,

when λ is increasing from 0 to 1, otherwise, it is decreasing from 1 to c < 1.

Here c1 = a
1−a and c2 = b

1−b represent the quality of sensitivity and specificity, and

c = c1c2 represents the combined quality of testing.

Remark 1. Note that parameters a and b in function rB(λ) are not symmetrical,

i.e., though r(.5|a, b)r(.5|b, a) = c and rB(λ|a, b) ≈ rB(λ|b, a) ≈ c for λ close to 1,

generally rB(λ|a, b) 6= rB(λ|b, a) for all λ < 1. This asymmetry property is in contrast

to the symmetry of a and b for rA(x) in Problem A(n, k). see of Proposition 2(b).
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The visual plot of {a, b : rA(λ|a, b) = constant} is given in (Figure 9).

Example 1, B(n, λ). For λ = .5 with a = 7
12
, b = 9

12
by formula (30) we obtain

r = 15
7
≈ 2.143, and with a = 9

12
, b = 7

12
, we obtain r = 49

25
= 1.96, and hence

r(.5|a, b)r(.5|b, a) = 21
5

= 4.2 = c.

For λ = .7 with a = 7
12
, b = 9

12
, we obtain r = 87

31
≈ 2.806, and with a = 9

12
, b = 7

12
,

we obtain r = 13
5

= 2.6, and r(.7|a, b)r(.7|b, a) ≈ 7.297.

Example 2, B(n, λ). Let a = 7
12
, b = 9

12
, probability of explosion p = 0.6 by

formula (30), we obtain graph of ratio r w.r.t. λ as follows:

Figure 8: ratio for a=7/12,b=9/12, p=0.6

Example 3, B(n, λ). find a and b for a fixed value r, such as {(a, b) : r(a, b) = c}

Figure 9: r = c
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For A(n, k), we have the following conclusion that the symmetry of Defense strategy

implies that k locks are allocated at random between n boxes. Let us show that the

probability that a particular box has a lock is λ = k/n. The number of combinations

of k locks having one lock on a fixed position and the other k− 1 locks having any of

remaining n − 1 positions is
(
n−1
k−1

)
. Then λ =

(
n−1
k−1

)
/
(
n
k

)
. The first of the two trivial

equalities for binomial coefficients below with m = n yields λ = k/n. The second

equality in (18) will be used later.

(
m− 1

k − 1

)
/

(
m

k

)
=

k

m
;

(
m

k − 1

)
/

(
m

k

)
=

k

m+ 1− k
. (18)

For the case A we obtain two different representations for rn,k(x) using total proba-

bility formula for different partitions.

Theorem 2. a) The crucial ratio rn,k(x|a, b) ≡ rn,k(x), 0 < x < n, is given by formula

rn,k(x) ≡ P (T = 0|S = 0, x)

P (T = 0|S = 1, x)
≡ p−(x)

p+(x)
=

b

(1− b)
(n− x)

x

gn−1,k(x− 1)

gn−1,k(x)
, (19)

b) the probabilities used in (19) p−(x) ≡ P (T = 0|S = 0, x) and p+(x) ≡ P (T =

0|S = 1, x)) for 0 < x < n are given by formulas

p−(x) =
n− k
x
∗ b ∗ gn−1,k(x− 1)

gn,k(x)
, p+(x) =

n− k
n− x

∗ (1− b) ∗ gn−1,k(x)

gn,k(x)
. (20)

c) functions rn,k(x) ≡ rn,k(x|a, b) as functions of parameters a, b for all n, k, 0 <

x < n depend only on parameter c = a
1−a

b
1−b , (see Remark 1), and hence satisfy the

equality rn,k(x|a, b) = rn,k(x|b, a) = rn,k(x|θ, θ), where θ =
√
c

1+
√
c
.

d) functions rn,n−1(x) = c for all x, functions rn,k(x) for k < n−1 are monotonically

increasing in x for 0 < x < n, and r(x) > 1 when a+ b > 1, and < 1 when a+ b ≤ 1.
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e) functions rn,k(x) are monotonically decreasing for all fixed k, 0 < x < n when n

is increasing.

Proof. of Theorem 2(c). Proof that r(x) depends on a, b through c, First, we

can represent gn,k(x) as

gn,k(x) =
∑
i

(
k

i

)
ak−i

(
n− k
x− i

)
bx−i(1− b)n−k−x+i = akbx(1− b)n−k−x

∑
i

(
k

i

)(
n− k
x− i

)
1

ci
,(21)

where d1(x) = max(0, x − n + k) ≤ i ≤ min(k, x) = d2(x). Then we can represent

rn,k(x) as

rn,k(x) =
n− x
x

∑
d1(x−1)≤i≤d2(x−1)

(
k
i

)(
n−k−1
x−i−1

)
c−i∑

d1(x)≤i≤d2(x)
(
k
i

)(
n−k−1
x−i

)
c−i

.

Therefore r(x depends only on c. We also have
(
n−k−1
x−i−1

)
=
(
n−k−1
x−i

)n−(x−i)
x

. Using these

equalities and formula (22), we can show that rn,k(x grows in c as a function of c.
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To compare with Example 1 in page 18, we can look into B(n = 10, k = 5) model,

with the same value a = 7/12, b = 9/12, and number of minus box x = 0, 1, 2, ...10.

r(x) is given by formula 19

Figure 10: r(x) for A(10, 5)

Figure 11: graph of r(x) for A(10, 5)
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2.3.2 Threshold for number of bombs

Again, for S–LBT models the problem description above and our notation imply

the following basic equalities:

P (Si = 1|Ti = 1) = a, P (Si = 0|Ti = 0) = b,

P (Ci = 1|Ti = 1) = 0, P (Ci = 1|Ti = 0, ui) = p(ui), (22)

The independence of explosions implies that p(u) = 1 − qu, q = 1 − p. Note that

function p(u) is increasing and concave upward, and ∆p(u) ≡ p(u + 1) − p(u) is de-

creasing. This property of diminishing utility of each extra bomb plays an important

role in the structure of optimal strategy.

We consider strategy π = (u1, ..., un|s) as an allocation of m bombs between boxes,

given signal s = (s1, ..., sn),
∑n

j=1 uj = m, and we introduced U−(π|s) = {uj, j ∈

B−(s)} and U+(π|s) = {uj ∈ B+(s)} as two possible sets of the values of uj in

minus B−(s) and plus B+(s) boxes. By symmetry of prior distribution of locks and

testing, all strategies with the same pair of sets U−(π|s), U+(π|s) can be obtained

using permutations of these sets among corresponding boxes, and they all have the

same value, denoted as wπ(x,m) for a problem N(s) = x. We denoted also v(x,m) =

supπ v
π(x,m), the value function over all strategies, given m and x, and v(m), the

value function over all .

Let J be a subset of boxes and C(J) an event that all boxes in J are destroyed, Cj

box j is destroyed. Then, given strategy π, we have wπ(m|x) =
∑n

i=1 P (Ci|ui, si, x).

The conditional independece of testing and explosions, formula (22), and total prob-
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ability formula imply the following formula for the conditional probability of the

destruction of a particular box with u bombs, and for any event F generated by test-

ing (signals), P (C|u, F ) = P (C|u, T = 0)P (T = 0|F ) = p(u)P (T = 0|F ), u ≥ 1.

Using this formula and the definitions of r(λ), p−(λ) and p+(λ), we have:

P (C|u, S = 1, λ) = P (T = 0|S = 1, λ)P (C|u, T = 0) = p+(λ)p(u), p(u) = 1− qu,

P (C|u, S = 0, λ) = P (T = 0|S = 0, λ)P (C|u, T = 0) = p−(λ)p(u) = r(λ)p+(λ)p(u).

(23)

The next Proposition justifies our claim that the optimal strategy in all problems are

(separately) UAP in minus and plus boxes.

Theorem 3. If 0 < λ < 1, then the optimal strategy is to distribute all bombs between

minus and plus boxes d(λ)-UAP, where d(λ) is defined by formula

d(λ) = min(i ≥ 1 : r(λ)qi < 1), (24)

Theorem 4. Let π(λ) = (ul, l = 1, 2, ..., n) be an optimal strategy. Then |us − ut| ≤ 1

when the signals in boxes s, t have the same sign.

Theorem 5. Let π(λ) = (ul, l = 1, 2, ..., n) be a strategy, 0 < λ < 1, u− = i be the

number of bombs in some minus box, u+ = j be the number of bombs in some plus

box, and d = d(λ) is defined by formula (24). Then, if i − j > d or, if j ≥ 1 and

i − j < d − 1, then strategy π is not optimal, or, equivalently, if π is optimal, and

j = 0, then 1 ≤ i ≤ d, and if j ≥ 1, then i− j = d or d− 1.
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Proof. of Theorem 3. Suppose that theorem 3 is not true and let us say us =

i, ut = j, i − j ≥ 2 and Ss = St = 1. The concavity of function p(·) implies that

p(i+ 1) + p(j − 1) > p(i) + p(j). Then, using the formulas in (23), we have

P (C = 1|i+ 1, S = 1, λ) + P (C|j − 1, S = 1, λ) = p+(λ)[p(i+ 1) + p(j − 1)]

> p+(λ)[p(i) + p(j)]

= P (C|i, S = 1, λ) + P (C|j, S = 1, λ).

Thus our initial strategy is not optimal. The proof for Ss = St = 0 is similar with

p+(λ) replaced by p−(λ) = r(λ)p+(λ).

Proof. of Theorem 4. Suppose that Proposition 4 is not true and let us say us =

i, ut = j, i − j ≥ 2 and Ss = St = 1. The concavity of function p(·) implies that

p(i+ 1) + p(j − 1) > p(i) + p(j). Then, using the formulas in (23), we have

P (C = 1|i+ 1, S = 1, x) + P (C|j − 1, S = 1, x) = p+(x)[p(i+ 1) + p(j − 1))] >

> p+(x)[p(i) + p(j)] = P (C|i, S = 1, x) + P (C|j, S = 1, x).(25)

Thus our initial strategy is not optimal. The proof for Ss = St = 0 is similar with

p+(x) replaced by p−(λ) = r(λ)p+(λ).
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Proof. of Theorem 5. Proof. Let d(λ) = d. As always, we assume that a + b > 1

and then r(λ) > 1 for 0 < λ < 1, and hence u− ≥ u+. Let us denote P (·|λ) = P (·|λ),

and denote the incremental utilities for minus and plus boxes as ∆C−(i|λ) = P (C|i+

1, S = 0, λ)− P (C|i, S = 0, λ), ∆C+(j|λ) = P (C|j + 1, S = 1, λ)− P (C|j, S = 1, λ).

Using formulas in (23), it is easy to check that ∆C+(j|λ) = pp+(λ)qj and ∆C−(i|λ) =

pr(λ)p+(λ)qi, and then we have

∆(i− 1, j) = ∆C−(i− 1|λ)−∆C+(j|λ) = pqjp+(λ)[r(λ)qi−j−1 − 1].

By definition of d(x), we have r(λ)qd(λ)−1 ≥ 1 and r(λ)qd(λ) < 1. Then if i − j > d,

then formula (26) implies that ∆(i − 1, j) < 0, i.e., a transfer of one bomb from a

minus box from this pair to a plus box will increase the value of a strategy. Similarly,

if j ≥ 1 and i− j < d− 1 for such pair, then using formula for ∆(i+ 1, j − 1) similar

to formula (26), we can show that the inverse transfer will increase the value.

Note also that if r(λ)qd(λ)−1 = 1, then d(λ)-UAP strategy remains optimal but not

anymore unique since then in formula (26) gives zero for i− j = d(λ). Note also, that

if p = 1, i.e. q = 0, then d(λ) = 1 for all 0 < λ < 1, and if p is decreasing to zero,

then d(λ) tends to infinity.
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Example 1: B(n, λ), with a = 7/12, b = 9/12, n = 8, number of bombs m = 50,

p = 0.6

From the Figure 12, we can find that when λ = 0.5, r(0.5) = 2.143 and d = 2.

Figure 12: d(λ) with 50 bombs and prob of explosion is 0.6

Thus when λ = 0.5, if there are totally 50 bombs, attacker will place them into 8

boxes according the following strategy to maximize damage.

i 1 2 3 4 5 6 7 8

s, x = 5 − − − − − + + +

bombs 7 7 7 7 7 5 5 5
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In model A(n, k), with a = 7/12, b = 9/12, n = 8, k = 4 number of bombs m = 50,

p = 0.6

From the Figure 13, we can find that when x = 5, r(5) = 2.5066767 and d = 2.

Figure 13: threshold for A(8, 4)

Thus when x = 5, if there are totally 50 bombs, attacker will place them into 8

boxes according the following strategy to maximize damage.

i 1 2 3 4 5 6 7 8

s, x = 5 − − − − − + + +

bombs 7 7 7 7 7 5 5 5
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2.3.3 Value function

Theorem 6. Let, given signal s, the total number of minuses N = x, 0 ≤ x ≤ n. Then

a) if x = 0 or n, then the optimal strategy is to distribute all bombs between boxes

UAP and the value function v(m|0) = v(m|n) for m = n∗i+e, i = 0, 1, ..., 0 ≤ e < n,

is given by formula

v(m|0) = v(m|n) =
n∑
k=0

n− k
n

[ep(i+ 1) + (n− e)p(i)]P (k); (26)

b) If 0 < λ < 1, then the optimal strategy is to distribute all bombs between minus

and plus boxes d(λ)-UAP, where d(λ) is defined by formula

d(λ) = min(i ≥ 1 : r(λ)qi < 1), (27)

q = 1− p and r(λ) = rA(λ) is defined by formula (16).

The value function v(x,m) for m = m− +m+ = i ∗ x+ e+ j ∗ (n− x) + e′, where

the tuple (i, e, j, e′) is (uniquely) defined by value x and d(x)-UAP strategy, is given

by formula

v(x,m) = p+(λ)[r(λ)(ep(i+ 1) + (x− e)p(i)) + (e′p(j + 1) + (n− x− e′)p(j))]. (28)

c) The value function v(m),m = 1, 2, ... is given by formula

v(m) =
n∑
x=0

P (N = x)v(x,m)

=
n∑
x=0

v(x,m)gA(x). (29)
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Example 2:B(n, λ), a = 7/12, b = 9/12, n = 8, λ = 0.5, number of bombs

m = 50, p = 0.6

Resulting the following table with first row to be the value of x (number of locks in

minus boxes), value function is
∑8

x=0 vgx = 3.27, where vgx = v(x,m)gA(x)

Figure 14: B(8, 0.5) with 50 bombs and prob of explosion p = 0.6

Figure 15: B(8, 0.5) value function w.r.t number of bombs when prob of explosion
p = 0.6
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For A(n, k) with n = 8, k = 4 Resulting the following table with first row to be

the value of x (number of locks in minus boxes), value function is
∑
vg = 3.99

Figure 16: A(8, 4) with 50 bombs and prob of explosion p = 0.6

Figure 17: A(8, 4) value function w.r.t number of bombs when prob of explosion
p = 0.6



CHAPTER 3: INDEPENDENT LOCKS ALLOCATION UNDER GENERAL LBT
MODEL

3.1 Notations And Conditions

Under the setting of General G-LBT model when there are different kinds of boxes,

locks and bombs, with possibly different values of benefits and costs for Defender

and/or Attacker, and testing is not uniform in respect to different boxes, e.g., when

Def can test only a subset of all boxes, or parameters of testing a and b depend on

the box number, we can construct posterior distribution of locks and obtain optimal

strategy of attackers.

G-LBT model GB(n,Λ,m):

Defender: There are totally n boxes and each box has a value ci, such that V =

(c1, c2, c3, ...cn). Defenders allocate locks independently with non-identical probability

in different boxes, i.e. Λ = (λ1, λ2, ...λn) , where λi indicates probability of containing

a lock in ith box, thus with restriction
∑

i λi = k and 0 < λi < 1 for i = 1, 2, ...n.

So there are totally κ = 2n allocation of locks, let’s redefine locks’ allocation vector

γ = (γ1, γ2, ...γκ).

Attacker: there are m bombs, among which u bombs are placed into boxes with

u = (u1, u2, ...un), and
∑
ui = m, and they test each box to obtain signal vector

s = (s1, s2, ...sn), with si either be − or +

Assume boxes themselves have different values (V = c1, c2, c3, ...cn), i.e. c1 ≥ c2 ≥
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c3 > ... ≥ cn, Attacker’s goal is to maximize destruction (i.e. valued boxes)

Remark: Here we have two cases:

Case 1: Attackers know each λi, i = 1, 2, ...n

Case 2: Attackers only know k

Due to the complexity of this model, here we just discuss a little about Case 1 and

leave Case 2 for future work

3.2 Parameter r in model GB(n,Λ,m)

Thus instead of computing for r(λ), we calculate for ri(s),

ri(s) = viP (Ti = 0|s)p, (30)

Where P (Ti = 0|s) is given by Posteriori Distribution, such that P (Ti = 1|s) =∑
γi:i∈γ b(γi|s), thus P (Ti = 0|s) = 1− P (Ti = 1|s)

Example 1: GB(n,Λ,m) Assume n = 4, V = {7, 5, 3, 1}, Λ = (0.2, 0.1, 0.2, 0.5),

a = 7/12, b = 9/12, probability of explosion p = 0.8

and let parameter k here to be 1

When S = {−,−,+,+}, m = 1, from table 1, Attacker should place bomb into box

1

Table 1: A summary of destruction value for GB(n,Λ,m).

Boxes signal s r(s)
1 − 4.9170732
2 − 2.1073171
3 + 0.2325581
4 + 0.2857143



CHAPTER 4: NASH EQUILIBRIUM POINTS

In game theory, the Nash equilibrium, named after the mathematician John Forbes

Nash Jr., is a proposed solution of a non-cooperative game involving two or more

players in which each player is assumed to know the equilibrium strategies of the

other players, and no player has anything to gain by changing only their own strategy.

It is a concept within game theory where the optimal outcome of a game is where

there is no incentive to deviate from their initial strategy. More specifically, the Nash

equilibrium is a concept of game theory where the optimal outcome of a game is one

where no player has an incentive to deviate from his chosen strategy after considering

an opponent’s choice. Overall, an individual can receive no incremental benefit from

changing actions, assuming other players remain constant in their strategies. A game

may have multiple Nash equilibria or none at all.

In our case, even when Attackers have already selected the optimal strategy of

bombs placement for any signal received, Defenders can still minimize their potential

loss by choosing optimal strategy of locks allocation

This is the case of Nash Equilibrium
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4.1 Notations And Conditions

Under the setting of General G-LBT model when there are different kinds of boxes,

locks and bombs, with possibly different values of benefits and costs for D and/or R,

and testing is not uniform in respect to different boxes, e.g., when Def can test only

a subset of all boxes, or parameters of testing a and b depend on the box number, we

can construct posterior distribution of locks and obtain optimal strategy of attackers.

G-LBT model GB(n,Λ,m):

Defender: There are totally n boxes and each box has a value ci, such that V =

(c1, c2, c3, ...cn). Defenders allocate locks independently with non-identical probability

in different boxes, i.e. Λ = (λ1, λ2, ...λn) , where λi indicates probability of containing

a lock in ith box, thus with restriction
∑

i λi = k and 0 < λi < 1 for i = 1, 2, ...n.

So there are totally κ = 2n allocation of locks, let’s redefine locks’ allocation vector

γ = (γ1, γ2, ...γκ).

Attacker: there are m bombs, among which u bombs are placed into boxes with

u = (u1, u2, ...un), and
∑
ui = m, and they test each box to obtain signal vector

s = (s1, s2, ...sn), with si either be − or +

Assume boxes themselves have different values (V = c1, c2, c3, ...cn), i.e. c1 ≥ c2 ≥

c3 ≥ ... ≥ cn, Attacker’s goal is to maximize destruction (i.e. valued boxes)
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4.2 Nash Equilibrium Point for GB(n,Λ,m) model

Parameter k can be fixed or random. Fixed when we have dependent model

GA(n, k,m), and the strategy of how to allocate locks is defined by probability vector

X = (x1, x2, ..., xk). In our paper, the parameter k; k < n, is random, then the strat-

egy of the Defender is a probability distribution b(γ) on a set of all possible positions

of locks. There are totally κ = 2n allocation of locks, thus locks’ allocation vector

γ = (γ1, γ2, ...γκ).

In our Bayesian setting we assume that this prior distribution b(γ) is known to at-

tacker, though of course the real positions of the locks are not. After the locks

are allocated, Attacker receives signal s and, having m bombs, distributes them

among n sites deterministically or using some randomization trying to maximize

the expected sum of values of all destroyed boxes. WLOG, we can assume that

this distribution is deterministic and an optimal strategy of attacker π(m|b(γ)),

with respect to a strategy of defender b(γ), is a collection of her optimal responses

u(s|m, b(γ)) = u(s) = (u1(s), u2(s), ...un(s)) to each signal s, where ui(s) is the num-

ber of bombs placed into site i; i = 1, 2, ...n. Using prior distribution b(γ), the

probabilities of signals p(s), given this distribution, the posterior distribution of the

positions of locks b(γ|s) and the total expected damage (loss), L(b(γ), π(m|b(γ)) can

be calculated. The goal of Defender is to select a prior distribution of locks b∗(γ)

to minimize this loss. Then the pair (b∗(γ), π∗), where π∗ is an optimal response

of Attacker to strategy b∗(γ) forms a classical Nash equilibrium (NE) point. The

corresponding value of the game is v∗ = L(b∗(γ), π∗). As we will see, though b∗(γ)
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are not unique, they all have common properties that result in a unique (up to some

randomization) Attacker’s strategy π∗, and thus a specific value of v∗.

We denote GB = GB(n,Λ,m|a, b, V ) this general Bayesian game, where n is the

number of sites, n dimensional vectors a and b represent the quality of testing, (the

sensitivities and the specificities), and vector V = (c1, ..., cn) describes the values of

each box.

With only one available bomb, m = 1, Attacker will place it into the next valuable

site, and if m > 1 she should solve the problem of discrete optimization placing the

next available bomb into the site with the maximal marginal utility.

The other extreme situation is when testing is not informative, i.e., when ai = bi =

1/2; i = 1, 2, ..., n, and then the posterior distribution b(γ|s) coincides with the prior

distribution b(γ) for all signals s. Given prior distribution b(γ), let us introduce prob-

ability αi = P (Ti = 0).

For model GB(n = 2,Λ,m = 1), assume p = 1 and valued boxes has value V = (c, 1),

Λ = (λ, 1−λ). At first glance, it seems that if c is much larger than 1, defender should

place a unique lock into the most valuable site and then her loss is 1. But simple

calculations show that the optimal distribution of locks is ( c
c+1

, 1
c+1

) and v = c
c+1

< 1.

Attacker can place her unique bomb into any site or place it at random.

Similarly, for the game GB(n = 3,Λ,m = 1) with vector of values V = (4, 3, 2), and

Λ = (λ1, λ2, 1− λ1− λ2). We obtain that the optimal distribution of a unique lock is

given by b(γ) = (7/13, 5/13, 1/13) and α = (6/13, 8/13, 12/13), ci ∗ αi = v∗ = 24/13

for i = 1, 2, 3. But if the vector of values is V = (4, 3, 1), then b(γ) = (4/7, 3/7, 0)

and α = (3/7, 4/7, 1), ci ∗ αi = v∗ = 12/7 for i = 1, 2, 3
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Theorem 7. (Non-Informative Case). For m = 1; V = (c1, c2, c3, ...cn) with

c1 ≥ c2 ≥ c3 ≥ ... ≥ cn,

a) the class of optimal strategies b∗(γ) has the following structure: there is k∗ = k∗(c);

k < k∗ < n and constant v∗ = v(c) such that: ciαi = v∗ for 1 ≤ i ≤ k∗, and v∗ > ci;

αi = 1 for k∗ < i ≤ n;

b) the optimal strategy for AT is to place a bomb at random between the sites with

numbers 1, 2, 3...k∗;

c) the value of the game is v∗ = (k∗ − k)/Ck∗ , where k∗ = max{j : j ≥ k, cj >

(j − k)/Cj} and Cj =
∑j

i=1 1/ci

Proof. of Theorem 7(c). When 1 ≤ i ≤ k∗, we have ciαi = v∗ for i = 1, 2, ...k∗.

When k∗ ≤ i ≤ n, we have αi = 1

Hence in general we have

E(
k∗∑
i=1

1(Ti=0)) =
k∗∑
i=1

αi = k∗ − k

k∗∑
i=1

v∗
vi

= k∗ − k

Let C∗ =
k∗∑
i=1

1

ci

Thus v∗ =
k∗ − k
C∗

Hence, when i = 1, 2, ...k∗, αi = v∗
ci
< 1

Thus, we have k∗−k
C∗ci

< 1, or in other words, ci >
k∗−k
C∗

.
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So k∗ = max{j : j ≥ k, cj > (j − k)/Cj}

In other words, if k∗ < n, then the sites with numbers greater than k∗ should not

be protected at all and the distribution of k locks in the first k∗ sites should make

all sites equally desirable for attack. In layman terms: if the strength of a chain is

defined by the strength of the weakest link, and the resources to make links strong

are limited, then make all links of equal strength. This is a special case of a more

general ”Chain-Link Optimization Principle”.

Note also that for any vector of values V, the number k < k∗, the optimal strategy

b∗(γ) is always randomized and value v∗ > ck∗+1. As a result, attacker will allocate

her m bombs among the first k∗ sites if m ≤ k∗.

Of course, the main interest in the Bayesian LBT game problem is the case of im-

perfect but informative testing. For simplicity we will assume that this means that

ai > 1/2, bi > 1/2, i = 1, 2, ...n, though in the general case this property should be

described using vectors a and b. To obtain the description of NE points, we have to

solve three problems.

The first problem, is, given a strategy of defender b(γ), to describe the optimal

strategy (response) of attacker π(m|b(γ)), i.e., to describe the optimal allocation of

bombs u(s|m) given signal s and m available bombs. The full answer to this problem

is given by a recursive procedure S described. The expected value of damage (loss)

for the pair of strategies (b(γ), π(m|b(γ))) can also be obtained.

The second, more difficult, problem is to find the optimal strategy or strategies

b∗(γ) of defender, minimizing this loss. So far, the proof of corresponding Theorem 2
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is not 100% complete but its heuristic meaning is similar to the meaning of Theorem

1: these strategies have to make the potential expected losses in the sites, that are

worth protecting, equal when attacker applies her optimal response to b∗(γ). The

difficulty here lies in the fact that in informative case the optimal response depends

on signal s. Given a strategy of defender b(γ), let us denote Li(m) the expected loss

in site i when attacker applies her optimal strategy given signal s, p(s) the probability

of signal s and Li(m) =
∑

s p(s)Li(s|m) the corresponding expected loss.

Theorem 8. (Informative Case). For m = 1; c1 ≥ c2 ≥ ...n.

The class of optimal strategies b∗(γ) has the following structure: the value of Li(m)

must be equal for 1 ≤ i ≤ k∗, where k∗(m) : k < k∗(m) ≤ n is the number of sites

worth protecting

The third problem, to be solved, is to obtain the full description of all NE points,

i.e. to describe all b∗(γ) delivering the equality of Li(m) in Theorem 2.

Remark 1. The description of b∗(γ) is based on the following interesting property of

G game: to obtain the optimal response of attacker given any b(γ) and signal s, i.e. to

use procedure R, attacker need to know only the marginal probabilities αi(s) for all

s, but defender, trying to obtain b∗(γ), need to know v(m), and to calculate the total

expected loss, she needs to have p(s) based on the whole distribution b(γ). There is

a simple example that shows that two distinct b(γ) can have the same probabilities

αi(s). Thus, one of a side problems is to obtain the description of all b(γ) having the

same probabilities αi(s).

Remark 2. The statements and interpretation of Theorems 1 and 2 can be expressed
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also using the concepts of information and entropy. Loosely speaking, the optimal

DF strategy is to create the situation for AT with maximal possible entropy.

Remark 3.Here we define the function of real damage as d(x) =
∑

s p(s|x)d(s|x)),

where d(s|x) as real damage with optimal placement of a unique bomb is given by the

maximum potential damage di(s|x) for each signal, where di(s|x) = cipP (Ti = 0|s) for

i = 1, 2, ...n. And p(s|x) is total probability of signal given by p0(s) =
∑

i p(s|γi)b0(γi).

and x as parameter of Λ = (x, 1− x)
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Example 1, Informative Case: GB(2,Λ, 1), where Λ = (λ, 1 − λ) with valued

box V = (2, 1), a = 7/12, b = 9/12. (This example will be compared to dependent

case model GA(n, k,m) where k = 1).Here is the summary of prior probability for

lock’s location (Table 4) and distribution of signal vector (S) (Table 5)

Table 2: A summary of Locks’ location and prior probability for GB(n,Λ,m).

Lock’ Location (γ) Probability of γ (b0(γ))
γ1 = (0, 0) (1− λ)λ
γ2 = (0, 1) (1− λ)2

γ3 = (1, 0) λ2

γ4 = (1, 1) λ(1− λ)

Table 3: A summary of signal vector and distribution for GB(n,Λ,m).

Signal (S) p(S|γ1) p(S|γ2) p(S|γ3) p(S|γ4) p0(S) =
∑

i p(S|γi)b0(γi)
s1 = (−,−) b2 b(1− a) (1− a)b (1− a)2 −(4λ− 9)(4λ+ 5)/144
s2 = (−,+) b(1− b) ab (1− a)(1− b) (1− a)a (4λ− 7)(4λ− 9)/144
s3 = (+,−) b(1− b) (1− a)(1− b) ab a(1− a) (4λ+ 3)(4λ+ 5)/144
s4 = (+,+) (1− b)2 a(1− b) a(1− b) a2 −(4λ+ 3)(4λ− 7)/144
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For dependent model GA(n, k,m) with n=2,k=1,m=1 and with valued box V =

(2, 1), a = 7/12, b = 9/12 The probability of allocating lock in box 1 is λ, the

probability of allocating lock in box 2 is 1− λ

Table 4: A summary of Locks’ location and prior probability for GA(n, k,m).

Lock’ Location (γ) Probability of γ (b0(γ))
γ1 = (1, 0) λ
γ2 = (0, 1) 1− λ

Table 5: A summary of signal vector and distribution for GA(n, k,m).

Signal (S) p(S|γ1) p(S|γ2) p0(S) =
∑

i p(S|γi)b0(γi)
s1 = (−,−) b(1− a) b(1− a) 45/144
s2 = (−,+) (1− a)(1− b) ab (63− 48λ)/144
s3 = (+,−) ab (1− a)(1− b) (15 + 48λ)/144
s4 = (+,+) a(1− b) a(1− b) 21/144
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Example 1a For GB(2,Λ, 1) model. Specially, let’s take a look of posterior dis-

tribution and destruction at λ = 0.7. Posterior Distribution for locks are given by

formula b(γi|S) = P (S|γi)b0(γi)/p0(S), and shows in (Table 8).

Measure ri(S) = cipP (Ti = 0|S) and real damage d(s|x) = p(s|x)d(s|x)) = p0(s)cipP (Ti =

0|s), i = 1, 2.We have the following destruction table with (Table 9).

When λ = 0.7, destruction d = d1 + d2 = 0.7883333

Table 6: A summary of signal and Posterior Distribution when λ = 0.7.

Lock (γ) Signal (S) b(γi|S) = p(S|γi)b0(γi)/p0(S)
γ1 = (0, 0) s1 = (−,−) −81λ(1− λ)/((4λ− 9)(4λ+ 5)) = 0.35173697

s2 = (−,+) 27λ(1− λ)/((4λ− 7)(4λ− 9)) = 0.21774194
s3 = (+,−) 27λ(1− λ)/((4λ+ 3)(4λ+ 5)) = 0.12533156
s4 = (+,+) −9λ(1− λ)/((4λ+ 3)(4λ− 7)) = 0.07758621

γ2 = (0, 1) s1 = (−,−) −45(1− λ)2/((4λ− 9)(4λ+ 5)) = 0.08374690
s2 = (−,+) 63(1− λ)2/((4λ− 7)(4λ− 9)) = 0.21774194
s3 = (+,−) 15(1− λ)2/((4λ+ 3)(4λ+ 5)) = 0.02984085
s4 = (+,+) −21(1− λ)2/((4λ+ 3)(4λ− 7)) = 0.07758621

γ3 = (1, 0) s1 = (−,−) −45λ2/((4λ− 9)(4λ+ 5)) = 0.45595533
s2 = (−,+) 15λ2/((4λ− 7)(4λ− 9)) = 0.28225806
s3 = (+,−) 63λ2/((4λ+ 3)(4λ+ 5)) = 0.68236074
s4 = (+,+) −21λ2/((4λ+ 3)(4λ− 7)) = 0.42241379

γ4 = (1, 1) s1 = (−,−) −25λ(1− λ)/((4λ− 9)(4λ+ 5)) = 0.10856079
s2 = (−,+) 35λ(1− λ)/((4λ− 7)(4λ− 9)) = 0.28225806
s3 = (+,−) 35λ(1− λ)/((4λ+ 3)(4λ+ 5)) = 0.16246684
s4 = (+,+) −49λ(1− λ)/((4λ+ 3)(4λ− 7)) = 0.42241379

Table 7: A summary of destruction.
Notice: Box 1 has larger r for signal s1 and s2. Box 2 has larger r for signal s3 and s4

Box Signal (S) ri(S) = ciP (Ti = 0|S)p d(s|λ = 0.7) = ciP (Ti = 0|s)p
1 s1 = (−,−) 2(b(γ1|s1) + b(γ2|s1)) = 0.8709677 2p(γ1)(p(s1|γ1) + p(s2|γ1))

s2 = (−,+) 0.8709677 +2p(γ2)(p(s1|γ2) + p(s2|γ2)))
s3 = (+,−) 0.3103448 = 0.45
s4 = (+,+) 0.3103448

2 s1 = (−,−) (b(γ1|s1) + b(γ3|s1)) = 0.8076923 p(γ1)(p(s3|γ1) + p(s4|γ1))
s2 = (−,+) 0.5000000 +p(γ3)(p(s3|γ3) + p(s4|γ3)))
s3 = (+,−) 0.8076923 = 0.3383333
s4 = (+,+) 0.5000000
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For dependent case GA(n, k,m), we have destruction d = d1 + d2 = 0.8895833

Table 8: A summary of signal and Posterior Distribution when λ = 0.7.

Lock (γ) Signal (S) b(γi|S) = p(S|γi)b0(γi)/p0(S)
γ1 = (1, 0) s1 = (−,−) λ = 0.7

s2 = (−,+) 15λ/(63− 48λ) = 0.35714286
s3 = (+,−) 63λ/(63λ+ 15(1− λ)) = 0.90740741
s4 = (+,+) λ = 0.7

γ2 = (0, 1) s1 = (−,−) 1− λ = 0.3
s2 = (−,+) 63(1− λ)/(63− 48λ) = 0.64285714
s3 = (+,−) (15 + 48λ) = 0.09259259
s4 = (+,+) 1− λ = 0.3

Table 9: A summary of destruction.
Notice: Box 1 has larger r for signal s2. Box 2 has larger r for signal s1,s3 and s4

Box Signal (S) ri(S) = ciP (Ti = 0|S)p d(s|λ = 0.7) = ciP (Ti = 0|s)p
1 s1 = (−,−) 2b(γ2|s1) = 0.6

s2 = (−,+) 1.2857143 2p(γ2)p(s2|γ2)
s3 = (+,−) 0.1851852 = 0.2625
s4 = (+,+) 0.6

2 s1 = (−,−) b(γ1|s1) = 0.7
s2 = (−,+) 0.3571429 p(γ1)(p(s1|γ1) + p(s3|γ1) + p(s4|γ1))
s3 = (+,−) 0.9074074 = 0.6270833
s4 = (+,+) 0.7
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Example 1b Nash Equilibrium point. Continue on Example 1. GB(2,Λ, 1), where

Λ = (λ, 1− λ) with valued box V = (2, 1), a = 7/12, b = 9/12. From (Figure 19), we

find at λ = 0.72, destruction will be minimized d = 0.7728.

Figure 18: Destruction and threshold for GB(n,Λ,m)
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for dependent cass GA(n, k,m), destruction is minimized at λ = 0.67 with value

d = 0.8895833

Figure 19: Destruction and threshold for GA(n, k,m)
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Example 2, Non-informative Case: GB(2,Λ, 1), where Λ = (λ, 1 − λ) with

valued box V = (2, 1), a = 1/2, b = 1/2. (This example will be compared to depen-

dent case GA(n, k,m) where k = 1). See figure (21), and destruction is minimized at

λ = 2/3 = 0.67

Figure 20: Destruction and Threshold for non-inform-general case in model
GB(2,Λ, 1)
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For dependent case GA(2, 1, 1), we find the same conclusion as above. With de-

struction minimized at λ = 2/3 = 0.67

Figure 21: Destruction and Threshold for non-inform-general case in modelGA(2, 1, 1)
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Example 3, Non-informative Case: GB(3,Λ, 1), where Λ = (λ1, λ2, 1−λ1−λ2)

with valued box V = (4, 3, 1), a = 1/2, b = 1/2. See figure (23), and destruction is

minimized at Λ = (4/7, 3/7, 0) = (0.57, 0.43, 0) with value 12/7 = 1.72,

Figure 22: r and destruction for signals in each box
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Figure 23: graph for destruction on different lambdas



CHAPTER 5: CONCLUSION AND FUTURE WORK

In Chapter 3, we developed General LBT model (G-LBT) under special condition

of valued box and nonidentical probability of locks allocation when number of bombs

is 1. In the future, we can also extend this model to a more general condition where

number of bombs could be a random variable.

Moreover, G-LBT model could tolerate different kinds of bombs and locks. and

testing is not uniform with respect to different boxes, in this case, Defender can test

only a subset of all boxes, or parameters of testing a and b depend on the box number.

Note also that LBT models can be extended to the case when an integer number of

bombs u is replaced by a nonnegative continuous variable and the destruction function

p(u) gives the probability of distribution with u resources allocated to an unlocked

box. Similarly, we can convert integer locks to a continuous protection resource. We

do not present any results about the G-LBT model in this paper.
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