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ABSTRACT

CHEN CHEN. Goodness-of-�t Tests under Permutations. (Under the direction of
DR. ZHIYI ZHANG)

Several new goodness-of-�t tests are proposed on countable alphabets, where cer-

tain fundamental statistical concepts associated with random variables, such as cu-

mulative distribution functions, characteristic functions and moments, may not exist.

An entropic perspective by ways of the entropic basis, derived from the well-known

Turing's formula, is introduced. A new characterization theory of probability distri-

butions on alphabets is established by means of the entropic basis. Based on this

logic framework several goodness-of-�t tests are developed.

Toward developing the new goodness-of-�t tests, an one-to-one correspondence be-

tween a given probability distribution and its entropic basis is �rst established. In

case the cardinality of underlying distribution is �nite, say K, the �rst K entropic

moments uniquely determine the underlying probability distribution up to a permu-

tation on the index set. For each of the entropic moments, an uniformly minimum

variance unbiased estimator (UMVUE) is introduced. Based on the sampling distri-

bution of the UMVUEs of the entropic moments and the multivariate delta method,

two new Chi-squared goodness-of-�t tests are constructed and their asymptotic dis-

tributional properties are established in theory. However it is also observed that these

new tests are di�cult to implement numerically. To alleviate the computational dif-

�culty in implementation, a heuristic exact test for goodness-of-�t is proposed. The

performance of the proposed tests are evaluated by simulation studies under a range

of distributions. The new tests are also illustrated in several real life applications.
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CHAPTER 1: Introduction

1.1 Alphabet and Goodness-of-�t Test

Let X = {`k; k ≥ 1} be a countable and categorical sample space, where each

category is assigned with a label `k for some k. In many information theory literatures,

this kind of sample space is referred to as an alphabet, and those labels are called

letters [1]. Let p = {pk; k ≥ 1} where pk > 0 for every k, be a probability distribution

associated with X . Let S = {Xi; i = 1, · · · , n} be an identically and independently

distributed (i.i.d.) sample of size n drawn from X under p. Let the sample data be

summarized into frequencies Y = {Yk; k ≥ 1} and relative frequencies p̂ = {p̂k =

Yk
n

; k ≥ 1}.

By using the name alphabet, as opposed to the usual sample space where random

variables reside, we emphasize that, under the consideration of this dissertation, no

metric is required nor imposed. All letters don't have to be numeric, not even ordinal,

and can be purely nominal like "labels". The central concept of modern probability

theory and statistics is random variable, which is a measurable function that maps the

sample space into a real space. But what if the sample space can not be metricized

properly? Then a random variable can not be well-de�ned, consequently many usual

statistical concepts such as cumulative distribution function, characteristic function,

and moments no longer exist. This issue is becoming more and more common in

modern data science, since we're facing many challenges from high dimensionality,

uncertain data type, complex data structure, and so on. Theoretically, one may

manually assign a numeric order to letters or use dummy variables, but that doesn't

make too much sense for interpretability. For example, people love to use L2 metric

since we live in a 3-dimensional space and are very familiar with Euclidean distance.
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However, when dimensionality increases to a million or billion level, the meanings of

many common quantitative concepts including Euclidean distance become unclear,

or non-existent, aka. curse of dimensionality [2]. For another example, when dealing

with qualitative data like personal names, it is almost impractical to �nd a totally

prescribed and meaningful numeric metric. However, probabilities, or proportions of

all letters can always be de�ned, without using any metric or concepts like random

variable. We de�ne a variable that randomly takes values on an alphabet as a random

element. The collection of all possible values of a random element, together with the

probabilities for each value, is called a probability distribution on the alphabet.

When given a distribution and a random sample, a very basic objective in statistics

is to check that, does this sample come from this distribution [3]. A hypothesis test

that asserts whether a given distribution is suited to a sample, is called goodness-

of-�t test, who plays an important role in many areas like data mining and model

validation. The problem can be stated in formal mathematical language as follows.

Let p = {pk; k ≥ 1} be a probability distribution on X , with pks all unknown. Let

S = {Xi; i = 1, · · · , n} be an i.i.d. sample of size n drawn from X under p. Let

q = {qk; k ≥ 1} be another probability distribution on X , with qks all pre-speci�ed

and known. The goodness-of-�t test is to check the hypothesis:

H0 : p = q vs. Ha : p 6= q (1.1)

based on sample data S.

1.2 Issues of Classical Tests

In classical statistics, many goodness-of-�t tests have been proposed, for example,

Kolmogorov-Smirnov test [4], Anderson-Darling test [5], Pearson's Chi-squared test

[6], Multinomial test [3], G-test [7], etc. But sometimes, it's quite di�erent, and

challenging to test goodness-of-�t on alphabets, mainly due to two issues.
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The �rst issue is about metric. Let's look at the statistic of Kolmogorov-Smirnov

test,

D = sup
x
|Fn(x)− F (x)| (1.2)

and that of Anderson-Darling test,

A2 = n

∫ ∞
−∞

(Fn(x)− F (x))2

F (x) (1− F (x))
dF (x) (1.3)

where F (x) is the cumulative distribution function of underlying distribution q, and

Fn(x) is the empirical distribution function of given sample S of size n. It is clear

those two statistics wholly rely on cumulative distribution functions. However, as

we stated above, a numeric order as well as a valid cumulative distribution function

can not be guaranteed on alphabets. As a result, those tests based on CDF may not

work.

The second issue is about linkage, or more precisely, the linkage between a random

sample and the underlying distribution. Again, let us look at the statistic of Pearson's

Chi-squared test,

χ2 =
K∑
k=1

(Yk − Ek)
Ek

2

(1.4)

and that of G-test,

G = 2
K∑
k=1

Yk · ln
(
Yk
Ek

)
(1.5)

where Ek = n · qk is the expected frequency for letter `k under distribution q. As

we can see, those two tests work only when each pair of Yk and Ek is one-to-one

matched, ie., they need a perfect pairwise linkage between the sample and underlying

distribution. If we don't have enough information about this linkage, then all such

kind of tests no longer work. One may wonder does this issue really happen in

practice? The answer is yes. For your understanding, let's consider the following two

scenarios.
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Scenario 1. The linkage is well-de�ned, but our sample data set is incomplete or

damaged. We only have a set of frequencies that counting from di�erent letters, but

we don't clearly know which frequency is for which letter.

Scenario 2. The linkage can not be pre-speci�ed before the random experiment.

For a simple example, consider drawing n chips from a box containing chips of K

di�erent colors, distinguishable but unspeci�ed colors. In this case, an assignment of

which k is which color is not possible, and is not necessary for the experiment to be

carried out and data collected.

In classical statistics, before an experiment is conducted, the sample space is often

completely prescribed, that is, every possible outcome of the experiment is completely

describable and identi�able when observed. This speci�city of sample space is relaxed

in di�erent ways and to di�erent degrees in some situations of modern data science,

partially inspired by the empirical Bayesian school of thought and partially due to

the data complexity and high dimensionality. The said speci�city, or the lack of it,

could vary over a wide spectrum. To put this argument in a broader perspective, one

may view many statistical problems in modern data science as those with countable

discrete sample spaces, non-metricized, non-ordinal, not completely prescribed (ie.,

alphabets), but with distinguishable elements (ie., letters). This is another important

reason why we introduce alphabet and letter concepts at the beginning, rather than

using usual sample space settings.

In summary, the metric issue and linkage issue on alphabets challenge traditional

goodness-of-�t tests, and we need to �nd some new tests.

1.3 A Weaker Hypothesis

Let's consider an alternative hypothesis:

H0 : p↓ = q↓ vs. Ha : p↓ 6= q↓ (1.6)
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where the sub-index ↓ denotes a decreasingly ordered probability distribution, ie.,

p↓ = {p(k); k ≥ 1}, where p(1) is the maximum of all pks, p(2) is the second largest, so

and so on. Similar notations are also de�ned for q↓. Noting that p↓ = q↓ is a weaker

statement than p = q, in the sense that the latter implies the former but not vice

versa. This can be also viewed as a generalized hypothesis, in the sense that we no

longer focus on a single distribution p, but on a family of di�erent distributions, all

of which share the same invariant p↓ under permutations.

An instant bene�t of the hypothesis in (1.6) is that, it doesn't su�er the metric

issue and linkage issue. Since all pks, as probabilities, are real numbers between 0

and 1, they can always be well and easily ordered, no matter whether the letters are

ordinal or not, whether the linkage information is available or not.

The utility of the hypothesis in (1.6) is seen more readily in an alternative form.

Consider the family of all functionals, denoted F , such that each of its members,

denoted F , satis�es F (p) = F (q) if and only if p↓ = q↓. The hypothesis of (1.6) can

then be equivalently represented by

H0 : F (p↓) = F (q↓) for all F ∈ F vs.

Ha : F (p↓) 6= F (q↓) for some F ∈ F (1.7)

In modern data science, the energy in a random data �eld is often summarized by

functionals of p↓ that are invariant under permutations on on the index set {k; k ≥ 1}.

For example, in information theory, many types of information are summarized by

functionals such as Shannon's entropy [8] or mutual information [9]; and in ecology,

the concept of diversity (index) is often measured by functionals such as Rényi's

entropy or Simpson's index. To see a list of such indices, one may refer to Zhang and

Grabchak (2016) [10]. Each particular functional represents a particular perspective

to an underlying interest, which varies from situation to situation. The family F
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represents the totality of all such functionals. A non-rejection of H0 in (1.7) indicates

a lack of evidence for a shift with any F ∈ F , while a rejection would encourage

further research into identifying �ner features of the di�erence between p and q. The

hypothesis in (1.7) is a general hypothesis, paralleling the logic structure of the F -

test in detecting di�erences among multiple treatment e�ects in a classical ANOVA

setting.

It's worth to mention that, we propose several new goodness-of-�t tests mainly to

overcome the metric issue and linkage issue on alphabets, but those new tests work

for numerical variable and sample carrying on linkage information as well. More

interesting, the new tests perform even better than traditional tests when they both

work, especially when sample size n is relatively small, compared to distribution

cardinality K.

This dissertation is organized as follows. In Chapter 2, we introduce the entropic

moments, prove the one-to-one correspondence between entropic basis and underlying

distribution, and give sampling distribution of entropic moments. In Chapter 3, we

present the central results of this dissertation, including the construction of two new

Chi-squared goodness-of-�t tests and a heuristic test, together with theoretical anal-

ysis and simulation studies. In Chapter 4, two real data examples are demonstrated.

In Chapter 5, we introduce an R package "Entropic", which provides core functions

to implement entropic perspective related computations. Some detailed simulation

results, additional data and descriptions are provided in Appendix.



CHAPTER 2: Entropic Perspective on Alphabets

Let p be a probability distribution as de�ned in Chapter 1. For each p and any

positive integer u, let

ηu = ηu(p) =
∑
k≥1

puk (2.1)

be referred to as the uth entropic moment [10].

2.1 A New Characterization

Zhang and Zhou (2010) [11] gave this result:

Lemma 1. Let p and q be two probability distributions on the same countable alphabet

X . Then p↓ = q↓ if and only if ηu(p) = ηu(q) for all integers u ≥ 1.

It is stated that for any probability distribution p = {pk; k ≥ 1}, including those

with countably in�nite pk > 0, {ηu;u ≥ 1} uniquely determines p↓. In fact, it can

be shown that any tail of the in�nite sequence {ηu;u ≥ u0} for any �xed u0 ≥ 1,

uniquely determines p↓. Now we see all entropic moments together can work as a

characterization of probability distributions on alphabets.

Further, when the cardinality K of probability distribution is �nite, we have a

stronger result, as stated in the following theorem. Let η = η(p) = {ηu;u =

1, · · · , K} be referred to as the entropic basis.

Theorem 1. Let p and q be two probability distributions on the same �nite alphabet

X . Then p↓ = q↓ if and only if η(p) = η(q).

Theorem 1 says that the �rst K entropic moments uniquely determine p↓. Conse-
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quently justi�es the following hypothesis as an equivalent form of (1.6).

H0 : η(p) = η(q) vs. Ha : η(p) 6= η(q) (2.2)

ηu = η(u) =
∑

k≥1 p
u
k may be viewed as a characteristic function or a moment

generating function, in the sense that η(p) is obtained by being evaluated at positive

integer values of u. η(p) may also be viewed as a re-parametrization of p↓, and

the re-parametrization has fundamental implications beyond the scope of this article.

Interested readers may refer to Zhang (2018) [12] and Molchanov, Zhang and Zheng

(2018) [13] for additional details.

As stated in Section 1.2 (Scenario 2), when the sample space indexes are not pre-

speci�ed, the mere notion of p = {pk; k ≥ 1} is not well-de�ned, but p↓ is and

hence a legitimate object for inference. For that same reason, in modern data science,

functionals of p↓, ie., F ∈ F , are often of interest. For example, Shannon de�ned self-

information to be associated with a distinguishable event `k as − ln pk, an information

quantity not associated with the description (numerical or otherwise) of the event

itself but only of its probability. Furthermore, on such sample spaces, the usual

notions of moments, real or complex, are non-existent and therefore many classic

theories of probability and statistics are no longer useful. However the notion of

entropic moments provides a new characterization of the underlying p↓. In short, the

entropic basis, {ηu;u ≥ 1}, has theoretical implications in its own right.

The complete proof of Theorem 1 can be found in Appendix A.1.

2.2 Sampling Distribution of Entropic Moments

The core support to the inferential procedure to be proposed in the subsequent

text is the existence of an uniformly minimum variance unbiased estimator (umvue)
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of ηu =
∑

k≥1 p
u
k for every positive integer u, u ≤ n (sample size),

Zu =
∑
k≥1

[
1[p̂k≥u/n]

u−1∏
j=0

(
Yk − j
n− j

)]
(2.3)

proposed by Zhang and Zhou (2010) [11]. Noting η1 = Z1 = 1, let Z∗ = (Z2, Z3, · · · , ZK)τ

and η∗ = (η2, · · · , ηK)τ . The asymptotic distribution of entropic moments is derived

in the following theorem.

Theorem 2. For any given p = {pk; k = 1, · · · , K} satisfying pk > 0 for each k,

√
n(Z∗ − η∗)

L−→ N(0,Σ∗) (2.4)

where 0 is the (K−1)-dimensional column vector of zeros and Σ∗ is a (K−1)×(K−1)

covariance matrix as given in (2.5) below.

Lemma 2 and Lemma 3 below are proposed to prove Theorem 2.

Lemma 2. Let η̂u =
∑K

k=1 p̂
u
k for u = 1, · · · , K and η̂∗ = (η̂2, · · · , η̂K}. Then

√
n(η̂∗ − η∗)

L−→ N(0,Σ∗) (2.5)

where Σ∗ = AτΣA,

Σ =



p1(1− p1) −p1p2 · · · −p1pK−1

−p1p2 p2(1− p2) · · · −p2pK−1
...

...
. . .

...

−p1pK−1 · · · · · · pK−1(1− pK−1)


(2.6)
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and

A =



2(p1 − pK) 2(p2 − pK) · · · 2(pK−1 − pK)

3(p21 − p2K) 3(p22 − p2K) · · · 3(p2K−1 − p2K)

...
...

. . .
...

K(pK−11 − pK−1K ) · · · · · · K(pK−1K−1 − p
K−1
K )


(2.7)

Furthermore, Σ∗ is of rank r, where r is such that r + 1 is the number of distinct

probabilities in p.

For a given p = {pk; k ≥ 1}, p̂ = {p̂k = Yk/n; k ≥ 1} from an iid sample of size n,

and any positive integers u ≥ 1 and v ≥ 1, let

ζu,v =
K∑
k=1

puk(1− pk)v (2.8)

ζ̂1,v =
K∑
k=1

p̂k(1− p̂k)v (2.9)

Z1,v =
K∑
k=1

p̂k

v∏
j=1

(
1− Yk − 1

n− j

)
(2.10)

Lemma 3. For any v ∈ {0, 1, . . . , K}, n(Z1,v − ζ̂v)
p−→ c as n → ∞, where c is a

constant.

The complete proofs of Lemma 2, Lemma 3 and Theorem 1 are provided in Ap-

pendix A.2.

To summarize this chapter, entropic basis is a new characterization of probability

distributions on alphabets, so inferences about distributions can be done through

entropic moments and their estimators. The asymptotic normality in Theorem 2 and

the availability of consistent estimators of Σ∗ permit large sample con�dence regions

for the entropic moments η, and hence a test for the hypothesis of (1.6) and (2.2), as

will be described in next chapter.



CHAPTER 3: Hypothesis Testing

3.1 New Chi-squared Tests

Under the null hypothesis in (1.6), H0 : p↓ = q↓ = {q1, · · · , qK}, where q↓ is

completely speci�ed, all the repeated values of qk can be identi�ed. Suppose there

are r + 1 distinct values of {qk; k = 1, · · · , K}. Denote these r + 1 values and their

multiplicities as

q(1) q(2) · · · q(r) q(r+1)

m1 m2 · · · mr mr+1

speci�cally noting that q(1) > q(2) > · · · > q(r + 1) > 0. For notation convenience, let

m0 = mr+1 = 0. Consequently q↓ can be viewed as r + 1 blocks of equal values, that

is,

q↓ = {q(1)1τm1
, q(2)1

τ
m2
, · · · , q(r)1τmr

, q(r+1)1
τ
mr+1
}

where 1τm denotes a row vector of m “1”s. Consider a r× (K−1) matrix, C, of which

the ith row, of size K − 1, consists of a sub-row of �1/mi"s and of length mi, and two

other all-zero vectors of lengths
∑i−1

j=0mj and
∑r

j=i+1mj respectively. Letting 0τm be

a row of m �0"s,

C =



0τm0

1
m1

1τm1
0τ(K−1)−m0−m1

0τm1

1
m2

1τm2
0τ(K−1)−m1−m2

...
...

...

0τ∑i−1
j=0mj

1
mi
1τmi

0τ
(K−1)−

∑i
j=0mj

...
...

...

0τ(K−1)−mr

1
mr

1τmr
0τmr+1


(3.1)
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It can be veri�ed that

ACτ = B ≡



2(q(1) − qK) 2(q(2) − qK) · · · 2(q(r) − qK)

3(q2(1) − q2K) 3(q2(2) − q2K) · · · 3(q2(r) − q2K)

...
...

. . .
...

K(qK−1(1) − q
K−1
K ) K(qK−1(2) − q

K−1
K ) · · · K(qK−1(r) − q

K−1
K )


(K−1)×r

and therefore B is of full rank r because A1 evaluated at p = q↓ is. This fact

immediately gives the following corollary.

Corollary 1. Under the null hypothesis H0 : p↓ = q↓, suppose that there are exactly

r+ 1 distinct qks in q↓ and that, η∗ = (η2, · · · , ηK)τ , Σ of (2.6), A of (2.7) and C of

(3.1) are evaluated at p = q↓. Then

1.
√
n[C(η̂∗ − η∗)]

L−→ N(0, CAτΣACτ ) and CAτΣACτ is of full rank r; and

2. n[C(η̂∗ − η∗)]τ (CAτΣACτ )−1[C(η̂∗ − η∗)]
L−→ χ2(r).

It is to be noted that if q↓ is an uniform distribution then r+1 = 1, so A is of rank

r = 0 and both limiting distributions of Corollary 1 degenerate; in fact, r + 1 = 1

if and only if the underlying distribution is a uniform distribution. It may also be

interesting to note that the action of C on η̂∗ as in C(η̂∗) corresponds to taking

averages in blocks of size mi, i = 1, · · · , r, in the (K − 1) dimensional vector η̂∗.

Theorem 2 gives another corollary as stated below.

Corollary 2. Under the null hypothesis H0 : p↓ = q↓, suppose that there are exactly

r+ 1 distinct qks in q↓ and that, η∗ = (η2, · · · , ηK)τ , Σ of (2.6), A of (2.7) and C of

(3.1) are evaluated at p = q↓. Then

1.
√
n[C(Z∗ − η∗)]

L−→ N(0, CAτΣACτ ) and CAτΣACτ is of full rank r; and

2. n[C(Z∗ − η∗)]τ (CAτΣACτ )−1[C(Z∗ − η∗)]
L−→ χ2(r).
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3.1.1 Testing Procedures

Part (2) of Corollary 1 devices a large sample Chi-squared test for goodness-of-�t

under permutations, which rejects H0 if

Tp = n[C(η̂∗ − η∗)]τ (CAτΣACτ )−1[C(η̂∗ − η∗)] > χ2
α(r) (3.2)

where for some α ∈ (0, 1), χ2
α(r) is the 100(1 − α) th percentile of the Chi-squared

distribution with degrees of freedom r. This test is referred to in the subsequent text

as the plug-in test Tp.

Part (2) of Corollary 2 devices another large sample Chi-squared test, which rejects

H0 if

Tz = n[C(Z∗ − η∗)]τ (CAτΣACτ )−1[C(Z∗ − η∗)] > χ2
α(r) (3.3)

where for some α ∈ (0, 1), χ2
α(r) is the 100(1 − α) th percentile of the Chi-squared

distribution with degrees of freedom r. This test is referred to in the subsequent text

as the entropic test Tz.

Two remarks may be made regarding the plugin test and the entropic test. First,

in comparing Corollaries 1 and 2, the two tests are equally e�cient asymptotically,

noting speci�cally that the plugin test is based on the maximum likelihood principle.

Second, one would expect the entropic test to perform better for �nite samples since

Z∗ is an unbiased estimator of η∗ but η̂∗ is not. In fact, Lemma 3 indicates that the

decay rate of the bias of η̂∗ is much slower.

3.1.2 Simulations

In this section, we run numerical simulations to evaluate the plug-in test Tp and

entropic test Tz, and compare them with the linked Pearson's Chi-squared test Tl.

As we stated in Section 1.2, the original Pearson's Chi-squared test doesn't work

without linkage information. Here to use the numerical performance of Pearson's



14

Chi-squared test as a reference, we manually link each sample frequency to a let-

ter in underlying distribution, based the numerical order. For example, the highest

frequency in the sample will be linked to the largest probability in the underlying dis-

tribution, the second highest frequency will be linked to the second largest probability,

and so on.

To evaluate size of those tests, we simply pick both the sampling and the underlying

probability distribution to be:

p =

{
5

15
,

4

15
,

3

15
,

2

15
,

1

15

}
(3.4)

as shown in Figure 3.1.

Figure 3.1: Underlying Distribution p

And let α = 0.05, number of iterations (for each sample size) m = 100, 000, and

sample sizes vary from 100 to 1000, 000. The simulation results are summarized into

Table 3.1 and Figure 3.2.

As one can see, under the null hypothesis that a random sample is drawn from

distribution q, when the sample size is small (n ≤ 1, 000), the linked Pearson's test

Tl tends to reject less than 0.05 of all random samples, while the plug-in test Tp
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Table 3.1: Rejection Rates under H0 with α = 0.05

Sample Size 102 103 104 105 106

Tl 0.0083 0.0484 0.0502 0.0498 0.0506

Tp 0.2483 0.1101 0.0606 0.0505 0.0498

Tz 0.3677 0.1022 0.0571 0.0507 0.0501

Figure 3.2: Rejection Rates under H0 with α = 0.05
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and entropic test Tz tend to reject more than 0.05. When the sample size increases

(1, 000 ≤ n ≤ 10, 000), size of Tl reaches 0.05 very fast, but Tp and Tz don't. When

sample size is su�ciently large (n ≥ 10, 000), all 3 tests tend to have a size = 0.05 as

expected.

This is not too surprising, because all 3 tests are derived from large sample distri-

butions, and can't guarantee small sample performance.

Strictly speaking, if the test size cannot be controlled, then power analysis doesn't

make too much sense. But for your reference and also to illustrate the di�erences

between those 3 tests, we still run another simulation to examine test power.

Again, we pick the sampling probability distribution p as in (3.4), and pick the

underlying probability distribution to be:

q =

{
9

35
,

8

35
,

7

35
,

6

35
,

5

35

}
(3.5)

as shown in Figure 3.3 and Figure 3.4.

Figure 3.3: Sampling Distribution p Figure 3.4: Underlying Distribution q

And let α = 0.05, number of iterations (for each sample size) m = 100, 000, and

sample sizes vary from 5 to 10, 000. The simulation results are summarized into Table
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3.2 and Figure 3.5.

Table 3.2: Rejection Rates under Ha

Sample Size 5 10 50 102 103 104

Tl 0.0057 0.0310 0.2205 0.5531 1.0000 1.0000

Tp 0.9812 0.9416 0.9811 0.9956 1.0000 1.0000

Tz 1.0000 1.0000 0.9968 1.0000 1.0000 1.0000

Figure 3.5: Rejection Rates under Ha

One can see the entropic test Tz and the plug-in test Tp behave closely, and both

signi�cantly outperform the linked Pearson's test Tl over all sample sizes, especially

on a small sample (n ≤ 100). As we mentioned above, due to the lack of test size

control, those powers may be falsely high and can't be compared fairly. But this

result still indicates some possible merits in the entropic test Tz and the plug-in test

Tp under small samples.
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3.2 A Heuristic Test

3.2.1 Testing Procedures

During the simulations in Section 3.1.2, we found two issues for the new Chi-

squared tests. First, the minimum sample size to reach expected test size is too

huge, ie., the sampling distribution of test statistics is far away from Chi-squared

distribution when sample size is small. The second issue is more about computation,

but is quite realistic, that is we may easily encounter singularity errors when inverse

matrices mentioned in (3.2) and (3.3), as cardinality increases (K ≥ 15).

The �rst problem is well-known for many approximate tests [14], not just for our

Chi-squared goodness-of-�t tests. The fundamental issue comes from the approxi-

mation to asymptotic distribution, which is derived by making the sample size big

enough, and hence is unable to describe small sample phenomenon. So we may use

exact test in substitution of approximate test, ie., we use exact sampling distribution

of test statistic to select critical values, instead of using asymptotic Chi-squared dis-

tribution. The exact distribution can be obtained by explicit formulation (for some

simple cases, but very rare), or by large scale simulations [15] (in this dissertation

we do N = 100, 000 iterations for each simulation). The second problem doesn't

challenge theoretical correctness of our method, but is fatal in real practice. After

reviewed many literatures, we realized the inversion of large sparse matrix is still one

of the biggest problems in computational algebra, so we consider modifying the test

statistic instead.

Recall the expression of entropic test statistic in (3.3):

Tz = n[C(Z∗ − η∗)]τ (CAτΣACτ )−1[C(Z∗ − η∗)] (3.6)

This is in fact a weighted sum of squared di�erences between each pair of ηu and

Zv, also a measure of the distance between all ηus and all Zvs. Generally speaking,
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goodness-of-�t measures the distance between underlying distribution and sampling

distribution. Now from the entropic perspective, probability distributions can be

characterized by entropic moments, so it's quite straightforward to measure that

distance by the di�erence between ηus and Zvs. Fortunately we have many mathe-

matical instruments that can measure the distance between two functionals. Inspired

the naive Euclidean distance, we construct the following test statistic:

Th = (Z∗ − η∗)τ (Z∗ − η∗) =
K∑
u=2

(Zu − ηu)2 (3.7)

And hence a new heuristic goodness-of-�t test, which rejects H0 if

Th =
K∑
u=2

(Zu − ηu)2 > Cα(q, n) (3.8)

where for some α ∈ (0, 1), Cα(q, n) is the 100(1 − α) th percentile of statistic Th's

exact distribution under the null hypothesis with sample size n. Cα(q, n) can be

estimated from a large scale simulation.

This test is referred to in the subsequent text as the heuristic test Th. The following

corollary of Theorem 1 provides a theoretical support for this heuristic test.

Corollary 3. Let p and q be two probability distributions on the same �nite alphabet

X . Then p↓ = q↓ if and only if

K∑
u=1

[ηu(p)− ηu(q)]2 = 0 (3.9)

In fact, statistic Th in (3.8) can also be viewed as a special case of statistic Tz

in (3.6), if we force the weight matrix Σ∗ to be the identity. Given the asymptotic

multivariate normality of Zvs (2.4), Th in (3.8) is a linear combination of squared

dependent normal variables. Unfortunately, a closed analytic expression for general
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sum of correlated Chi-squared variables is not yet known, which may be approximated

e�ciently using characteristic functions [16]. This is another reason why we choose

to use exact test.

3.2.2 Simulations

We expect this heuristic test to be computationally more robust than the entropic

test Tz, since its statistic has been greatly simpli�ed, and don't lose too much power,

as it also uses entropic moments. To evaluate the performance of Th, we again run

simulations.

In order to make the comparisons between di�erent tests fair enough, we use exact

test method, ie., use simulated critical value for all of them. Here we have 4 di�erent

tests in total, linked Pearson's exact test Tl
∗, plug-in exact test Tp

∗, entropic exact

test Tz
∗ and the heuristic test Th.

A great bene�t of exact tests over approximate tests is that, the size can be easily

controlled at any given level, since the critical values come from an exact distribution,

so there is no need to examine test size anymore, we evaluate test power directly

instead.

The simulations in this section are organized into 3 parts, the �rst of which follows

similar studies as those in Section 3.1.2, comparing all 4 tests on small cardinality

distributions (K = 5), and the second and third parts compare Tl
∗ and Th on large

cardinality distributions (K = 30).

Simulation 1. Use the same settings as those in Section 3.1.2, sampling distribu-

tion p and underlying distribution q are given as follows,

p =

{
5

15
,

4

15
,

3

15
,

2

15
,

1

15

}
(3.10)

q =

{
9

35
,

8

35
,

7

35
,

6

35
,

5

35

}
(3.11)
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And let α = 0.05, number of iterations (for each sample size) m = 100, 000, and

sample sizes vary from 5 to 10, 000. Additionally, let N = 100, 000 be the number of

simulations to get Cα(q, n) for each test. The simulation results are summarized into

Table 3.3 and Figure 3.6.

Table 3.3: Rejection Rates under Ha

Sample Size 5 10 50 102 103 104

Tl
∗ 0.0731 0.0967 0.5517 0.8588 1.0000 1.0000

Tp
∗ 0.0730 0.1165 0.5911 1.0000 1.0000 1.0000

Tz
∗ 0.0732 0.0868 0.4185 0.7593 1.0000 1.0000

Th 0.0739 0.1126 0.5131 0.8359 1.0000 1.0000

Figure 3.6: Rejection Rates under Ha

This result shows that all 4 tests perform closely in power sense, as the rejection

rates reach 1 fast and smoothly when sample size exceeds 1, 000. The plug-in exact

test is the best, as the linked Pearson's test and the heuristic test are almost the same.

And that's a practical support for that on small cardinality distributions (K = 5),

the heuristic test is totally quali�ed and comparable to those Chi-squared tests.
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Besides, due to the computation issue as we stated above, the plug-in test and

entropic test hardly work on large cardinality distributions. So in the second and

third parts of this simulation, we only use the linked Pearson's test and the heuristic

test for K = 30 cases.

Simulation 2. We pick the sampling probability distribution p and the underlying

probability distribution q to be:

p =

{
1

30
,

1

30
, · · · , 1

30

}
(3.12)

q =

{
1

60
, · · · , 1

60
,

2

60
, · · · , 2

60
,

3

60
, · · · , 3

60

}
(3.13)

as shown in in Figure 3.7 and Figure 3.8.

Figure 3.7: Sampling Distribution p
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Figure 3.8: Underlying Distribution q

And let α = 0.05, number of iterations (for each sample size) m = 100, 000, and

sample sizes vary from 30 to 600. Additionally, let N = 100, 000 be the number of

simulations to get Cα(q, n) for each test. The simulation results are summarized into

Table 3.4 and Figure 3.9.

Table 3.4: Rejection Rates under Ha

Sample Size 30 60 90 150 300 400 500 600

Tl
∗ 0.0117 0.0026 0.0007 0.0001 0.0201 0.3561 0.8522 0.9862

Th 0.0273 0.0874 0.2186 0.6010 0.9889 1.0000 1.0000 1.0000
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Figure 3.9: Rejection Rates under Ha

In this part, we give a real case where Th thoroughly beats Tl
∗ over all sample

sizes. We take this example as an evidence of the merits of Th, as well as of entropic

perspective on alphabets.

Strictly speaking, we haven't proven any optimality of one test over others yet. But

for all the simulations we've done so far (not just those presented here or in Appendix,

but much more that we've done during the research), Th never does signi�cantly

worse than Tl
∗. In fact, for many cases, Th is more likely to win, such as sample

size is relatively small, or the underlying distribution has a thinner tail than the real

sampling distribution. More interesting, as will be shown in next part of simulations,

when the underlying distribution has a thicker tail than the sampling distribution

instead, Th doesn't lose power as compared to Tl
∗, and we take this phenomena as

another evidence of the merits of Th and entropic perspective.

Simulation 3. We simply swap the values of p and q, then redo Simulation 2.

p =

{
1

60
, · · · , 1

60
,

2

60
, · · · , 2

60
,

3

60
, · · · , 3

60

}
(3.14)
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q =

{
1

30
,

1

30
, · · · , 1

30

}
(3.15)

The results are summarized into Table 3.5 and Figure 3.10.

Table 3.5: Rejection Rates under Ha

Sample Size 30 60 90 150 300

Tl
∗ 0.1465 0.3222 0.4955 0.8211 0.9972

Th 0.1386 0.2885 0.4720 0.7946 0.9963

Figure 3.10: Rejection Rates under Ha

To summarize this chapter, we construct 7 goodness-of-�t tests in total, 3 ap-

proximate Chi-squared tests and 4 exact tests. Of course Chi-squared test are more

computational e�cient under large samples, but they may not work well for small

or sparse samples, that's why we choose exact test method later. Unfortunately the

plug-in test and entropic test face more tough issues like the matrix singularity prob-

lem, which cannot be easily solved yet. On large cardinality probability distributions,
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the simulation results show a great power advantage of the heuristic test over linked

Pearson's exact test. One can �nd more simulation results in Appendix B.

We also believe the advantages of this heuristic test are mainly due to entropic

perspective, ie., the using of entropic moments and their estimator Zvs. In this regard,

one may de�ne many similar statistics by imposing di�erent metric or measures on

entropic moments, which is completely up to the researcher's underlying interest and

choice.



CHAPTER 4: Language Detection Example

4.1 Frequency Analysis

In cryptanalysis, frequency analysis is the study of the frequency of letters or groups

of letters in a ciphertext. The method is used as an aid to breaking classical ciphers.

Frequency analysis is based on the fact that, in any given stretch of written language,

certain letters occur with varying frequencies. Moreover, there is a characteristic

distribution of letters that is roughly the same for almost all samples of that lan-

guage. For instance, given a section of English language, E, T,A and O are the most

common, while Z,Q and X are rare [17]. In some ciphers, such properties of the

natural language plaintext are preserved in the ciphertext, and these patterns have

the potential to be exploited in a ciphertext-only attack.

But to make such decryption methods successful, the cryptanalyst must know a

speci�c language in which the plaintext was written. Now the question is, given a piece

of encrypted ciphertext, how to detect the language of its plaintext. Let's assume the

encryption is done by some simple ciphers, ie., the same letters in plaintext are still

the same in ciphertext, and di�erent letters in plaintext are still di�erent in ciphertext.

Given the fact that the distribution of letter frequencies vary cross di�erent languages

(Figure 4.1), we can use the letter frequencies counting from the ciphertext to detect

the language of plaintext. This is indeed a goodness-of-�t test between the selected

message and all possible languages, and it can also be viewed as a text language

classi�er.
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Figure 4.1: Frequency Distributions of 26 Most Common Latin Letters

Here we provide two examples to illustrate how this language detection method

works. In each example, we select a piece of text from corpus, encrypt it by a Caesar

cipher, then clean the ciphertext and break it down to bag of letters, count the letter

frequencies, do the goodness-of-�t test between letter frequencies from the sample

and that in all possible languages, and �nally choose the one with largest p-value as

possible source language.

The relative letter frequencies in 15 Latin languages were retrieved from Wikipedia

[18] as references, and that version of data we've been using is included in Appendix

C.

4.2 Testing Results

Example 1. We select the text of Martin Luther King's famous speech "I Have

a Dream" as plaintext, with 885 words and 4781 letters in total. The full text was

retrieved from BBS website [19]. The testing results are summarized into Table 4.1

and Table 4.2.
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Table 4.1: Language Detection Statistic Values

English French German Spanish Portuguese

8.374921e-07 1.082819e-05 2.582115e-05 2.151521e-06 5.115412e-05

Esperanto Italian Turkish Swedish Polish

2.930989e-06 5.026936e-05 3.467886e-05 3.549134e-05 1.980893e-04

Dutch Danish Icelandic Finnish Czech

1.839462e-04 2.245837e-06 1.656464e-04 2.403325e-05 1.255422e-04

Table 4.2: Language Detection p-values

English French German Spanish Portuguese

0.4016 0.0102 0.0017 0.2106 0.0000

Esperanto Italian Turkish Swedish Polish

0.1130 0.0000 0.0000 0.0000 0.0000

Dutch Danish Icelandic Finnish Czech

0.0000 0.2996 0.0000 0.0000 0.0000

Our test shows English is the most probable language among all 15 candidates,

and it does discover the truth. Someone may notice that, the observed signi�cance

levels of Spanish and Danish are also high. It might be due to the timeliness of

letter frequencies data. Because the relative letter frequencies data we retrieved from

Wikipedia were collected in year 2014, and this famous speech was given in year 1963,

so 50 years may make a big di�erence between "old" English and current English.

The second example can be a side evidence of this guess.

Example 2. We select the text of Donald Trump's inauguration speech as plain-
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text, with 1427 words and 8077 letters in total. The full text was retrieved from CNN

website [20]. Compared with the �rst text sample, this speech was given in year 2017,

and since it is more "modern", we expect to see a more signi�cant result from the

test. The results are summarized into Table 4.3 and Table 4.4.

Table 4.3: Language Detection Statistic Values

English French German Spanish Portuguese

7.536048e-08 1.992632e-05 3.894047e-05 6.967875e-06 6.929651e-05

Esperanto Italian Turkish Swedish Polish

8.342205e-06 6.833214e-05 2.225812e-05 2.286667e-05 1.664068e-04

Dutch Danish Icelandic Finnish Czech

2.169609e-04 6.713070e-06 1.367873e-04 3.694338e-05 1.005868e-04

Table 4.4: Language Detection p-values

English French German Spanish Portuguese

0.7493 0.0001 0.0000 0.0040 0.0000

Esperanto Italian Turkish Swedish Polish

0.0005 0.0000 0.0000 0.0000 0.0000

Dutch Danish Icelandic Finnish Czech

0.0000 0.0179 0.0000 0.0000 0.0000

Not surprisingly, English, as the truth, is again detected by the heuristic goodness-

of-�t test. And English is the only one producing a high p-value, with all other

p-values are almost zero. We take this example as a strong support for practical

utility of the heuristic test, and entropic perspective.



CHAPTER 5: An R Package

During the research on entropic perspective, we �nd all computations related with

entropic moments ζu,vs and their estimators Zu,vs are quite time consuming, as they

involve a lot of huge combinatorics. To improve the computation e�ciency and con-

sequently to save more time for thinking instead of coding, we build an R package

named as "Entropic". All computation intensive functions are written in C++, and

some auxiliary functions are written in R. The source code of several key functions

can be downloaded at [https://webpages.uncc.edu/cchen55/entropic/Entropic.zip].

Here is a brief introduction of some core functions:

• tf1(sample) returns the Truing's Formula for a given sample;

• entropy(prob, k) returns the entropy of a given distribution of length k;

• zeta1(prob, k, v) returns the ζ1,v value for a given v;

• zeta1f(prob, k, vm) returns a vector of all ζ1,v values for v ≤ vm;

• eta(prob, k, u) returns the ηu value for a given u;

• etaf(prob, k, um) returns a vector of all ηu values for u ≤ um;

• z1(obs, k, n, v) returns the Z1,v value for a given v;

• z1f(obs, k, n) returns a vector of all Z1,v values for v < n;

• entropyz(obs, k, n) returns the entropic estimator of entropy Ĥz.



CHAPTER 6: Conclusion

In modern data science, many challenges arise from high dimensionality and data

complexity. To handle those problems in a broader perspective, one may view them

as on a countable discrete sample space, non-metricized, non-ordinal, not completely

prescribed (ie., alphabet), but with distinguishable elements (ie., letters). Entropic

basis works well as a new characterization of probability distributions, while many

traditional statistical concepts like cumulative distribution function and moments

may not even exist.

Entropic perspective, in the forms of entropic basis, builds a bridge between seen

and unseen, and provides a whole new instrument to interpret non-ordinal and sparse

data. One can see the power of this new perspective in many applications, such as

estimation of entropy and mutual information [21] [22] [23] [24], estimation of diversity

indices [11] [10] [25], independence test [26], etc.

This dissertation focuses on goodness-of-�t test under permutations on alphabets.

Equipped with entropic perspective, we propose 3 approximate tests and 4 exact

tests. For approximate tests, asymptotic Chi-squared distributions are derived. For

exact tests, computation e�ciency and size control are greatly improved. At the end,

the real data example, language detection classi�er demonstrates a great potential of

this methodology in practice.
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APPENDIX A: Proofs

A.1 Proofs in Section 2.1

To prove Theorem 1, a result by Garcia and Li (1980) [27] is stated as Lemma 4

below.

A.1.1 Lemma 4

Toward stating the lemma, let z = {z1, · · · , zn} be a multivariate variable in the

n-dimensional complex space Cn. Consider a system of n polynomial equations where

each equation is a summation with terms of the following form

azr11 z
r2
2 · · · zrnn (A.1)

equal to zero, where the sum of non-negative integers r1 + · · · + rn is the degree of

the additive term, and a ∈ C is the coe�cient of the term. For the ith equation, let

qi denote the highest degree among all the additive terms. Let the term coe�cients

of all equations be denoted as a = {ai,j; i = 1, · · · , n and j = 1, · · · ,m} for some

positive integer m which depends on max{qi; i = 1, · · · , n}. For notation simplicity,

let ai = {ai,j; j = 1, · · · ,m}. Let P(z, a) = 0 denote the polynomial equation system.

The ith equation in P(z, a) = 0 has the form of Pi(z, ai) = 0 with the left hand side

being a polynomial of degree qi. For each i, removing all the additive terms of degrees

less than qi in Pi(z, ai) results in a homogeneous polynomial Qi(z, ai) of degree qi,

and setting it to zero gives an adjusted equation, Qi(z, ai) = 0. Let the adjusted

system be denoted as Q(z, a) = 0.

Lemma 4. Let P(z, a) = 0 be given and let Q(z, a) = 0 be its corresponding highest

order system of equations. P(z, a) = 0 has exactly q =
∏n

i=1 qi solutions (counting

multiplicity) if Q(z, a) = 0 has only the trivial solution z = {0, · · · 0}.
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A.1.2 Proof of Theorem 1

Proof. Given p = {pk; k = 1, · · · , K}, η = {ηu;u = 1, · · · , K} is uniquely determined.

It su�ces to show that η uniquely determines p. Toward that end, consider the

system of equations in (A.2) and its adjusted system in (A.3), denoted respectively

as P(z, a) = 0 and Q(z, a) = 0.



∑K
k=1 pk = η1∑K
k=1 p

2
k = η2

...∑K
k=1 p

K
k = ηK

(A.2)



∑K
k=1 pk = 0∑K
k=1 p

2
k = 0

...∑K
k=1 p

K
k = 0

(A.3)

Clearly p = {p1, · · · , pK} is a solution to (A.2) and so is every permutated p. There-

fore counting multiplicity, there are at least q =
∏K

i=1 qi = K! solutions to (A.2) and

all these solutions share the same p↓. It only remains to show that there are no other

solutions. By Lemma 4, it is desired to show that the system (A.3) only has trivial

solution of pk = 0 for every k = 1, · · · , K.

Toward that end, consider the linear system in u1, u2, · · · , un:



1 · u1 + 1 · u2 + · · ·+ 1 · un = 0

x1 · u1 + x2 · u2 + · · ·+ xn · un = 0

...

xn−11 · u1 + xn−12 · u2 + . . .+ xn−1n · un = 0

or A



u1

u2
...

un


= ∅
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where

A =



1 1 · · · 1

x1 x2 · · · xn

· · ·

xn−11 xn−12 · · · xn−1n


Assuming not all xi are 0, that is, the system has the non-trivial solution u1 =

x1, u2 = x2, · · · , un = xn, so its determinant, det(A), must be 0 . But the respective

determinant is a Vandermonde determinant which evaluates to
∏

1≤i<j≤n(xj − xi), so

it can only be zero if xi = xj for some pair i 6= j.

Assume without loss of generality that xn−1 = xn, then consider:



1 · u1 + 1 · u2 + · · ·+ 1 · un−1 = 0

x1 · u1 + x2 · u2 + · · ·+ xn−1 · un−1 = 0

...

xn−21 · u1 + xn−22 · u2 + · · ·+ xn−2n−1 · un−1 = 0

Again, if not all xi are 0, then u1 = x1, u2 = x2, · · · , un−2 = xn−2, un−1 = 2xn−1 is

a non-trivial solution, which implies that another pair of xi = xj, i 6= j.

It follows by induction that all xi must be equal, and therefore all must be 0.

A.2 Proofs in Section 2.2

A.2.1 Proof of Lemma 2

Proof. Let p− = (p1, · · · , pK−1)τ and p̂− = (p̂1, · · · , p̂K−1)τ . Noting the fact that

√
n(p̂− − p−)

L→ N(0,Σ), (2.5) is veri�ed by a straight forward application of the

multivariate delta method [28]. Since Σ is a matrix of full rank, it only remains to

show that A has rank r.

Toward that end, consider �rst the case that all pks are distinct, that is, r = K−1.

Suppose there exists (w1, · · · , wK−1) such that, w1(p
i
1 − piK) + w2(p

i
2 − piK) + · · · +
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wK−1(p
i
K−1 − piK) = 0 for every i, i = 1, · · · , K − 1, that is,



w1p
1
1 + w2p

1
2 + · · ·+ wK−1p

1
K−1 − (

∑K−1
j=1 wj)p

1
K = 0

w1p
2
1 + w2p

2
2 + · · ·+ wK−1p

2
K−1 − (

∑K−1
j=1 wj)p

2
K = 0

· · ·

w1p
K−1
1 + w2p

K−1
2 + · · ·+ wK−1p

K−1
K−1 − (

∑K−1
j=1 wj)p

K−1
K = 0

(A.4)

Letting wK = −
∑K−1

j=1 wj,
∑K

j=1wj = 0 by de�nition and this equation can be added

to the system in (A.4) to obtain an equivalent system in w1, · · · , wK below.



1 · w1 + 1 · w2 + · · ·+ 1 · wK−1 + 1 · wK = 0

p11 · w1 + p12 · w2 + · · ·+ p1K−1 · wK−1 + p1K · wK = 0

· · ·

pK−11 · w1 + pK−12 · w2 + · · ·+ pK−1K−1 · wK−1 + pK−1K · wK = 0

(A.5)

If (w1, · · · , wK−1) 6= 0 then (w1, · · · , wK) 6= 0, which implies that the Vandermonde

determinant associated with (A.5) must be zero, which evaluates to
∏

1≤i<j≤K(pi−pj),

so it can only be zero if pi = pj for some pair i 6= j, which contradicts the assumption.

It follows that A is of full rank, r = K − 1, if all pks are distinct.

Next consider the case there are r+ 1 distinct values in {p1, · · · , pK} where r is an

integer such that 0 ≤ r ≤ K − 1. In this case, any set of more than r columns of A

in (2.7) are linearly independent. This claim may be seen in two scenarios. First, if

pK has multiplicity 1, say mK = 1, then the K − 1 columns of A include exactly r

distinct columns. Therefore any subset of more than r of these columns must contain

at least a pair of identical columns. Second, if pK has multiplicity greater than 1,

that is, mK ≥ 2, then the K − 1 columns of A include exactly mK − 1 ≥ 1 all-zero

columns and other r non-zero distinct columns. In this case, any subset of more r

columns either contains at least one pair of identical columns or an all-zero column.
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That is to say that the rank of A is at most r. It su�ces to show that the said rank

is at least r. Toward that end, consider r distinct columns of A, (A.6). Without loss

of generality, suppose these columns are for j = 1, · · · , r.

A1 =



(p1 − pK) (p2 − pK) · · · (pr − pK)

(p21 − p2K) (p22 − p2K) · · · (p2r − p2K)

...
...

. . .
...

(pK−11 − pK−1K ) (pK−12 − pK−1K ) · · · (pK−1r − pK−1K )


(A.6)

The desired independence of the columns of (A.6) is established by showing that the

columns of (A.7) are linearly independent. Consider a r×r sub-matrix of (A.6) below.

A2 =



(p1 − pK) (p2 − pK) · · · (pr − pK)

(p21 − p2K) (p22 − p2K) · · · (p2r − p2K)

...
...

. . .
...

(pr1 − prK) (pr2 − prK) · · · (prr − prK)


r×r

(A.7)

Suppose the columns of (A.7) are linearly dependent, then there exists

(w1, · · · , wr) 6= 0 such that



w1p
1
1 + w2p

1
2 + · · ·+ wrp

1
r − (

∑r−1
j=1 wj)p

1
K = 0

w1p
2
1 + w2p

2
2 + · · ·+ wrp

2
r − (

∑r−1
j=1 wj)p

2
K = 0

· · ·

w1p
r
1 + w2p

r
2 + · · ·+ wrp

r
r − (

∑
j=1wr)p

r
K = 0

(A.8)

Letting wr+1 = −
∑r−1

j=1 wj,
∑r+1

j=1 wj = 0 by de�nition and this equation can be added
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to the system in (A.8) to obtain an equivalent system in w1, · · · , wK below.



1 · w1 + 1 · w2 + · · ·+ 1 · wr + 1 · wr+1 = 0

p11 · w1 + p12 · w2 + · · ·+ p1r · wr + p1K · wr+1 = 0

p21 · w1 + p22 · w2 + · · ·+ p2r · wr + p2K · wr+1 = 0

· · ·

pr−11 · w1 + pr−12 · w2 + · · ·+ prr · wr + prK · wr+1 = 0

(A.9)

If the system in (A.9) has an not all-zero solution in w1, · · · , wr+1, then its associated

determinant must be zero, which is a Vandermonde determinant and evaluates to∏
i,j=1,··· ,r,K;i<j(pi − pj), so it can only be zero if pi = pj for some pair i 6= j, which

contradicts the assumption. It follows that A is of rank, r, if r+ 1 of pks are distinct.
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A.2.2 Proof of Lemma 3

Proof. Since

Z1,v − ζ̂v = Z1,v −
K∑
k=1

p̂k(1− p̂k)v

=
K∑
k=1

p̂k

v∏
j=1

(
1− Yk − 1

n− j

)
−

K∑
k=1

p̂k(1− p̂k)v

=
K∑
k=1

p̂k

[
v∏
j=1

(
1− Yk − 1

n− j

)
−

v∏
j=1

(1− p̂k)

]

=
K∑
k=1

p̂k (1− p̂k)v
∏v

j=1

(
1− Yk−1

n−j

)
∏v

j=1 (1− p̂k)
− 1


=

K∑
k=1

p̂k (1− p̂k)v

∏v

j=1

[
1− j−1

n(1−p̂k)

]
∏v

j=1

(
1− j

n

) − 1




=
K∑
k=1

p̂k (1− p̂k)v

∏v−1

j=0

[
1− j

n(1−p̂k)

]
∏v−1

j=0

(
1− j+1

n

) − 1




=
K∑
k=1

{
p̂k (1− p̂k)v

{
v−1∏
j=0

[
1− j

n(1−p̂k)

1− j+1
n

]
− 1

}}

=
K∑
k=1

{
p̂k (1− p̂k)v

{
v−1∏
j=0

[
1 +

j(1− p̂k)− (j − 1)

n(1− p̂k)− j(1− p̂k)

]
− 1

}}

=
K∑
k=1

{
p̂k (1− p̂k)v

{
1 +

v−1∑
j=0

[
j(1− p̂k)− (j − 1)

n(1− p̂k)− j(1− p̂k)

]
+Op(n−2)− 1

}}

=
K∑
k=1

{
p̂k (1− p̂k)v

{
v−1∑
j=0

[
j(1− p̂k)− (j − 1)

n(1− p̂k)− j(1− p̂k)

]
+Op(n−2)

}}
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Therefore

n

[
Z1,v −

K∑
k=1

p̂k(1− p̂k)v
]

=
K∑
k=1

{
p̂k (1− p̂k)v

{
v−1∑
j=0

[
j(1− p̂k)− (j − 1)

(1− p̂k)− j(1− p̂k)/n

]
+Op(n−1)

}}
p−→

K∑
k=1

{
pk (1− pk)v

{
v−1∑
j=0

[
j(1− pk)− (j − 1)

(1− pk)

]}}

=
K∑
k=1

{
pk (1− pk)v−1

{
v−1∑
j=0

[j(1− pk)− (j − 1)]

}}

=
K∑
k=1

{
pk (1− pk)v−1

[
v −

(
v−1∑
j=0

j

)
pk

]}

= vζ1,v−1 −
v(v − 1)

2
ζ2,v−1 (A.10)

A.2.3 Proof of Theorem 2

Proof. Since
√
n(Z∗ − η∗) =

√
n(Z∗ − η̂∗) +

√
n(η̂∗ − η∗), it su�ces to show that

√
n(Z∗ − η̂∗)

p−→ 0. Toward that end, noting the following two easily veri�able

re-expressions of Zu and η̂u,

Zu =
u−1∑
i=0

(
u− 1

i

)
(−1)iZ1,i and η̂u =

u−1∑
i=0

(
u− 1

i

)
(−1)iζ̂1,i

then by Lemma 3,

√
n(Zu − η̂u) =

√
n

[
u−1∑
i=0

(
u− 1

i

)
(−1)iZ1,i −

u−1∑
i=0

(
u− 1

i

)
(−1)iζ̂i

]

=
u−1∑
i=0

(
u− 1

i

)
(−1)i

√
n(Z1,i − ζ̂i)

p−→ 0
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APPENDIX B: More Simulation Results

We de�ne a family of 10 di�erent distributions, as described in (B.1) and shown in

Figure B.1.

pi = (
1− εi

30
, · · · ,︸ ︷︷ ︸

10

1

30
, · · · ,︸ ︷︷ ︸
10

1 + εi
30

, · · ·︸ ︷︷ ︸
10

), εi =
i− 1

10
, i = 1, 2, · · · , 10 (B.1)

Figure B.1: A Family of 10 Probability Distributions

Now for all possible combinations of pi and pj where i, j ∈ {1, 2 · · · , 10}, let pi = p

be the sampling distribution, pj = q be the underlying distribution, α = 0.05, number

of iterations (for each sample size) m = 5, 000, and sample sizes vary from 30 to 90.

Additionally, let N = 1, 000, 000 be the number of simulations to get critical for each

test. The test rejection rates are summarized into Tables B.1, B.2 and B.3.
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Table B.1: Rejection Rates When n = 30

p|q j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10

i=1 0.0451 0.0470 0.0376 0.0343 0.0365 0.0360 0.0285 0.0655 0.1378 0.2892
i=2 0.0492 0.0440 0.0414 0.0333 0.0322 0.0355 0.0301 0.0670 0.1330 0.2763
i=3 0.0550 0.0551 0.0495 0.0406 0.0371 0.0340 0.0318 0.0563 0.1116 0.2611
i=4 0.0682 0.0697 0.0636 0.0447 0.0409 0.0344 0.0272 0.0489 0.0940 0.2291
i=5 0.0985 0.0897 0.0848 0.0657 0.0476 0.0393 0.0313 0.0373 0.0737 0.1830
i=6 0.1378 0.1189 0.1175 0.0926 0.0666 0.0496 0.0345 0.0383 0.0576 0.1414
i=7 0.2002 0.1681 0.1659 0.1379 0.0996 0.0704 0.0481 0.0337 0.0440 0.1016
i=8 0.2700 0.2367 0.2257 0.1883 0.1435 0.1087 0.0722 0.0509 0.0378 0.0638
i=9 0.3641 0.3316 0.3156 0.2670 0.2081 0.1581 0.1043 0.0714 0.0493 0.0506
i=10 0.4892 0.4406 0.4368 0.3810 0.3058 0.2362 0.1632 0.1178 0.0780 .05290

Table B.2: Rejection Rates When n = 60

p|q j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10

i=1 0.0518 0.0420 0.0401 0.0359 0.0453 0.0808 0.1968 0.3988 0.6662 0.8669
i=2 0.0543 0.0482 0.0395 0.0392 0.0417 0.0827 0.1933 0.3933 0.6422 0.8615
i=3 0.0707 0.0634 0.0473 0.0397 0.0399 0.0631 0.1484 0.3337 0.5883 0.8120
i=4 0.1149 0.0961 0.0706 0.0502 0.0360 0.0452 0.1086 0.2453 0.4980 0.7467
i=5 0.1759 0.1656 0.1200 0.0876 0.0491 0.0391 0.0661 0.1708 0.3681 0.6435
i=6 0.2848 0.2666 0.2021 0.1473 0.0883 0.0487 0.0473 0.0915 0.2366 0.4942
i=7 0.4460 0.4175 0.3511 0.2622 0.1653 0.0947 0.0508 0.0479 0.1243 0.3182
i=8 0.6458 0.6082 0.5326 0.4274 0.3044 0.1847 0.0928 0.0533 0.0611 0.1690
i=9 0.8264 0.7981 0.7261 0.6371 0.4985 0.3492 0.1931 0.0993 0.0489 0.0672
i=10 0.9504 0.9350 0.8986 0.8366 0.7278 0.5622 0.3823 0.2080 0.0989 0.0481

Table B.3: Rejection Rates When n = 90

p|q j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9 j=10

i=1 0.0524 0.0471 0.0376 0.0408 0.0980 0.2227 0.4776 0.7763 0.9403 0.9935
i=2 0.0560 0.0557 0.0385 0.0394 0.0848 0.2039 0.4507 0.7566 0.9273 0.9891
i=3 0.0806 0.0749 0.0508 0.0370 0.0599 0.1458 0.3581 0.6765 0.8874 0.9853
i=4 0.1561 0.1359 0.0880 0.0492 0.0441 0.0889 0.2495 0.5508 0.8107 0.9561
i=5 0.2731 0.2516 0.1757 0.1051 0.0493 0.0455 0.1328 0.3602 0.6539 0.9021
i=6 0.4746 0.4515 0.3360 0.2109 0.1080 0.0485 0.0618 0.1860 0.4567 0.7760
i=7 0.6994 0.6775 0.5621 0.4216 0.2487 0.1138 0.0494 0.0763 0.2442 0.5689
i=8 0.8966 0.8746 0.8041 0.6816 0.4792 0.2769 0.1246 0.0517 0.0846 0.3114
i=9 0.9833 0.9769 0.9541 0.8971 0.7560 0.5457 0.2994 0.1240 0.0488 0.1108
i=10 0.9998 0.9990 0.9977 0.9876 0.9539 0.8183 0.5917 0.3164 0.1303 0.0549
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APPENDIX C: Relative Frequencies of Letters in Latin Languages

Table C.1: Relative Letter Frequencies in 15 Latin Languages

Letter English French German Spanish Portuguese Esperanto Italian Turkish

a 8.17% 7.64% 6.52% 11.53% 14.63% 12.12% 11.75% 12.92%

b 1.49% 0.90% 1.89% 2.22% 1.04% 0.98% 0.93% 2.84%

c 2.78% 3.26% 2.73% 4.02% 3.88% 0.78% 4.50% 1.46%

d 4.25% 3.67% 5.08% 5.01% 4.99% 3.04% 3.74% 5.21%

e 12.70% 14.72% 16.40% 12.18% 12.57% 9.00% 11.79% 9.91%

f 2.23% 1.07% 1.66% 0.69% 1.02% 1.04% 1.15% 0.46%

g 2.02% 0.87% 3.01% 1.77% 1.30% 1.17% 1.64% 1.25%

h 6.09% 0.74% 4.58% 0.70% 0.78% 0.38% 0.64% 1.21%

i 6.97% 7.53% 6.55% 6.25% 6.19% 10.01% 10.14% 9.60%

j 0.15% 0.61% 0.27% 0.49% 0.40% 3.50% 0.01% 0.03%

k 0.77% 0.07% 1.42% 0.01% 0.02% 4.16% 0.01% 5.68%

l 4.03% 5.46% 3.44% 4.97% 2.78% 6.10% 6.51% 5.92%

m 2.41% 2.97% 2.53% 3.16% 4.74% 2.99% 2.51% 3.75%

n 6.75% 7.10% 9.78% 6.71% 4.45% 7.96% 6.88% 7.99%

o 7.51% 5.80% 2.59% 8.68% 9.74% 8.78% 9.83% 2.98%

p 1.93% 2.52% 0.67% 2.51% 2.52% 2.76% 3.06% 0.89%

q 0.10% 1.36% 0.02% 0.88% 1.20% 0 0.51% 0

r 5.99% 6.69% 7.00% 6.87% 6.53% 5.91% 6.37% 7.72%

s 6.33% 7.95% 7.27% 7.98% 6.81% 6.09% 4.98% 3.01%

t 9.06% 7.24% 6.15% 4.63% 4.34% 5.28% 5.62% 3.31%

u 2.76% 6.31% 4.17% 2.93% 3.64% 3.18% 3.01% 3.24%

v 0.98% 1.84% 0.85% 1.14% 1.58% 1.90% 2.10% 0.96%

w 2.36% 0.05% 1.92% 0.02% 0.04% 0 0.03% 0

x 0.15% 0.43% 0.03% 0.22% 0.25% 0 0.00% 0

y 1.97% 0.13% 0.04% 1.01% 0.01% 0 0.02% 3.34%

z 0.07% 0.33% 1.13% 0.47% 0.47% 0.49% 1.18% 1.50%

à 0 0.49% 0 0 0.07% 0 0.64% 0

â 0 0.05% 0 0 0.56% 0 0 0

á 0 0 0 0.50% 0.12% 0 0 0

å 0 0 0 0 0 0 0 0

ä 0 0 0.58% 0 0 0 0 0

ã 0 0 0 0 0.73% 0 0 0

�a 0 0 0 0 0 0 0 0

æ 0 0 0 0 0 0 0 0

÷ 0 0.02% 0 0 0 0 0 0

ç 0 0.09% 0 0 0.53% 0 0 1.16%

�c 0 0 0 0 0 0.66% 0 0

�d 0 0 0 0 0 0 0 0

£ 0 0 0 0 0 0 0 0
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Table C.2: Relative Letter Frequencies in 15 Latin Languages Continued

Letter English French German Spanish Portuguese Esperanto Italian Turkish

¤ 0 0 0 0 0 0 0 0

ð 0 0 0 0 0 0 0 0

è 0 0.27% 0 0 0 0 0.26% 0

é 0 1.50% 0 0.43% 0.34% 0 0 0

ê 0 0.22% 0 0 0.45% 0 0 0

ë 0 0.01% 0 0 0 0 0 0

�e 0 0 0 0 0 0 0 0

¥ 0 0 0 0 0 0 0 0

�g 0 0 0 0 0 0.69% 0 0

? 0 0 0 0 0 0 0 1.13%

�h 0 0 0 0 0 0.02% 0 0

î 0 0.05% 0 0 0 0 0 0

ì 0 0 0 0 0 0 -0.03% 0

í 0 0 0 0.73% 0.13% 0 0.03% 0

ï 0 0.01% 0 0 0 0 0 0

� 0 0 0 0 0 0 0 5.11%

�j 0 0 0 0 0 0.06% 0 0

ª 0 0 0 0 0 0 0 0

ñ 0 0 0 0.31% 0 0 0 0

« 0 0 0 0 0 0 0 0

¬ 0 0 0 0 0 0 0 0

ò 0 0 0 0 0 0 0.00% 0

ö 0 0 0.44% 0 0 0 0 0.78%

ô 0 0.02% 0 0 0.64% 0 0 0

ó 0 0 0 0.83% 0.30% 0 0 0

õ 0 0 0 0 0.04% 0 0 0

ø 0 0 0 0 0 0 0 0

° 0 0 0 0 0 0 0 0

�s 0 0 0 0 0 0.39% 0 0

³ 0 0 0 0 0 0 0 1.78%

± 0 0 0 0 0 0 0 0

² 0 0 0 0 0 0 0 0

ÿ 0 0 0.31% 0 0 0 0 0

´ 0 0 0 0 0 0 0 0

þ 0 0 0 0 0 0 0 0

ù 0 0.06% 0 0 0 0 -0.17% 0

ú 0 0 0 0.17% 0.21% 0 0.17% 0

û 0 0.06% 0 0 0 0 0 0

�u 0 0 0 0 0 0.52% 0 0

ü 0 0 1.00% 0.01% 0.03% 0 0 1.85%

· 0 0 0 0 0 0 0 0

ý 0 0 0 0 0 0 0 0

¹ 0 0 0 0 0 0 0 0

» 0 0 0 0 0 0 0 0

º 0 0 0 0 0 0 0 0
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Table C.3: Relative Letter Frequencies in 15 Latin Languages Continued

Letter Swedish Polish Dutch Danish Icelandic Finnish Czech

a 9.38% 10.50% 7.49% 6.03% 10.11% 12.22% 8.42%

b 1.54% 1.74% 1.58% 2.00% 1.04% 0.28% 0.82%

c 1.49% 3.90% 1.24% 0.57% 0 0.28% 0.74%

d 4.70% 3.73% 5.93% 5.86% 1.58% 1.04% 3.48%

e 10.15% 7.35% 18.91% 15.45% 6.42% 7.97% 7.56%

f 2.03% 0.14% 0.81% 2.41% 3.01% 0.19% 0.08%

g 2.86% 1.73% 3.40% 4.08% 4.24% 0.39% 0.09%

h 2.09% 1.02% 2.38% 1.62% 1.87% 1.85% 1.36%

i 5.82% 8.33% 6.50% 6.00% 7.58% 10.82% 6.07%

j 0.61% 1.84% 1.46% 0.73% 1.14% 2.04% 1.43%

k 3.14% 2.75% 2.25% 3.40% 3.31% 4.97% 2.89%

l 5.28% 2.56% 3.57% 5.23% 4.53% 5.76% 3.80%

m 3.47% 2.52% 2.21% 3.24% 4.04% 3.20% 2.45%

n 8.54% 6.24% 10.03% 7.24% 7.71% 8.83% 6.47%

o 4.48% 6.67% 6.06% 4.64% 2.17% 5.61% 6.70%

p 1.84% 2.45% 1.57% 1.76% 0.79% 1.84% 1.91%

q 0.02% 0 0.01% 0.01% 0 0.01% 0.00%

r 8.43% 5.24% 6.41% 8.96% 8.58% 2.87% 4.80%

s 6.59% 5.22% 3.73% 5.81% 5.63% 7.86% 5.21%

t 7.69% 2.48% 6.79% 6.86% 4.95% 8.75% 5.73%

u 1.92% 2.06% 1.99% 1.98% 4.56% 5.01% 2.16%

v 2.42% 0.01% 2.85% 2.33% 2.44% 2.25% 5.34%

w 0.14% 5.81% 1.52% 0.07% 0 0.09% 0.02%

x 0.16% 0.00% 0.04% 0.03% 0.05% 0.03% 0.03%

y 0.71% 3.21% 0.04% 0.70% 0.90% 1.75% 1.04%

z 0.07% 4.85% 1.39% 0.03% 0 0.05% 1.50%

à 0 0 0 0 0 0 0

â 0 0 0 0 0 0 0

á 0 0 0 0 1.80% 0 0.87%

å 1.34% 0 0 1.19% 0 0.00% 0

ä 1.80% 0 0 0 0 3.58% 0

ã 0 0 0 0 0 0 0

�a 0 0.70% 0 0 0 0 0

æ 0 0 0 0.87% 0.87% 0 0

÷ 0 0 0 0 0 0 0

ç 0 0 0 0 0 0 0

�c 0 0 0 0 0 0 0

¢ 0 0.74% 0 0 0 0 0

£ 0 0 0 0 0 0 0.46%

¤ 0 0 0 0 0 0 0.02%

ð 0 0 0 0 4.39% 0 0

è 0 0 0 0 0 0 0
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Table C.4: Relative Letter Frequencies in 15 Latin Languages Continued

Letter Swedish Polish Dutch Danish Icelandic Finnish Czech

é 0 0 0 0 0.65% 0 0.63%

ê 0 0 0 0 0 0 0

ë 0 0 0 0 0 0 0

�e 0 1.04% 0 0 0 0 0

¥ 0 0 0 0 0 0 1.22%

�g 0 0 0 0 0 0 0

�g 0 0 0 0 0 0 0

�h 0 0 0 0 0 0 0

î 0 0 0 0 0 0 0

ì 0 0 0 0 0 0 0

í 0 0 0 0 1.57% 0 1.64%

ï 0 0 0 0 0 0 0

� 0 0 0 0 0 0 0

�j 0 0 0 0 0 0 0

ª 0 2.11% 0 0 0 0 0

ñ 0 0 0 0 0 0 0

« 0 0.36% 0 0 0 0 0

¬ 0 0 0 0 0 0 0.01%

ò 0 0 0 0 0 0 0

ö 1.31% 0 0 0 0.78% 0.44% 0

ô 0 0 0 0 0 0 0

ó 0 1.14% 0 0 0.99% 0 0.02%

õ 0 0 0 0 0 0 0

ø 0 0 0 0.94% 0 0 0

° 0 0 0 0 0 0 0.38%

�s 0 0 0 0 0 0 0

³ 0 0 0 0 0 0 0

± 0 0.81% 0 0 0 0 0

² 0 0 0 0 0 0 0.69%

ÿ 0 0 0 0 0 0 0

´ 0 0 0 0 0 0 0.01%

þ 0 0 0 0 1.46% 0 0

ù 0 0 0 0 0 0 0

ú 0 0 0 0 0.61% 0 0.05%

û 0 0 0 0 0 0 0

�u 0 0 0 0 0 0 0

ü 0 0 0 0 0 0 0

· 0 0 0 0 0 0 0.20%

ý 0 0 0 0 0.23% 0 1.00%

¹ 0 0.08% 0 0 0 0 0

» 0 0.71% 0 0 0 0 0

º 0 0 0 0 0 0 0.72%


