
Isomorphism in Wavelets II

Xingde Dai, Wei Huang and Zhongyan Li∗

Abstract. A scaling function ϕA associated with a d×d expansive dyadic
integral matrix A can be isomorphically embedded into the family of
scaling functions associated with a s×s, d ≤ s, expansive dyadic integral
matrix B. On the other hand, a scaling function ϕA associated with a
d×d expansive dyadic integral matrix A and a finite two scaling relation
can be isomorphically embedded into the family of scaling functions
associated with expansive dyadic integral s × s matrix B, for any s.
In particular, for s = 1 and B = [2]. We provide examples for such
isomorphisms.
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1. Introduction

For a vector ~̀ ∈ Rd, the translation operator T~̀ is defined as

(T~̀f)(~t) ≡ f(~t− ~̀), ∀f ∈ L2(Rd), ∀~t ∈ Rd .
Let A be a d × d integral matrix with eighenvalues β1, · · · , βd. A is called
expansive if min{|β1|, · · · , |βd|} > 1. A is called dyadic if |det(A)| = 2. We
define the operator DA as

(DAf)(~t) ≡ (
√

2)f(A~t), ∀f ∈ L2(Rd), ∀~t ∈ Rd .
The operators T~̀ and DA are unitary operators on L2(Rd).

Let {s~n | ~n ∈ Zd} be a solution to the following system of equations
(1.1) associated with a d× d expansive dyadic integral matrix A:{ ∑

~n∈Zd h~nh~n+~k = δ~0~k,
~k ∈ AZd,∑

~n∈Zd h~n =
√

2.
(1.1)
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The set Λ = {~n ∈ Zd | s~n 6= 0} is the support of {s~n | ~n ∈ Zd}. If Λ is a finite
set, then {s~n} is called a finite solution. Define the operator Ψ on L2(Rd) as

Ψ ≡
∑
~n∈Λ

s~nDAT~n.

When Λ is finite the operator Ψ has a non-zero fixed point ϕA (Lawton [18]
and Bownik [3]),

ϕA = ΨϕA. (1.2)

This ϕA is the scaling function associated with matrix A and it induces a
Parseval frame wavelet ψA associated with matrix A. It satisfies the two-scale
relation:

ϕA =
∑
~n∈Λ

s~nDAT~nϕA. (1.3)

We will say that ϕA is derived from the solution S. This scaling function ϕA
associated with matrix A is generated by a solution S = {s~n} to the system
of equations (1.1). The scaling function ϕA induces a Parseval frame wavelet
ψA associated with matrix A as defined in Definition 1.1.

Definition 1.1. Let A be an expansive dyadic integral matrix. A function
ψA ∈ L2(Rd) is called a Parseval frame wavelet associated with A, if the set

{Dn
AT~̀ ψA | n ∈ Z, ~̀ ∈ Zd}

forms a normalized tight frame for L2(Rd). That is

‖f‖2 =
∑

n∈Z,~̀∈Zd
|〈f,Dn

AT~̀ ψA〉|2, ∀f ∈ L2(Rd).

If the set is also orthogonal, then ψA is an orthonormal wavelet for L2(Rd)
associated with A.

2. Definition of Isomorphisms

Let A be an expansive dyadic integral matrix. Let W(A, d) be the collection
of all scaling functions in L2(Rd) associated with A and solutions to the
system of equation (1.1). Define W(d) ≡

⋃
AW(A, d). The union is for all

d × d expansive dyadic integral matrices. Define W ≡
⋃
d≥1W(d). This is

the set of scaling functions in all dimensions.
In particular, let W0(A, d) be the collection of all scaling functions in

L2(Rd) associated with A and finite solutions to the system of equation (1.1).
Define W0(d) ≡

⋃
AW0(A, d). The union is for all d × d expansive dyadic

integral matrices. Define W0 ≡
⋃
d≥1W0(d).

Let A be a d × d expansive dyadic integral matrix and ϕA ∈ W(A, d)
which is derived from the solution {a~n | ~n ∈ Zd} to (1.1). Denote the support
of this solution as ΛA, and SA = {a~n | ~n ∈ ΛA}.

A reduced system of equations E(ΛA,A,d) from system of equations (1.1)
can be obtained by the following steps:
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Step 1. For ~n ∈ Zd\ΛA, replace all variables h~n in (1.1) by 0.
Step 2. Then remove all trivial equations “0 = 0”.
Step 3. If there are redundant equations, choose and keep one and remove

the other identical equations.

Note that, the discussion of the reduced system of equations E(ΛA,A,d)

from the support ΛA does not depend on the existence of a solution SA. This
gives flexibility in the discussion.

Denote the family of all such reduced systems of equations by E. A
reduced system of equations E(ΛA,A,d) has the following form:{ ∑

~n∈ΛA
h~nh~n+~k = δ~0~k,

~k ∈ ΛEA,∑
~n∈ΛA

h~n =
√

2.
(2.1)

The index set ΛEA in (2.1) is a subset of AZd. The equation in E(ΛA,A,d) that

corresponding to ~k ∈ ΛEA is ∑
~n∈ΛA

h~nh~n+~k = δ~0~k.

This set ΛEA might not be unique due to the Step 3 above. However, it is fixed
in discussion. It is clear that SA is a solution to (2.1).

Similarly, for an s×s expansive dyadic integral matrix B and ΛB ⊂ Zs,
the reduced system of equation is

E(ΛB ,B,s) :

{ ∑
~m∈ΛB

h′~mh
′
~m+~̀

= δ~0~̀,
~̀ ∈ ΛEB ,∑

~m∈ΛB
h′~m =

√
2.

(2.2)

Definition 2.1. E(ΛA,A,d), E(ΛB ,B,s) ∈ E are isomorphic, or E(ΛA,A,d) ∼ E(ΛB ,B,s)
if there exist

(A). a bijection θ : ΛA → ΛB and
(B). a bijection η from an index set ΛEA of E(ΛA,A,d) onto an index set ΛEB

of E(ΛB ,B,s)
with the following properties: for each ~k ∈ ΛEA, the equation in E(ΛB ,B,s)
generated by ~̀≡ η(~k) is obtained by replacing h~n by h′θ(~n) and δ~0~k by δ~0~̀ in

the equation in E(ΛA,A,d) generated by ~k.

In each of the examples in Sections 4 and 5 we will list the correspond-
ing matrices A and B, sets ΛA, ΛA, mappings θ, η. The related systems of
equations (SA, E(ΛA,A,d)) and (SB , E(ΛB ,B,s)) are reduced. We check each of
the cases with computer programs. For simplicity we omit the details.

Let SA = {a~n | ~n ∈ ΛA} be a solution to (2.1) and SB = {b~m | ~m ∈ ΛB}
be a solution to (2.2). Let ϕA, ϕB ∈ W be the scaling functions derived from
(SA, E(ΛA,A,d)) and (SB , E(ΛB ,B,s)) respectively. Notice that d and s can be
different.

Definition 2.2. The scaling functions ϕA, ϕB are algebraically isomorphic, or
ϕA ' ϕB , if E(ΛA,A,d) ∼ E(ΛB ,B,s) with bijection θ and η. And

bθ(~n) = a~n,∀~n ∈ ΛA.
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It is clear that the isomorphism of the reduced system of equations guar-
antees the isomorphism of the scaling functions derived from the solutions of
the reduced system of equations. We have

Lemma 2.3. For isomorphic systems E(ΛA,A,d) and E(ΛB ,B,s) with bijection
θ from ΛA to ΛB, if SA = {a~n | ~n ∈ ΛA} is a solution to E(ΛA,A,d), then
the set SB ≡ {b~m = aθ−1(~m) | ~m ∈ ΛB} is a solution to E(ΛB ,B,s). More-
over, the scaling functions derived from (SA, E(ΛA,A,d)) and (SB , E(ΛB ,B,s))
are algebraically isomorphic.

Definition 2.4. Let U and V be subsets of W.

1. The set U is isomorphically embedded into V,

U v V,
if for each ϕU in U there is an element ϕV ∈ V such that ϕU ' ϕV .

2. If U v V and V v U , U and V are isomorphically identical, or

U ∼= V.

We have

Theorem 2.5.

W(1) v W(2) v W(3) v · · · ,
that is, the sequence {W(d) | d ∈ N} is an ascending sequence.

In [11], we proved that

Theorem 2.6.

W0(1) ∼=W0(2) ∼=W0(3) ∼= · · · ,
that is, each ϕ ∈ W0 is isomorphic to a one dimensional scaling function in
W0(1).

The purpose of this paper is to prove Theorem 2.5 and present examples
for both Theorem 2.5 and Theorem 2.6.

3. Proof of Theorem 2.5

Let s be a natural number and d ≤ s andB be a s×s expansive dyadic integral
matrix. To prove Theorem 2.5, we need to find a function ϕB ∈ W0(s) for
any given ϕA ∈ W0(d) such that ϕA ' ϕB .

By the Smith Normal Form for integral matrices [2] A = UDV , where
U, V are integral matrices of determinant ±1, and D a diagonal matrix with
the last diagonal entry 2 and all other diagonal entries 1. Let ~e1, ..., ~ed be the
standard basis for Zd. Note that V Zd = Zd and UZd = Zd. We have

Zd = span{~e1, ..., ~ed−1, 2~ed} ·∪
(
span{~e1, ..., ~ed−1, 2~ed}+ ~ed

)
= DZd ·∪ (DZd + ~ed) = DV Zd ·∪ (DV Zd + ~ed)

= UDV Zd ·∪ U(DV Zd + ~ed) = AZd ·∪
(
AZd + U~ed

)
.
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Let ~̀A ≡ U~ed. It follows that, for any d× d expansive dyadic integral matrix

A, there exists a vector ~̀A ∈ Zd\AZd such that

Zd = AZd ·∪(~̀A +AZd).

The same proof shows that there exists a vector ~̀B ∈ Zs\BZs such that

Zs = BZs ·∪(~̀B +BZs).

Since d ≤ s, we can consider Rd as subspace of Rs. Let {~e1, ~e2, · · · , ~es}
be the standard basis for Rs. We will further assume that the first d vectors
of the basis, {~e1, ~e2, · · · , ~ed} be the standard basis for Rd.

Define the mapping Θ from Zd to Zs.

Θ(~n) =

{
BA−1(~n), if ~n ∈ AZd,
~̀
B +BA−1(~n− ~̀A), if ~n ∈ ~̀A +AZd. (3.1)

This is a well-defined mapping on Zd since Zd = AZd ·∪(~̀A + AZd) with
range Θ(Zd) ⊂ Zs. Since detB 6= 0 and A has an inverse on AZd with range

contained in Θ(Zd) ⊆ Zs, the mapping Θ is an injection. We have Θ(~0) = ~0.

Also, if Θ(~x) = ~0 for some ~x ∈ Zd then ~x = ~0.

Lemma 3.1. For ~n ∈ Zd and ~k ∈ AZd, we have

Θ(~n+ ~k) = Θ(~n) + Θ(~k).

Proof. Since ~k ∈ AZd, Θ(~k) = BA−1(~k). We have

Since ~k ∈ AZd, ~n + ~k ∈ AZd iff ~n ∈ AZd. Also ~n + ~k ∈ ~̀A + AZd iff

~n ∈ ~̀A +AZd. So we have

Θ(~n) + Θ(~k) = BA−1(~k) +

{
BA−1(~n), ~n ∈ AZd
~̀
B +BA−1(~n− ~̀A), ~n ∈ ~̀A +AZd

=

{
BA−1(~n+ ~k), ~n ∈ AZd
~̀
B +BA−1((~n+ ~k)− ~̀A), ~n ∈ ~̀A +AZd

= Θ(~n+ ~k).

�

Lemma 3.2. If ~n1, ~n2 ∈ Zd and ~̀ ≡ Θ(~n2) − Θ(~n1) ∈ BZs, then there exists

a vector ~k ∈ AZd such that ~̀= Θ(~k), and ~n2 = ~n1 + ~k.

Proof. Since Θ(~n2)−Θ(~n1) = ~̀ ∈ BZd, by Equation (3.1) we have only two
cases.

Case (1), both Θ(~n1),Θ(~n2) are in BZs. By Equation (3.1), n1 =

Aλ1, n2 = Aλ2 for some vectors λ1, λ2 ∈ Zd. Denote ~k = Aλ2−Aλ1 ∈ AZd. So
~̀= Θ(~n2)−Θ(~n1) = BA−1(Aλ2)−BA−1(Aλ1) = BA−1(Aλ2−Aλ1) = Θ(~k).

We have ~̀= Θ(~k) and ~n2 − ~n1 = ~k.

Case (2). Both Θ(~n1),Θ(~n2) are in ~̀B +BZs. By Equation (3.1), n1 =
~̀
A+Aλ1, n2 = ~̀

A+Aλ2 for some vectors λ1, λ2 ∈ Zd. Denote ~k = Aλ2−Aλ1 ∈
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AZd. So ~̀ = Θ(~n2) − Θ(~n1) = (~̀A + BA−1(Aλ2)) − (~̀A + BA−1(Aλ1)) =

BA−1(Aλ2 −Aλ1) = Θ(~k). We have ~̀= Θ(~k) and ~n2 − ~n1 = ~k. �

For matrix B, the system of equation in (1.1) becomes{ ∑
~m∈Zs h

′
~mh
′
~m+~̀

= δ~0~̀,
~̀ ∈ BZs,∑

~m∈Zs h
′
~m =
√

2.
(3.2)

Consider the reduced system E(ΛA,A,d) with index set ΛEA. Define θ ≡
Θ|ΛA and η ≡ Θ|ΛEA . Denote ΛB ≡ θ(ΛA). Since Θ is an injection from Zd to

Zs, θ is a bijection from ΛA to ΛB .
Let SA = {a~n | ~n ∈ ΛA} be a solution to E(ΛA,A,d).
Define

b~m ≡
{
a
θ−1(~m)

, if ~m ∈ ΛB ,

0, if ~m ∈ Zs\ΛB .
SB ≡ {b~m | ~m ∈ ΛB}.

To prove that ϕB ' ϕA, by Definition 2.2, we only need to show that

1. The system of equation{ ∑
~m∈ΛB

h′~mh
′
~m+~̀

= δ~0~̀,
~̀ ∈ η(ΛEA),∑

~m∈ΛB
h′~m =

√
2.

(3.3)

is the reduced system of equations E(ΛB ,B,s). Or equivalently, the set

η(ΛEA) is an index set for E(ΛB ,B,s), denoted as ΛEB . This is Lemma 3.3
below.

2. The set SB ≡ {b~m | ~m ∈ ΛB} is a solution to (3.3) by Lemma 2.3.

Lemma 3.3. The set η(ΛEA) is an index set for E(ΛB ,B,s).

Proof. Let ~k ∈ ΛEA. A reduced equation in E(ΛA,A,d) generated by ~k has the
following form: ∑

~n∈ΛA

h~nh~n+~k = δ~0~k. (3.4)

We will show that ~̀≡ η(~k) ∈ BZs generates an reduced equation in E(ΛB ,B,s).
We write ∑

~m∈Zs
h′~mh

′
~m+~̀

= δ~0~̀

Note that h′~m = 0 for ~m /∈ ΛB , so the above equation is the same as∑
~m∈ΛB

h′~mh
′
~m+~̀

= δ~0~̀. (3.5)

By definition of θ, η and the fact that ΛB ≡ θ(ΛA), we have∑
~n∈ΛA

h′θ(~n)h
′
θ(~n)+η(~k)

= δ~0η(~k)



Isomorphism in Wavelets II 7

By Lemma 3.1, θ(~n+ ~k) = θ(~n) + Θ(~k) = θ(~n) + η(~k), thus∑
~n∈ΛA

h′θ(~n)h
′
θ(~n+~k)

= δ~0η(~k)

Replace h′θ(~n) with h~n, h′
θ(~n+~k)

with h~n+~k and δ~0η(~k) with δ~0~k, We obtained

the the same equation as (3.4). Since (3.4) is non-trivial, (3.5) is non-trivial
as well. Furthermore, (3.5) is a reduced equation in E(ΛB ,B,s). It is clear that

different elements in η(ΛEA) generate different equations in E(ΛB ,B,s).
Next, we will show that every (non-trivial) equation in E(ΛB ,B,s) can be

generated by an element in η(ΛEA). Let the following be a non-trivial equation

in E(ΛB ,B,s) generated by ~̀0 ∈ BZs:∑
~m∈ΛB

h′~mh
′
~m+~̀0

= δ~0~̀0 . (3.6)

Denote ~m = θ(~n), where ~n ∈ ΛA ⊂ Zd:∑
θ(~n)∈ΛB

h′θ(~n)h
′
θ(~n)+~̀0

= δ~0~̀0 .

By Lemma 3.2, there exists ~k0 ∈ AZd such that ~̀0 = Θ(~k0):∑
Θ(~n)∈ΛB

h′Θ(~n)h
′
Θ(~n)+Θ(~k0)

= δ~0Θ(~k0).

By Lemma 3.1, ∑
Θ(~n)∈ΛB

h′Θ(~n)h
′
Θ(~n+~k0)

= δ~0Θ(~k0).

Replace h′Θ(~n) with h~n, h′
Θ(~n+~k0)

with h~n+~k0
and δ~0Θ(~k0) with δ~0~k0 , we have∑

~n∈ΛA

h~nh~n+~k0
= δ~0~k0 .

It is clear that this is a reduced non-trivial equation in E(ΛA,A,d) generated

by ~k0. On the other hand, since this is a reduced non-trivial equation in

E(ΛA,A,d), it is generated by an element ~k in its index set ΛEA. It follows that
~̀ ≡ η(~k) ∈ ΛEB generates the same equation as (3.6). Hence ΛEB = η(ΛEA) is
an index set for E(ΛB ,B,s).

�

The proof of Theorem 2.5 is completed.

4. Examples from higher dimensions to one dimension

Examples for Theorem 2.6 are presented in this section.
The sublattice AZd generated by the d × d expansive dyadic integral

matrix A can be further simplified by changing of basis:
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Proposition 4.1. [11] Let d ≥ 1 be a natural number and A a d× d expansive

dyadic integral matrix. Then Rd has a basis {~fj | j = 1, ..., d} with proper-

ties that, under this new basis, a vector ~k is in AZd if and only if the last

coordinate of ~k is an even number. That is, under this new basis, we have

AZd = {(~x, 2n) | ~x ∈ Zd−1, n ∈ Z}. (4.1)

Hence, for simplicity, all matrices discussed in the examples in this sec-
tion will have this property (4.1). Let A be a d× d expansive dyadic integral
matrix with properites (4.1).

For a natural number N ≥ 1, define

Λd,N ≡ [0, 2N )d ∩ Zd =
{

(n1, · · · , nd) | 0 ≤ n1, · · · , nd ≤ 2N − 1
}
. (4.2)

The set Λd,N contains 2dN elements in Zd.
For vector ~n = (n1, n2, · · · , nd−1, nd) ∈ Zd, define the function σ

d,N
:

Zd → Z as :

σ
d,N

(~n) =

d∑
j=1

nj · 4(j−1)N . (4.3)

Define fd,N : Zd → Z:

fd,N (~x, y) ≡
⌊y

2

⌋
2(2d−3)N+2 +

{
2σ

d−1,N
(~x) y even

2σ
d−1,N

(~x) + 1 y odd
∀~x ∈ Zd−1, y ∈ Z

(4.4)
where by2 c gives the greatest integer that is less than or equal to y

2 .
Define mappings θd,N and ηd,N as follows:

θd,N
(
(~x, y)

)
≡ fd,N (~x, y), (~x, y) ∈ Λd,N (4.5)

ηd,N
(
(~x, y)

)
≡ fd,N (~x, y), (~x, y) ∈ ΛEd,N . (4.6)

θd,N , ηd,N are injections on Λd,N and ΛEd,N respectively.
Denote

ΛA = Λd,N .

ΛEA = {~n = (~x, 2j) ∈ Zd | σ
d,N

(~n) ≥ 0;~n ∈ (−2N , 2N )d ∩ Zd}.
θ = θd,N .

η = ηd,N .

Λ1 = θ(ΛA).

ΛE1 = η(ΛEA).

With the above settings, the following Theorem collects some results from
Section 4 of [11]. This is a special version of Theorem 2.6.

Theorem 4.2. 1. The systems of equations E(ΛA,A,d) is a reducing system

and ΛEA is an index set.
2. The systems of equations E(Λ1,[2],1) is a reducing system and ΛE1 is an

index set.
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3. The systems of equations E(ΛA,A,d) and E(Λ1,[2],1) are isomorphic with
bijections θ and η:

E(ΛA,A,d) ∼ E(Λ1,[2],1).

Example. Let A =

[
−1 2
−2 2

]
and B = [2].

Choose ΛA = Λ2,1 = {(0, 0), (0, 1), (1, 0), (1, 1)}. It is clear that E(ΛA,A,2)

below is a reduced system of equation:

E(ΛA,A,2) :

 h00 + h10 + h01 + h11 =
√

2
h2

00 + h2
10 + h2

01 + h2
11 = 1

h00 · h10 + h01 · h11 = 0.

The bijections defined in (4.5) and (4.6) become

θ(x, y) =
⌊y

2

⌋
4 +

{
2x y even
2x+ 1 y odd

(x, y) ∈ ΛA;

η(x, y) =
⌊y

2

⌋
4 +

{
2x y even
2x+ 1 y odd

(x, y) ∈ ΛEA = {(0, 0), (1, 0)}.

The mappings are:

ΛA ΛB = θ(ΛA) ΛEA ΛEB = η(ΛEA)
(0, 0) 0 (0, 0) 0
(0, 1) 1
(1, 0) 2 (1, 0) 2
(1, 1) 3

Under the above mapping ,the corresponding isomorphic systems of
equations are

E(ΛA,A,2) : E(ΛB ,B,1): h00 + h10 + h01 + h11 =
√

2
h2

00 + h2
10 + h2

01 + h2
11 = 1

h00 · h10 + h01 · h11 = 0.

 h0 + h1 + h2 + h3 =
√

2
h2

0 + h2
1 + h2

2 + h2
3 = 1

h0 · h2 + h1 · h3 = 0.

Example. Let A =

[
−1 2
−2 2

]
and B = [2]. Choose ΛA = Λ2,3 = {(x, y) |

0 ≤ x, y ≤ 23−1}. The index set ΛEA for E(ΛA,A,2) is {(x, y) | −7 ≤ x ≤ 7, y ∈
{2, 4, 6} or 0 ≤ x ≤ 7, y = 0}}.

The bijections defined in (4.5) and (4.6) become

θ(x, y) =
⌊y

2

⌋
23+2 +

{
2x y even
2x+ 1 y odd

(x, y) ∈ ΛA;

η(x, y) =
⌊y

2

⌋
23+2 +

{
2x y even
2x+ 1 y odd

(x, y) ∈ ΛEA.
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The mappings are:
θ(x, y) 0 1 2 3 4 5 6 7

0 0 1 32 33 64 65 96 97
1 2 3 34 35 66 67 98 99
2 4 5 36 37 68 69 100 101
3 6 7 38 39 70 71 102 103
4 8 9 40 41 72 73 104 105
5 10 11 42 43 74 75 106 107
6 12 13 44 45 76 77 108 109
7 14 15 46 47 78 79 110 111

η(x, y) 0 2 4 6

-7 18 50 82
-6 20 52 84
-5 22 54 86
-4 24 56 88
-3 26 58 90
-2 28 60 92
-1 30 62 94
0 0 32 64 96
1 2 34 66 98
2 4 36 68 100
3 6 38 70 102
4 8 40 72 104
5 10 42 74 106
6 12 44 76 108
7 14 46 78 110

For example, θ(4, 3) = 41 according to the above mapping table. ΛB =
θ(ΛA) is the content listed in the table for θ and ΛEB = η(ΛEA) is the content
listed in the table for η. The corresponding isomorphic systems of equations
can be obtained:

E(ΛA,A,2) : E(ΛB ,B,1):

∑
~n∈ΛA

h~n =
√

2∑
~n∈ΛA

h2
~n = 1∑

~n∈ΛA

h~n · h~n+~k = 0, ~k ∈ ΛEA



∑
m∈ΛB

hm =
√

2∑
m∈ΛB

h2
m = 1∑

m∈ΛB

hm · hm+` = 0, ` ∈ ΛEB .

Example. Let A =

 0 0 -1
1 0 0
0 2 0

 and B = [2]. Choose ΛA = Λ3,1 = {(~x, y) |

~x = (n1, n2), y = n3, 0 ≤ n1, n2, n3 ≤ 21 − 1}. The index set ΛEA for E(ΛA,A,3)

is {(0, 0, 0), (1, 0, 0), (−1, 1, 0), (0, 1, 0), (1, 1, 0)}.
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The bijections defined in (4.5) and (4.6) become

θ(~x, y) =
⌊y

2

⌋
23+2 +

{
2σ2,1(~x) y even
2σ2,1(~x) + 1 y odd

(~x, y) ∈ ΛA;

η(~x, y) =
⌊y

2

⌋
23+2 +

{
2σ2,1(~x) y even
2σ2,1(~x) + 1 y odd

(~x, y) ∈ ΛEA.

Where σ
2,1

(n1, n2) =
∑2
j=1 nj · 4(j−1) by Equation (4.3).

The mappings are:
ΛA ΛB = θ(ΛA)

(0, 0, 0) 0
(0, 0, 1) 1
(1, 0, 0) 2
(1, 0, 1) 3
(0, 1, 0) 8
(0, 1, 1) 9
(1, 1, 0) 10
(1, 1, 1) 11

ΛEA ΛEB = η(ΛEA)

(0, 0, 0) 0
(1, 0, 0) 2

(-1, 1, 0) 6
(0, 1, 0) 8
(1, 1, 0) 10

Example. Let A =

 0 0 -1
1 0 0
0 2 0

 and B = [2]. Choose ΛA = Λ3,2 = {(~x, y) |

~x = (n1, n2), y = n3, 0 ≤ n1, n2, n3 ≤ 22 − 1}. The index set ΛEA for E(ΛA,A,3)

contains 74 elements as shown later.

The bijections defined in (4.5) and (4.6) become

θ(~x, y) =
⌊y

2

⌋
26+2 +

{
2σ2,2(~x) y even
2σ2,2(~x) + 1 y odd

(~x, y) ∈ ΛA;

η(~x, y) =
⌊y

2

⌋
26+2 +

{
2σ2,2(~x) y even
2σ2,2(~x) + 1 y odd

(~x, y) ∈ ΛEA.

Where σ2,2(n1, n2) =
∑2
j=1 nj · 4(j−1) by Equation (4.3).
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The mappings are:
θ(~x, y) 0 1 2 3

(0,0) 0 1 256 257
(1,0) 2 3 258 259
(2,0) 4 5 260 261
(3,0) 6 7 262 263
(0,1) 32 33 288 289
(1,1) 34 35 290 291
(2,1) 36 37 292 293
(3,1) 38 39 294 295
(0,2) 64 65 320 321
(1,2) 66 67 322 323
(2,2) 68 69 324 325
(3,2) 70 71 326 327
(0,3) 96 97 352 353
(1,3) 98 99 354 355
(2,3) 100 101 356 357
(3,3) 102 103 358 359

η(~x, y), y = 0
~x = (x1, x2) 0 1 2 3

-3 26 58 90
-2 28 60 92
-1 30 62 94
0 0 32 64 96
1 2 34 66 98
2 4 36 68 100
3 6 38 70 102

η(~x, y), y = 2
~x = (x1, x2) −3 −2 −1 0 1 2 3

-3 154 186 218 250 282 314 346
-2 156 188 220 252 284 316 348
-1 158 190 222 254 286 318 350
0 160 192 224 256 288 320 352
1 162 194 226 258 290 322 354
2 164 196 228 260 292 324 356
3 166 198 230 262 294 326 358

For example, θ(3, 2, 1) = 71, η(2, 1, 0) = 36, η(2, 1, 2) = 292 according to
the above mapping tables. ΛB = θ(ΛA) is the content listed in the table for
θ and ΛEB = η(ΛEA) is the content listed in the 2 tables for η. We omit the
corresponding isomorphic systems of equations as it can be easily populated
from the table content of η.

So far, all examples are with ΛA of the form Λd,N . Next we will show
an example with ΛA a proper subset of Λd,N .
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Example. Let A =

 0 0 -1
1 0 0
0 2 0

 and B = [2].

Choose ΛA = {(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1), (2, 3, 2), (2, 3, 3), (3, 3, 2), (3, 3, 3)}.
Notice that this support set ΛA is properly contained in Λ3,2, which is the
support of the previous example. The index set ΛEA for E(ΛA,A,3) contains 5
elements as shown later.

The mappings are:
ΛA ΛB = θ(ΛA) ΛEA ΛEB = η(ΛEA)

(0, 0, 0) 0 (0, 0, 0) 0
(0, 0, 1) 1
(1, 0, 0) 2 (1, 0, 0) 2
(1, 0, 1) 3

(1, 3, 2) 354
(2, 3, 2) 356 (2, 3, 2) 356
(2, 3, 3) 357
(3, 3, 2) 358 (3, 3, 2) 358
(3, 3, 3) 359

The corresponding isomorphic systems of equations are:

E(ΛA,A,3) :

h0,0,0 + h0,0,1 + h1,0,0 + h1,0,1 + h2,3,2 + h2,3,3 + h3,3,2 + h3,3,3 =
√

2
h2

0,0,0 + h2
0,0,1 + h2

1,0,0 + h2
1,0,1 + h2

2,3,2 + h2
2,3,3 + h2

3,3,2 + h2
3,3,3 = 1

h0,0,0h1,0,0 + h0,0,1h1,0,1 + h2,3,2h3,3,2 + h2,3,3h3,3,3 = 0
h1,0,0h2,3,2 + h1,0,1h2,3,3 = 0
h0,0,0h2,3,2 + h0,0,1h2,3,3 + h1,0,0h3,3,2 + h1,0,1h3,3,3 = 0
h0,0,0h3,3,2 + h0,0,1h3,3,3 = 0;

E(ΛB ,B,1):

h0 + h1 + h2 + h3 + h356 + h357 + h358 + h359 =
√

2
h2

0 + h2
1 + h2

2 + h2
3 + h2

356 + h2
357 + h2

358 + h2
359 = 1

h0h2 + h1h3 + h356h358 + h357h359 = 0
h2h356 + h3h357 = 0
h0h356 + h1h357 + h2h358 + h3h359 = 0
h0h358 + h1h359 = 0.

5. From lower dimensions to higher dimensions

In this section we provide an example for Theorem 2.5.

Example. Let A =

[
1 -2
2 -2

]
, `A =

[
-1
-1

]
, and B =

 0 -1 2
1 0 -2
0 -1 0

,

`B =

 1
-1
0

. Choose ΛA = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 3}.
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The mappings are:
ΛA ΛB = θ(ΛA) ΛEA ΛEB = η(ΛEA)

(0, 0) (0, 0, 0) (0, 0) (0, 0, 0)
(0, 1) (1, -2, 0)
(0, 2) (0, -2, -1) (0, 2) (0, -2, -1)
(0, 3) (1, -4, -1)
(1, 0) (0, 1, 1) (1, 0) (0, 1, 1)
(1, 1) (1, -1, 1)
(1, 2) (0, -1, 0) (1, 2) (0, -1, 0)
(1, 3) (1, -3, 0)

The corresponding isomorphic systems of equations are:

E(ΛA,A,2) :
h0,0 + h0,1 + h0,2 + h0,3 + h1,0 + h1,1 + h1,2 + h1,3 =

√
2

h2
0,0 + h2

0,1 + h2
0,2 + h2

0,3 + h2
1,0 + h2

1,1 + h2
1,2 + h2

1,3 = 1
h0,0h0,2 + h0,1h0,3 + h1,0h1,2 + h1,1h1,3 = 0
h0,0h1,0 + h0,1h1,1 + h0,2h1,2 + h0,3h1,3 = 0
h0,0h1,2 + h0,1h1,3 = 0;

E(ΛB ,B,3):
h0,0,0 + h1,-2,0 + h0,-2,-1 + h1,-4,-1 + h0,1,1 + h1,-1,1 + h0,-1,0 + h1,-3,0 =

√
2

h2
0,0,0 + h2

1,-2,0 + h2
0,-2,-1 + h2

1,-4,-1 + h2
0,1,1 + h2

1,-1,1 + h2
0,-1,0 + h2

1,-3,0 = 1
h0,0,0h0,-2,-1 + h1,-2,0h1,-4,-1 + h0,1,1h0,-1,0 + h1,-1,1h1,-3,0 = 0
h0,0,0h0,1,1 + h1,-2,0h1,-1,1 + h0,-2,-1h0,-1,0 + h1,-4,-1h1,-3,0 = 0
h0,0,0h0,-1,0 + h1,-2,0h1,-3,0 = 0.

References

[1] N. Baeth et al., Number theory of matrix semigroups, Linear Algebra and its
Applications, 434, 694-711 (2011)
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