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ABSTRACT 

 
JASMINE ELDER.  QUANTUM RESISTENT REED MULLER CODES ON 

MCELIECE CRYPTOSYSTEM.  (Under the direction of Dr. GABOR HETYEI) 
 
 

Recently, Dr. Wang presented a new post quantum encryption scheme, Random Linear 

Code-Based Encryption scheme, RLCE, which is a variant to the McEliece encryption 

scheme.  It is already well-known that the McEliece Encryption scheme based upon Reed 

Muller codes is not considered as a secure system for both classical and quantum 

computers. In this dissertation, we introduce and study the Reed-Muller code-based 

RLCE scheme.  These successful attacks on the Reed Muller code based McEliece 

encryption scheme, namely, the Minder-Shokrollahi’s attack, the Chizhov-Borodin’s 

attack, and the Square Code attack, are proven to not work for the proposed Reed Muller 

code-based RLCE scheme. We determine the optimal method in preventing these known 

attacks against the new encryption system. Additionally, we suggest parameters needed 

for the 128, 192, and 256 bits security level.  
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CHAPTER 1: INTRODUCTION 
 
 

 
 Cryptology is the science of converting a plaintext, or message into a ciphertext, 

or scrambled message in order to provide secrecy. In cryptology, we typically have two 

parties, Bob and Alice, who want to communicate with each other over a noisy channel.  

Ensuring that our communications or technology are secure have always been the essence 

of cryptology. That means making sure that the financial transactions we make online, 

any government telecommunications, and interactions on Facebook, to name a few, are 

protected. 

With the development of quantum computers on the horizon, it poses a threat to 

the security of the current cryptosystems that are in place.  Quantum computers are able 

to process complex algorithms and perform advance calculations like integer 

factorization and discrete logarithm problem that are expected to break all the current 

cryptosystems, like RSA, Rivest Shamir Adleman, and Elliptic Curve Cryptology. Thus, 

it is important to design solid and concrete quantum and classical secure cryptographic 

systems. Some categories for the candidates of post quantum cryptology include lattice, 

codes, hash, and others, but this dissertation will focus on code-based cryptology.  Linear 

codes provide a technique to send information over a noisy channel and can be used to 

protect the information against eavesdroppers.  A linear code, 𝐶, is a subspace of field 

𝐹$%, with 𝐹$ a field.  An (𝑛, 𝑘)	linear code has length 𝑛 and dimension 𝑘 on 𝐹$.  The 

minimum distance of a code 𝐶, is the minimum number of digits component-wise that 

differ between two distinct codewords in 𝐶. The weight of a codeword, 𝑐, is the number 
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of non-zero symbols in the codeword.  If 𝐶 is a linear code, then its dual, 𝐶-, is also a 

linear code where  

𝐶- = /𝑧 ∈ 𝐹$%	2 < 𝑧 ⋅ 𝑐	 >	= 0	∀	𝑐 ∈ 𝐶} where  < 𝑧 ⋅ 𝑐 >	= ∑ 𝑧9𝑐9%
9:; 	 

is the dot product of	𝑧	𝑎𝑛𝑑	𝑐.   

The goal of this dissertation is to develop a code based cryptographic system that 

is both secure against modern and quantum computers. One of the candidates for code-

based quantum cryptography that is being studied is the McEliece encryption scheme. 

The McEliece cryptosystem is a public key cryptosystem that uses linear error 

correcting codes in order to create a public and private key (Hankerson et all). McEliece 

proposed a public key cryptosystem with the underlying fact that decoding random linear 

codes can be very difficult. This cryptosystem can be generalized to any linear codes with 

a good decoding algorithm.  This encryption scheme has resisted existing quantum 

computer algorithm attacks.  In 1978, Robert McEliece created the original McEliece 

cryptographic system which is based on binary Goppa codes. Several alternatives have 

been presented to replace these binary Goppa codes. In particular, Sidelnikov proposed 

the use of Reed Muller codes instead.  Reed Muller codes are one of the oldest family of 

binary linear error correcting codes (V.M. Sidelnikov). Reed Muller codes are 

advantageous because of their straightforwardness in encoding and decoding.   It, 

however, has been shown that McEliece Public Key Encryption based on Reed Muller 

codes can be broken by some attacks. It is important that there are new developments 

created to defeat all known methods of attacks. This dissertation study will employ Reed 

Muller codes in a McEliece encryption scheme variant, the Random Linear Code based 

Encryption (RLCE) scheme, that can be resistant to quantum computing attacks. 
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Supported by the NSA, National Security Agency, the National Institute of Science of 

Technology (NIST) has initiated a post-quantum cryptography project to solicit 

cryptographic techniques that are secure against quantum computers.  My academic 

advisor, Dr. Yongge Wang, has developed a linear code-based quantum-safe technique 

RLCE, Random Linear Code based Encryption, scheme and has submitted it to NIST as a 

candidate for future Internet infrastructure protection.  The RLCE scheme is valuable 

because allows for the use of any linear code in its construction. With this, we study the 

Reed Muller code based RLCE scheme, and that the Reed Muller RLCE scheme proves 

to be a contender for the post quantum cryptology era. 

 

 

  

  



 4 
 

CHAPTER 2: REED MULLER CODES 

 

Reed Muller codes are one of the oldest family of binary linear error correcting 

codes. Reed Muller codes, denoted 𝑅𝑀(	𝑟,𝑚), follow a [𝑁, 𝑘, 𝑑] format where  

𝑟 represents the order of the code and 𝑚 helps determine the block length and  

𝑟 ≤ 𝑚. Reed Muller codes has a block length of	𝑁 = 2G, a message length,	𝑘 =

∑ HG9 I
J
9:K  and distance of 𝑑 = 2GLJ. There are two ways that we will 

define the Reed Muller codes. We will consider the codes first as a recursive definition 

and then we will discuss the codes in terms of Boolean functions.  

 

 
2.1 Recursive Definition 

 

 

Let us consider first the Reed Muller codes of 0th  order, 𝑅𝑀(	0,𝑚), 𝑚 ≥ 0. We 

define 𝑅𝑀(	0,0) = {0,1}, 𝑅𝑀(	0,1) = {00,11}, and 𝑅𝑀(	0,2) = {0000,1111}, and we 

can continue in this manner for higher values of 𝑚. Now let us define 1st  order Reed 

Muller code 𝑅𝑀(	1,1) = {00, 01, 10, 11}.  Now, we can define the recursive nature of the 

Reed Muller codes, 𝑅𝑀(	𝑟,𝑚) = {(𝑥, 𝑦 + 𝑥)	|	𝑥 ∈ 𝑅𝑀(𝑟,𝑚 − 1), 𝑦 ∈ 𝑅𝑀(𝑟 − 1,𝑚 −

1)}. Using this recursive definition, let us find RM (1, 2). From the definition we see that 

𝑅𝑀(	1,2) = {(𝑥, 𝑦 + 𝑥)|	𝑥 ∈ 𝑅𝑀(1, 1), 𝑦 ∈ 𝑅𝑀(0, 1)}.  So, we take all the values in 

𝑅𝑀(	1, 1) and adjoin to the end of each of those values from RM (0, 1).  Thus, 
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𝑅𝑀(	1,2) = {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}.  From here we are able 

to use the recursive definition to build more Reed Muller codes. (Raaphorst, Sebastian) 

 

Generator matrices are important for linear codes because it is used to transmit 

messages. The rows of generator matrix form a basis for the linear code.  We can use a 

recursive construction for the generator matrices of 𝑅𝑀(	𝑟,𝑚), which we will denote by 

𝐺(	𝑟,𝑚). (Hankerson, D.R. et. Al) 

 

𝐺(0,𝑚) = [1	1…1] 

𝐺(𝑟,𝑚 + 1) = X𝐺(𝑟,𝑚) 𝐺(𝑟,𝑚)
0 𝐺(𝑟 − 1,𝑚)Y 

𝐺(𝑚,𝑚) = Z𝐺(𝑚 − 1,𝑚)
0	⋯0		1

\ 

 

Let us explore some examples of generator matrices.  

𝐺(0, 1) = [1	1] 

𝐺(0, 2) = [1	1	1	1] 

𝐺(1,1) = Z𝐺(0, 1)
0			1

\ 

								= Z1			10			1\ 

𝐺(1, 2) = X𝐺(1,1) 𝐺(1,1)
0 𝐺(0,1)Y 

																										= ]
1 1 1 1
0 1 0 1
0 0 1 1

^ 
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2.2 Encoding Reed Muller Codes 

 

 

To encode a message 𝑚 into a codeword 𝑐, we multiply the message, 𝑚, by the generator 

matrix 𝐺(𝑟,𝑚), i.e.	𝑚 ∗ 𝐺(𝑟,𝑚) = 𝑐. For example, let  

𝑚 = [0	1	1	0] 

and let  

𝐺(2,2) = `

1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

a 

Then  

𝑚 ∗ 𝐺(2, 2) = 0 ∗ [1	1	1	1] + 1 ∗ [0	1	0	1] + 1 ∗ [0	0	1	1] + 0 ∗ [0	0	0	1] 

   = [0	1	1	0]. 

 

 

2.3 Boolean Functions 

 

 

Now we will explore defining Reed Muller codes based on Boolean Functions. A 

Boolean monomial 𝑝 is an element of 𝐹c[𝑥K, 𝑥;, … , 𝑥GL;],  with 𝑚 variables, of the form 

𝑝 = 𝑥K
Jd𝑥;

Je … 𝑥GL;
Jfge. A Boolean polynomial is a linear combination of the Boolean 

monomials.  We are going to define codes of length	𝑛 = 2G, and to do so we need 𝑚 
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variables which take on values 0 or 1. 𝑅𝑀(	𝑟,𝑚) is the set of all polynomials of degree ≤

𝑟 in the following ring  𝐹c[𝑥K, 𝑥;, … , 𝑥GL;].( Raaphorst, Sebastian) 

We define the following mapping rule, where 𝜓:		𝐹c[𝑥K, 𝑥;, … , 𝑥GL;] → 𝐹cc
f 

𝜓 (0) = 00 · · · 0 of length	2G,  

𝜓 (1) = 11···1 of length 2G, 

𝜓 (𝑥;) = 00···011···1 two patterned sections of length 2GL;, 

𝜓 (𝑥c) = 00···011···1 four patterned sections of length 2GLc, 

𝜓 (𝑥9) = 00 · · · 011 · · · 1 29 patterned sections of length 2GL9L;.  

 

Now based upon Boolean functions we can define the generator matrix, 𝐺(	𝑟,𝑚) 

for Reed Muller codes.  

𝐺(𝑟,𝑚) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜓(1)
𝜓(𝑥;)
𝜓(𝑥c)
⋮

𝜓(𝑥G)
𝜓(𝑥;𝑥c)
𝜓(𝑥K𝑥c)

⋮
𝜓(𝑥GL;𝑥G)
𝜓(𝑥;𝑥c𝑥o)

⋮
𝜓(𝑥GLJ𝑥GLJp; ⋯𝑥G)⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

For example,  

𝐺(1,3) =

⎣
⎢
⎢
⎡
𝜓(1)
𝜓(𝑥;)
𝜓(𝑥c)
𝜓(𝑥o)⎦

⎥
⎥
⎤
= `

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

a. 
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2.4 Encode and Decode 

 

  

To encode a message 𝑚 into a codeword 𝑐, we follow the same steps outlined 

above in Section 2.2 for encoding a message. We will simply replace the previous 

recursive generator matrix with the generator matrix constructed with the Boolean 

functions.  

To decode a message, we first need to discuss characteristic vectors.  Consider a 

monomial 𝑝 of degree 𝑑 in 𝑅𝑀(𝑟,𝑚). “The characteristic vectors of 𝑝 are all the vectors 

corresponding to monomials of degree 𝑚 − 𝑑”. (Raaphorst, Sebastian) In short, the 

characteristic vectors of 𝑝 are the monomials that are not in 𝑝 and their complement.  For 

example, in 𝑅𝑀(2,4), the characteristic vector to 𝑥K, 𝑥c would contain the monomials 

{𝑥;𝑥o, 𝑥;𝑥ovvvvvv, 𝑥;vvv𝑥o, 𝑥;𝑥ovvv} The steps to decode are as follows.  

1. Starting with the bottom row in the generator matrix, find its characteristic vectors 

for that row and then take the dot product of each with the encoded message.  

2. Take the majority of the values from the dot products in step one and assign that 

value as the coefficient of the row.  

3. Complete steps 1 and 2 for each row (except for the top row), multiply each 

coefficient by its corresponding row and add the resulting vectors together to form 

the 𝑀w vector. Add 𝑀w to the received message. If the resulting vector has more 

ones than zeros than the top row’s coefficient is 1, otherwise it is zero. Add the 
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top row, multiplied by its coefficient to 𝑀w  to get original message. The vector 

formed by the sequence of coefficients starting from the top row is the original 

message. (Raaphorst, Sebastian) 

 

Let us consider an example. Consider we had a message 𝑚 = [0	1	1	0] 

using 𝑅𝑀(1, 3) then we have that  𝑚𝐺(1, 3) = [0	1	1	0	0	1	1	1],	where  

𝐺(1, 3) =

⎣
⎢
⎢
⎡
𝜓(1)
𝜓(𝑥K)
𝜓(𝑥;)
𝜓(𝑥c)⎦

⎥
⎥
⎤
= `

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

a . 

 

Let us work on step number one and step number two simultaneously. Beginning 

with the bottom row, the characteristic vectors are: 𝑥c𝑥;, 𝑥c𝑥;vvvvvv, 𝑥cvvv𝑥;, 𝑥c𝑥;vvv.  So 

 𝑥c𝑥; = [0	0	1	1	0	0	1	1	] × [0	1	0	1	0	1	0	1	] = [0	0	0	1	0	0	0	1	] 

	𝑥c𝑥;vvvvvv = [1	1	1	0	1	1	1	0] 

	𝑥cvvv𝑥; = [1	1	0	0	1	1	0	0] × [0	1	0	1	0	1	0	1	] = [0	1	0	0	0	1	0	0] 

𝑥c𝑥;vvv = [0	0	1	1	0	0	1	1] × [1	0	1	0	1	0	1	0	] = [0	0	1	0	0	0	1	0] 

 

Now we take each vector above and multiply it by the received vector. Once we 

accomplish that then we will repeat those two steps for rows two and three and then 

proceed on to step 3.  

[0	0	0	1	0	0	0	1] ⋅ [01100110] = 0 

[1	1	1	0	1	1	1	0] ⋅ [01100110] = 0 

[0	1	0	0	0	1	0	0] ⋅ [01100110] = 0 
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[0	0	1	0	0	0	1	0] ⋅ [01100110] = 0. 

 

Thus, the coefficient of row four, bottom row, is 0.  

 

For the third row, the characteristic vectors are: : 𝑥o𝑥;, 𝑥o𝑥;vvvvvv, 𝑥ovvv𝑥;, 𝑥o𝑥;vvv.  So  

𝑥o𝑥; = [0	0	0	0	1	1	1	1	] × [0	1	0	1	0	1	0	1	] = [0	0	0	0	0	1	0	1] 

	𝑥o𝑥;vvvvvv = [1	1	1	1	1	0	1	0] 

		𝑥ovvv𝑥; = [1	1	1	1	0	0	0	0	] × [0	1	0	1	0	1	0	1	] = [0	1	0	1	0	0	0	0	] 

	𝑥o𝑥;vvv = [0	0	0	0	1	1	1	1] × [1	0	1	0	1	0	10	] = [0	0	0	0	1	0	1	0	] 

   

Now we take each vector above and multiply it by the received vector.  

[0	0	0	0	0	1	0	1] ⋅ [0	1	1	0	0	1	1	0] = 1 

[1	1	1	1	1	0	1	0] ⋅ [0	1	1	0	0	1	1	0] = 1 

[0	1	0	1	0	0	0	0] ⋅ [0	1	1	0	0	1	1	0] = 1 

[0	0	0	0	1	0	1	0] ⋅ [0	1	1	0	0	1	1	0] = 1 

 

Thus, the coefficient of row three, third row, is 1. 

For the second row, the characteristic vectors are: : 𝑥c𝑥o, 𝑥c𝑥ovvvvvv, 𝑥cvvv𝑥o, 𝑥c𝑥ovvv.  So 

𝑥c𝑥o = [0	0	1	1	0	0	1	1] × [0	0	0	0	1	1	1	1	] = [0	0	0	0	0	0	1	1] 

	𝑥c𝑥ovvvvvv = [1	1	1	1	1	1	0	0] 

𝑥cvvv𝑥o = [1	1	0	0	1	1	0	0	] × [0	0	0	0	1	1	1	1	] = [0	0	0	0	1	1	0	0	] 

𝑥c𝑥ovvv = [0	0	1	1	0	0	1	1] × [1	1	1	1	0	0	0	0	] = [0	0	1	1	0	0	0	0	].	 
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Now, we take each vector above and multiply it by the received vector.  

[0	0	0	0	0	0	1	1] ⋅ [0	1	1	0	0	1	1	0] = 1 

[1	1	1	1	1	1	0	0] ⋅ [0	1	1	0	0	1	1	0] = 1 

[0	0	1	1	0	0	0	0] ⋅ [0	1	1	0	0	1	1	0] = 1 

[0	0	0	0	1	1	0	0	] ⋅ [0	1	1	0	0	1	1	0] = 1 

 

Thus, the coefficient of row two, second row, is 1. 

Now, we can start step three. 

So after multiplying the coefficients of the rows by the rows we get that  

𝑀w = [0	1	0	1	0	1	0	1	] + [0	0	1	1	0	0	1	1] = [0	1	1	0	0	1	1	0]. 

Now we take the vector 𝑀w and add it to the original received message. So,  

Since we got a vector of all zeros, then the top row’s coefficient must be zero. Thus, with 

the coefficient of row one is 0, coefficient of row two is 1, coefficient of row three is 1 

and coefficient of row four is 0.  Hence, our original message must have been  

[0		1		1		0]. 
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CHAPTER 3: McELIECE CRYPTOSYSTEM WITH REED MULLER CODES 

 

 

With the development of quantum computers, widely known cryptosystems like 

elliptic curve cryptology and RSA can be broken. Thus, it has become important to 

develop cryptosystems that are resistant to the attacks of quantum computers. One well 

known code-based post quantum cryptosystem is the McEliece cryptosystem, originally 

based on binary Goppa codes due to their fast decoding algorithm. In 1978, McEliece 

proposed a public key cryptosystem with the underlying fact that decoding random linear 

codes can be very difficult. One element of the McEliece cryptosystem is that the public 

code does not have any known structure, thus the potential is extremely high for it to be 

considered as a secure system.  The cryptosystem is alike to a random code. This 

cryptosystem can be generalized to any linear codes with a good decoding algorithm 

other than just the binary Goppa codes. There have been several proposals to replace the 

binary Goppa codes with other codes, like Generalized Reed Solomon codes, binary Reed 

Muller codes, polar codes and others, which have been proven insecure.  It is our goal to 

replace the binary Goppa codes with Reed Muller codes to make a more efficient 

quantum resistant cryptosystem.  

Let us describe how the McEliece Cryptosystem works with the Reed Muller 

codes in place of the binary Goppa codes. Let 𝐶 be a linear code with block length 𝑛 and 

dimension 𝑘 that can correct up to 𝑡 errors. Let G be the 𝑘	𝑥	𝑛 generator matrix for C. Let 

S be a 𝑘	𝑥	𝑘 nonsingular scrambler matrix. And let P be a 𝑛	𝑥	𝑛 permutation matrix.  
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Then, let Bob calculate 𝐺z = 𝑆𝐺𝑃, where 𝐺′ is the public key, and 𝑆, 𝐺, and 𝑃 are Bob’s 

private keys.  

Algorithm for encryption: 

To encrypt a message 𝑚, with length	𝑘, Alice would take her message and 

1. Calculate 𝑐z = 𝑚𝐺′. 

2. Select random 𝑛 dimensional vector 𝑒 with 𝑤𝑒𝑖𝑔ℎ𝑡(𝑒) = ⌊d − 1⌋/2. 

3. Calculate 𝑐 = 𝑐z + 𝑒	 and sends 𝑐 to Bob.  

 

Algorithm for decryption:  

Bob firsts  

1. Calculate 𝑐z = 𝑐𝑃L; = (𝑚𝐺z + 𝑒)𝑃L; = 𝑚𝑆𝐺 + +𝑒𝑃L; = 𝑚𝑆𝐺 + 𝑒′	 

2. By using a decoding algorithm for Reed Muller codes we can strip off 𝑒z and get 𝑚𝑆𝐺. 

Bob finds 𝑚𝑆 by multiplying by	𝐺L;, Bob can recover 𝑚 by multiplying by	𝑆L;. Bob 

could have written 𝐺 in standard form, [𝐼�𝐴] and 𝑚𝑆 would be the first	𝑘	positions of 

𝑚𝑆𝐺 so the multiplication of 𝐺L; would not have been needed. Bob can decrypt the 

message since he knows a decoding algorithm for Reed Muller codes. However, an 

attacker has to try to recover the structure of the code given by the public keys. (V.M. 

Sidelnikov) 
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CHAPTER 4: KNOWN ATTACKS ON MCELEICE CRYPTOSYSTEM  

 

 

There are a few main cryptanalytic techniques that are used to attack the cryptosystem to 

recover the message. The two main attacks are the message recovery attack and the key 

recovery attack. The message recovery attack is based on generic decoding algorithms. 

The Information Set Decoding, ISD, is a decoding algorithm that searches for an 

information set such that the error positions are all out of the information set. The ISDs 

uses information from the ciphertext and public key. The key recovery attack idea is to 

recover private key from public key. In order withstand these types of attacks we want 

our codes large enough, as well as, we desire that the structure of the code be hidden.  

Below is a description of the main attacks on Reed Muller codes. These techniques 

include finding small weight code words in 𝐶 that will help reveal the underlying 

structure of the key, algebraic attacks, considering the products of codewords, and others. 
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4.1 Square Code Attack 

 

 

A major concern for code-based cryptosystems is the square code.  The square 

code is an important tool because it can be used to classify between random codes and 

private codes. 

 

Definition:  Consider 𝐴  and 𝐵 are two linear codes of length 𝑛. Then 𝐴 ⋆ 𝐵, called the 

star product, is a vector space spanned by all products 𝑎 ⋆ 𝑏 = (𝑎;𝑏;, … , 𝑎%𝑏%) where 

𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. If 𝐴 = 𝐵, then 𝐴 ⋆ 𝐴 is called the square code, commonly written as 

𝐴c.  

 

The square code is composed by the component-wise products of codewords  

of the public code. The comparison of the dimension of the code versus the  

dimension of its square code is important because the square code attack relies on  

the use of random columns. It is therefore easy to identify the  

random columns by computing the square code of the code generated by the  

public matrix 𝐺. The dimension of the square of a linear code, 𝐶, is known to  

be dim(𝐶c) ≤ min{𝑛, ;
c
𝑘(𝑘 + 1)}. The dimension of a random linear code will achieve 

its upper bound with high probability. With the use of random insertion alone, it has  

been proven that the system is not secure against the square code attack.  

 



 16 
The following few propositions are crucial for Reed Muller codes because they are used 

in the square code attack to distinguish a random code from itself. 

 

Proposition: “Let r and m be two integers such that 0 ≤ 𝑟 < 𝑚.  Then the square of a 

Reed Muller code is also a reed muller code.  In fact, 𝑅𝑀(𝑟,𝑚)c = 𝑅𝑀(2𝑟,𝑚).” 

 

The proof from (Otmani, Ayoub & Talé Kalachi, Hervé) is below  
 
“Proof. Let 𝑐; = (𝑓(𝑎;), … , 𝑓(𝑎%)) and 𝑐c = (𝑔(𝑎;), … , 𝑔(𝑎%)) be elements of  

𝑅𝑀(𝑟,𝑚) with  deg 𝑓 ≤ 𝑟. and deg𝑔 ≤ 𝑟. Hence, 𝑐; ⋆ 𝑐c is the vector 

(𝑓𝑔(𝑎;), … , 𝑓𝑔(𝑎%)) which corresponds to polynomial 𝑓𝑔. This means 𝑐; ⋆ 𝑐c ∈

𝑅𝑀(2𝑟,𝑚). Conversely, each monomial 𝑥;
�e, … 𝑥G

�f with 𝑒9 ≥ 0 and ∑ 𝑒99 ≤ 2𝑟 

is the product of two polynomials of degree less than or equal to  𝑟. This proves that a 

basis of 𝑅𝑀(2𝑟,𝑚) is contained in 𝑅𝑀(𝑟,𝑚)c.” 

           ∎ 

 

Another proposition, by Ayoub Otmani & Hervé Talé Kalachi, is seen below. 

Proposition: “Let G be a 𝑘	 × (𝑛 + 𝑙) matrix obtained by inserting 𝑙 random columns in 

the generating matrix of a Reed Muller code 𝑅𝑀(𝑟,𝑚) and let 𝐶 be the code spanned by 

the rows of G.  Assume that 𝑙 ≤ H�p;c I	and ∑ HG9 I ≤ 𝑛cJ
9:K .  Then 

∑ HG9 I
cJ
9:K ≤ dim𝐶c ≤ ∑ HG9 I

cJ
9:K + 𝑙.” (Herve Tale Kalachi) 

Thus, if 𝐶 is a (𝑛 + 𝑙, 𝑘) code and 𝐷 is a (𝑛, 𝑘) code then 

dim𝐶c ≤ dim𝐷c + 𝑙 
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For Reed Muller codes, we have that the upper bound is reached.  So, we have the 
following 

dim𝐶c = dim𝐷c + 𝑙. 

Proposition: “For any 𝑖 ∈ {1, … , 𝑛}, we have the following: 

dim𝐶9c = �dim𝐶c − 1				𝑖𝑓						𝑖 ∈ 𝐼
dim𝐶c 								𝑖𝑓				𝑖 ∉ 𝐼

 

where  𝐶9 is the punctured code at index 𝑖.” (Herve Tale Kalachi) 

 

The author claims that from the prior proposition that the square code can distinguish the 

random positions of the public code if ∑ HG9 I
cJ
9:K + 𝑙 ≤ 𝑛. The set 𝐼 could be discovered 

and then we would apply the typical attacks on the Reed Muller code to recover message, 

which we will discuss next. 

 

 

 

4.2 Minder-Shokrollahi Attack 

 

 

In 1994 Sidelnikov proposed the use of Reed Muller codes for building the 

McEliece cryptosystem. However, their proposed McEliece cryptosystem was shown to 

be broken by an attack. This idea of the attack is to compute two minimum weight 

codewords that have close support.   The attack main tools are built upon the following 
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two theorems and definitions.  The following theorems and definitions come from the 

Lorenz Minder and Amin Shokrollahi in Cryptanalysis of the Sidelnikov Cryptosystem. 

Theorem: “For any integer, m, we have RM (0, m) ⊂ RM (1, m) ⊂ ··· ⊂ RM (m, 

m)”. (Lorenz Minder and Amin Shokrollahi) 

Definition: “The support of a codeword c ∈ RM (r, m) is defined as the set of 

indices 𝑖 such that 𝑐9 ≠ 	0, which is denoted supp(c)”. (Lorenz Minder and Amin 

Shokrollahi) 

Definition: “Let 𝑐 be a codeword of C and L be an index set. Then, 𝑝𝑟𝑜𝑗�(𝑐) is a 

sub-codeword which is composed of the components with indices in L from c. Also, for a 

linear code C, we define	𝑝𝑟𝑜𝑗�(𝐶) = {𝑝𝑟𝑜𝑗�(𝑐)	|𝑐 ∈ 𝐶}”. (Lorenz Minder and Amin 

Shokrollahi) 

 

For example, Let 𝑐 = [0		0		1		1		0		0		1		1	] and 𝐿 = 3, 4, 6, 7. Then,  

𝑝𝑟𝑜𝑗�(𝑐) = [1		1		0		1]. 

 

Theorem: “Let 𝑥 be a codeword with minimum weight in 𝑅𝑀(𝑟,𝑚). Then, there exists 

𝑥;, 𝑥c … , 𝑥J ∈ 𝑅𝑀(1,𝑚) such that 𝑥 = 𝑥; ⋅ 𝑥c ⋅⋅⋅ 𝑥J where 𝑥9 is a codeword with the 

minimum weight in 𝑅𝑀(1,𝑚) and 𝑥9 ⋅ 𝑥¡  denotes the component-wise multiplication.” 

(Lorenz Minder and Amin Shokrollahi)  

 

The reason the attack works is because minimum weight words in the 𝑟¢£ order 

Reed Muller code of length 2G are products of 𝑟 minimum weight words in 𝑅𝑀(1,𝑚). 
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Products of 𝑟 linearly independent first order codewords are minimum weight in 

𝑅𝑀(𝑟,𝑚).  There are 2GJLJ(JL;)  minimum weight codewords in 𝑅𝑀(1,𝑚).  

 

One of the main ideas on attacking the McEliece cryptosystems is to find the 

permutation matrix 𝑃. Let σ be any permutation on the set {1, 2, … , 𝑛}.  For any code 𝐶  

of length 𝑛, denote 𝑐¤ to be the code obtained from 𝐶 with positions permuted according 

to σ. Given the permuted scrambled Reed Muller code, 𝐶,  construct σ such that resulting 

code is also a Reed Muller code. (Lorenz Minder and Amin Shokrollahi) 

Below is an outline of the Minder-Shokrollahi attack.  

Let C=𝑅𝑀(𝑟,𝑚)¤ for some unknown σ, given by an arbitrary generator matrix.  

1. “Find codewords in 𝐶 with high probability to also belong to 𝑅𝑀(𝑟 − 1,𝑚)¤. 

Find enough of such vectors to build a basis of 𝑅𝑀(𝑟 − 1,𝑚)¤.  

2. Iterate the previous step while decreasing the value of 𝑟 until reach 𝑅𝑀(1,𝑚)¤ 

3. Find a permutation σ‘ such that 𝑅𝑀(1,𝑚)¤¤¥ = 𝑅𝑀(1,𝑚). Then σ‘ will  

be found and satisfy 𝑅𝑀(𝑟,𝑚)¤¤¥ = 𝑅𝑀(𝑟,𝑚).  

Then 𝜎z = 𝑃L;.”  (Lorenz Minder and Amin Shokrollahi) 

 

 

So, from the outline of the attack, we need to be able to find the subcode  

𝑅𝑀(𝑟 − 1,𝑚)¤ ⊂ 𝑅𝑀(𝑟,𝑚)¤, find the factors of minimum weight words, and find inner 

words in the shortened code.  
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To find the subcode, 𝑅𝑀(𝑟 − 1,𝑚)¤ ⊂ 𝑅𝑀(𝑟,𝑚)¤, we start off by finding a 

codeword for which we know is a product of other codewords, i.e minimum weight 

codewords.  From there we then split the codeword off by a factor of the word.  This is 

done by shortening the code on 𝑠𝑢𝑝𝑝(𝑥), and use the structure of the shortened word to 

find a factor of 𝑥, which is in 𝑅𝑀(𝑟 − 1,𝑚)¤. Finding enough of these words in 

𝑅𝑀(𝑟 − 1,𝑚)¤ will result in a basis of 𝑅𝑀(𝑟 − 1,𝑚)¤. (Lorenz Minder and Amin 

Shokrollahi) 

So, breaking this cryptosystem is roughly equivalent to recovering a single Reed Muller 

code.  

 

 

4.3 Borodin and Chizhov Attack 

 

 

The paper of Chizhov-Borodin discusses a new algorithm for the attack on the McEliece 

cryptosystem based on the 𝑅𝑀(𝑟,𝑚) code. The idea that Borodin and Chizhov had was 

to use two effortless calculations in order to discover the first order Reed Muller code 

given the 𝑟¢£ order Reed Muller code.  We learn that given Reed Muller code 𝑅𝑀(𝑟,𝑚) 

we can construct the square code, 𝑅𝑀(2𝑟,𝑚), and 𝑅𝑀(𝑘𝑟,𝑚), for some constant 𝑘, 

easily. They noticed that the dual code of	𝑅𝑀(𝑟,𝑚), which is 𝑅𝑀(𝑚 − 𝑟 − 1,𝑚), can 

also be constructed given 𝑅𝑀(𝑟,𝑚). Thus, we can obtain 𝑅𝑀(𝑘𝑟 + 𝑙(𝑚 − 1),𝑚). And 

finally, we can find a permutation σ‘ if 𝑔𝑐𝑑(𝑟,𝑚 − 1) = 1 such that 𝑅𝑀(𝑟,𝑚)¤¤z =

𝑅𝑀(𝑟,𝑚). If the 𝑔𝑐𝑑(𝑟,𝑚 − 1) = 1, then we can find a permutation σ‘ such that 
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𝑅𝑀(𝑟,𝑚)¤¤z = 𝑅𝑀(1,𝑚), from 𝑅𝑀(𝑟,𝑚)¤z. Otherwise, 𝑅𝑀(𝑟 − 1,𝑚) can be obtained 

by the Minder-Shokrollahi attack that we discussed in previous subsection. By iterating 

this procedure until we have 𝑔𝑐𝑑(𝑟 − 𝑘,𝑚 − 1) = 1, 𝑅𝑀(1,𝑚) can be found. Thus, it is 

a straightforward process to find the permutation σ‘, that is 𝑃L;.  

 

 

 
 

4.4 ISD Attack 
 
 

 In the McEliece encryption scheme, one of the most effective attack on the system 

involves the Information Set Decoding algorithm because the algorithm does not use any 

information about the configuration of the code.  Thus, the private code is unknown and 

to succeed with the ISD attack, the random looking code will need to be decoded with no 

information in regard to its structure. In essence, the ISD algorithm randomly examine 

codewords until a codeword of a desired weight is obtained. We want to “find a set of 

coordinates of a jumbled vector which are error-free and such that the restriction of the 

code’s generator matrix to these positions is invertible.” (Minder) The steps are as 

follows:  

1. We have an [𝑛, 𝑘] code 𝐶 with generator matrix 𝐺, and we want to find a word of 

weight at most 𝑡. So, we take the encrypted vector 𝑦 ∈ 𝐹$% which is known to have 

distance 𝑡 from 𝐶.  

2. Denote the closest codeword by	𝒄. Let 𝐼 ⊂ {1,… , 𝑛} of size 𝑘 be an information 

set. Assume that 𝑦 and 𝒄 agree on the positions indexed by 𝐼.  
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3. Multiply the encrypted vector by the inverse of the submatrix to get the original 

message.  Then, 𝑦ª𝐺ªL; is the preimage of 𝒄 and we find 𝒄 as (𝑦ª𝐺ªL;)𝐺. 

(Christiane Peters) 

 

 

We will briefly discuss the Stern’s ISD in Chapter 5.2.5.   
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CHAPTER 5: RANDOM LINEAR CODE BASE ENCRYPTION 

 

 

We have discussed the importance of designing quantum safe cryptographic 

techniques to protect our internet infrastructure in the quantum computing age and my 

advisor, Dr. Yongge Wang has designed one that works. He has developed a linear code-

based quantum safe technique RLCE (Random Linear Code based Encryption) scheme. 

The goal of this project is to develop more RLCE based cryptographic systems and 

solutions that are secure against both quantum and classical computers. My work will be 

investigating the security of RLCE-Reed Muller and give exact parameters choices for 

128, 192, and 256 bits level security. Thus, the attacks would need to 2;c«, 2;¬c and 2c® 

operations to attempt to break it. 

Now, let us define the RLCE scheme.  

 

 

5.1 RLCE Scheme 

 

 

Random Linear Code based Encryption (RLCE) Scheme is believed to be 

immune to existing attacks on linear code-based encryption schemes, and that the 

security of the encryption scheme does not depend on the structure of the linear code. 

Copied below is the protocol for the RLCE scheme by Yongge Wang. The idea of this 
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scheme is to juxtapose a linear code with a random code to obtain overall a random like 

code.  

 

Let 𝑛, 𝑘, 𝑑, 𝑡 > 0, and 𝑤 ∈ {1, 2, … , 𝑛} be parameters such that 𝑛 − 𝑘 + 1 ≥ 𝑑 ≥

2𝑡 + 1. Also let 𝐺¯ = [𝑔K, 𝑔;, … , 𝑔%L;] be a 𝑘 × 𝑛 generator matrix for an [𝑛, 𝑘, 𝑑] linear 

code, 𝐶. Let 𝑃; be a randomly chosen 𝑛 × 𝑛 permutation matrix and  

𝐺¯𝑃; = [𝑔K, 𝑔;, … , 𝑔%] .  

1. Let 𝑟K, 𝑟;, … , 𝑟°L; ∈ 𝐺𝐹(𝑞)� be column vectors drawn uniformly at random 

and let 𝐺; = [𝑔K, … , 𝑔%L°, 𝑟K, … , 𝑔%L;, 𝑟°L;] be the 𝑘 × (𝑛 + 𝑤) matrix obtained by 

inserting the column vectors 𝑟9 into 𝐺¯.  

2.Let 𝐴K = Z
𝑎K,KK 𝑎K,K;
𝑎K,;K 𝑎K,;;\ , … , 𝐴°L; = Z

𝑎°L;,KK 𝑎°L;,K;
𝑎°L;,;K 𝑎°L;,;;\ ∈ 𝐺𝐹(𝑞)

c×c 

be nonsingular 2	 × 2 matrices chosen uniformly at random and such that 

𝑎9,KK 𝑎9,K; 𝑎9,;K 𝑎9,;; ≠ 0 for all 0,… ,𝑤 − 1 and let 

 𝐴 = 𝑑𝑖𝑎𝑔[𝐼%L°, 𝐴K, … , 𝐴°L;] =

⎣
⎢
⎢
⎢
⎡
𝐼%L° 0 0 0 0
0 𝐴K 0 0 0
0 0 𝐴; 0 0
0 0 0 ⋱ 0
0 0 0 0 𝐴°L;⎦

⎥
⎥
⎥
⎤

  

be an (𝑛 + 𝑤) × (𝑛 + 𝑤) nonsingular matrix.  

3. Let 𝑆 be a random dense 𝑘 × 𝑘 nonsingular matrix and 𝑃c be an (𝑛 + 𝑤) × (𝑛 +

𝑤) permutation matrix.  

4. The public key is the 𝑘 × (𝑛 + 𝑤) matrix 𝐺 = 𝑆𝐺;𝐴𝑃c and the private key is 

(𝑆, 𝐺¯, 𝑃;, 𝑃c, 𝐴).  
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To encrypt a message, 𝑚 ∈ 𝐺𝐹(𝑞)�, we choose row vector 𝑒 ∈ 𝐺𝐹(𝑞)%p° such that 

the 𝑤𝑡(𝑒) ≤ 𝑡 and compute the cipher text 𝑐 = 𝑚𝐺 + 𝑒.  

To decrypt a received message 𝑐 = [𝑐K, … , 𝑐%p°L;], calculate 𝑐𝑃cL;𝐴L; = 𝑚𝑆𝐺; +

𝑒𝑃cL;𝐴L; = [𝑐Kz , … , 𝑐%p°L;z ]. 

 

Let 𝑐z = [𝑐Kz , … , 𝑐%L°z , 𝑐%L°pcz , 𝑐%L°p³z , … , 𝑐%p°Lcz ] be the row vector of  

length 𝑛 selected from the length 𝑛 + 𝑤 row vector 𝑐𝑃cL;𝐴L;. Then 𝑐z𝑃;L; = 𝑚𝑆𝐺¯ + 𝑒z 

for some error vector 𝑒z ∈ 𝐺𝐹(𝑞)% where its weight is at most 𝑡. Using the efficient 

decoding algorithm, one can compute 𝑚𝑆𝐺¯ from 𝑐z𝑃L;.  Let 𝐷 be a 𝑘	 × 𝑘 inverse 

matrix of 𝑆𝐺¯z, where 𝐺¯z is the first 𝑘 columns of 𝐺¯.  Then, 𝑚 = 𝑐;𝐷, where 𝑐; is the 

first 𝑘 elements of 𝑚𝑆𝐺¯. Finally, calculate the weight 𝑒 = 𝑤𝑡(𝑐 − 𝑚𝐺). If 𝑤𝑡(𝑒) ≤ 𝑡, 

then output 𝑚 as the decrypted plaintext. Otherwise, output error. (Wang) 

 

5.2 RLCE-Reed Muller 

 

 

Now, I will describe how to apply the RLCE scheme to Reed Muller codes. We 

will see that the steps are the same, just with Reed Muller generator matrix included. Let 

𝑛, 𝑘, 𝑑, 𝑡 > 0, and 𝑤 ∈ {1, 2, … , 𝑛} be parameters such that 𝑛 − 𝑘 + 1 ≥ 𝑑 ≥ 2𝑡 + 1. 

Also let 𝐺¯ = [𝑔K, 𝑔;, … , 𝑔%L;] be a 𝑘 × 𝑛 generator matrix for the [2G, ∑ HG9 I
J
9:K , 2GLJ] 

Reed Muller linear code, 𝐶. Let 𝑃; be a randomly chosen 𝑛 × 𝑛 permutation matrix and 

𝐺¯𝑃; = [𝑔K, 𝑔;, … , 𝑔%] .  
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1. Let 𝑟K, 𝑟;, … , 𝑟°L; ∈ 𝐺𝐹(𝑞)� be column vectors drawn uniformly at random 

and let 𝐺; = [𝑔K, … , 𝑔%L°, 𝑟K, … , 𝑔%L;, 𝑟°L;] be the 𝑘 × (𝑛 + 𝑤) matrix obtained by 

inserting the column vectors 𝑟9 into 𝐺¯.  

2. Let 𝐴K = Z
𝑎K,KK 𝑎K,K;
𝑎K,;K 𝑎K,;;\ , … , 𝐴°L; = Z

𝑎°L;,KK 𝑎°L;,K;
𝑎°L;,;K 𝑎°L;,;;\ ∈ 𝐺𝐹(𝑞)

c×c 

be nonsingular 2	 × 2 matrices chosen uniformly at random and such that 

𝑎9,KK 𝑎9,K; 𝑎9,;K 𝑎9,;; ≠ 0 for all 0,… ,𝑤 − 1 and let  

𝐴 = 𝑑𝑖𝑎𝑔[𝐼%L°, 𝐴K, … , 𝐴°L;] =

⎣
⎢
⎢
⎢
⎡
𝐼%L° 0 0 0 0
0 𝐴K 0 0 0
0 0 𝐴; 0 0
0 0 0 ⋱ 0
0 0 0 0 𝐴°L;⎦

⎥
⎥
⎥
⎤

  

be an (𝑛 + 𝑤) × (𝑛 + 𝑤) nonsingular matrix.  

3. Let 𝑆 be a random dense 𝑘 × 𝑘 nonsingular matrix and 𝑃c be an (𝑛 + 𝑤) × (𝑛 +

𝑤) permutation matrix.  

4. The public key is the 𝑘 × (𝑛 + 𝑤) matrix 𝐺 = 𝑆𝐺;𝐴𝑃c and the private key is 

(𝑆, 𝐺¯, 𝑃;, 𝑃c, 𝐴).  

To encrypt a message, 𝑚 ∈ 𝐺𝐹(𝑞)�, we choose row vector 𝑒 ∈ 𝐺𝐹(𝑞)%p° such that 

the 𝑤𝑡(𝑒) ≤ 𝑡 and compute the cipher text 𝑐 = 𝑚𝐺 + 𝑒.  

To decrypt a received message 𝑐 = [𝑐K, … , 𝑐%p°L;], calculate 𝑐𝑃cL;𝐴L; = 𝑚𝑆𝐺; +

𝑒𝑃cL;𝐴L; = [𝑐Kz , … , 𝑐%p°L;z ]. 

 

Let 𝑐z = [𝑐Kz , … , 𝑐%L°z , 𝑐%L°pcz , 𝑐%L°p³z , … , 𝑐%p°Lcz ] be the row vector of  

length 𝑛 selected from the length 𝑛 + 𝑤 row vector 𝑐𝑃cL;𝐴L;. Then 𝑐z𝑃;L; = 𝑚𝑆𝐺¯ + 𝑒z 
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for some error vector 𝑒z ∈ 𝐺𝐹(𝑞)% where its weight is at most 𝑡. Using the efficient 

decoding algorithm, one can compute 𝑚𝑆𝐺¯ from 𝑐z𝑃L;.  Let 𝐷 be a 𝑘	 × 𝑘 inverse 

matrix of 𝑆𝐺¯z, where 𝐺¯z is the first 𝑘 columns of 𝐺¯.  Then, 𝑚 = 𝑐;𝐷, where 𝑐; is the 

first 𝑘 elements of 𝑚𝑆𝐺¯. Finally, calculate the weight 𝑒 = 𝑤𝑡(𝑐 − 𝑚𝐺). If 𝑤𝑡(𝑒) ≤ 𝑡, 

then output 𝑚 as the decrypted plaintext. Otherwise, output error. (Wang) 

 

The security of this codes-based cryptosystems depends on the difficulty of the 

following attacks. There are two different ways to find the original system: find the 

random matrix directly or distinguish the added random columns from the others. I used 

maple, a mathematical software, to compute the value for 𝑤	, such that H%p°° I > 2�´, where 

the value of 𝑘µ = {128, 192, 256}. Also, my value for 𝑤 is always such that 𝑤 ≱ 𝑛 − 𝑘.  

I used the smallest value for 𝑤 for which securely satisfied all the below attacks.   

 

   

5.2.1 SQUARE CODE ATTACK 

 

 

We have seen above that the square code of a Reed Muller code, 𝑅𝑀(𝑟,𝑚)c, is 

𝑅𝑀(2𝑟,𝑚). Thus, we have that the dimension of the square code to be 𝑘 = ∑ HG9 I
cJ
9:K .  

 

Let us now consider the new generator matrix 𝐺 that now has 𝑤 randomly inserted 

columns with 𝐶 being the code spanned by the rows of 𝐺. To withstand the square code 
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attack, we validate that the dimensions of the square code is satisfied by the below 

inequality. 

 

º»
𝑚
𝑖 ¼

cJ

9:K

≤ 𝐷𝑖𝑚𝐶c ≤ min ½𝑛 + 𝑤,º»
𝑚
𝑖 ¼

cJ

9:K

+ 𝑤¾ 

 

To show this, let 𝐺 be the public key for an (𝑛, 𝑘, 𝑑, 𝑡, 𝑤) RLCE encryption scheme 

based on a Reed Muller code. Let 𝐶 be the code generated by the rows of 𝐺. Let 𝐷; be the code 

with a generator matrix 𝐺; obtained from 𝐺 by replacing the randomized 𝑤 columns with all-zero 

columns and let 𝐷c be the code with a generator matrix 𝐺c  obtained from 𝐺 by replacing the 𝑛 

non-randomized columns with zero columns. Note that 𝐺 = 𝐺; + 𝐺c.  Thus, we have that  

 𝐶 ⊂ 𝐷; + 𝐷c.  Since 𝐷; ⋆ 𝐷c = 0, combined with the previous sentence, we learn that 𝐶c ⊆

𝐷;c + 𝐷cc.  

For the parameters that we use, we have 2𝑟 > 𝑚 and n + w ≤dim𝑅𝑀(2𝑟,𝑚) +

𝑤. In this case, the dimension of the square code reaches the maximum since the RLCE 

behaves like random linear codes, we therefore have dim𝐶c = 𝐷;c + 𝐷cc = 𝑛 + 𝐷cc =

𝑛 + 𝑤.   Note that dim𝐷;c = dim𝑅𝑀(2𝑟,𝑚) and dim𝐷cc = min{𝑤, H�cI} = 𝑤.  Thus, 

square code attack will not identify the randomized columns. If the attack were able to be 

successful, then the attacker would need to employ one of the following additional 

attacks like the Minder Shokrollahi to recover message. 
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5.2.2 MINDER SHOKROLLAHI ATTACK 

 

 

For the Minder Shokrollahi attack, the basis of the attack and the costliest is based on 

the ability to find low weight codewords. For linear codes, finding low weight words is 

generally hard.  My goal was to limit the ability to find low weight codewords. Their 

paper suggests for their attack having low rate codes, i.e., for Reed Muller codes, 

𝑅𝑀(𝑟,𝑚), we have that 𝑟 < G
c

.  So, if I choose high rate codes such that 𝑟 ≥ G
c

, it will be 

harder to successfully attack the system.  In the first proposal of Sidelnikov scheme, 𝑟 is 

proposed to be small number, thus having a low rate. It was mentioned that, “It is worth 

noting that the attack of Minder and Shokrollahi becomes infeasible in the high-rate case 

where r is large, due to the difficulty of finding minimum-weight codewords” (Hang 

Dinh et al). Couple that with the probability that a word of weight 𝑡 shows up as a row in 

the diagonalized matrix is  
»Áe¼»

ÂÃÄgÁ
Åge ¼

HÂÃÄÅ I
 . (Minder) 	With our suggested values of 𝑘 being 

large in comparison to 𝑛 then we have that this probability of finding the low weight code 

words is negligible. (Minder L., Shokrollahi A).  
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5.2.3 BORODIN CHIZHOV ATTACK 

 

 

The Borodin Chizhov attack is similar to the Minder Shokrollahi attack in that 

given a Reed Muller code 𝑅𝑀(𝑟,𝑚), the attacker could retrieve 𝑅𝑀(1,𝑚), by using 

square code, dual code and greatest common divisor. However, as we seen above, the 

Minder Shokrollahi and the Borodin Chizhov attack relies on finding minimum weight 

codewords.  We saw that the probability of doing so was negligible.   Also, the attack that 

Borodin and Chizhov recommend uses the property that the dual of a Reed Muller code is 

a Reed Muller code. However, the dual of the RLCE-RM code is not necessarily a Reed 

Muller code due to the randomness property that the RLCE scheme employs. Thus, this 

attack is not applicable.  
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5.2.4 ALAIN SHORT KEY ATTACK 

 

 

Alain Couvreur developed a key recovery attack on the RLCE scheme based on 

the Generalized Reed Solomon codes. The attack on this cryptosystem is successful for 

only certain amounts of the added columns, 𝑤. We explore whether this attack can be 

successfully applied to the Reed Muller RLCE system. Recall the definition of the square 

code,  

Definition:  Consider 𝐴  and 𝐵 are two linear codes of length 𝑛. Then 𝐴 ⋆ 𝐵, called the 

star product, is a vector space spanned by all products 𝑎 ⋆ 𝑏 = (𝑎;𝑏;, … , 𝑎%𝑏%) where 

𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. If 𝐴 = 𝐵, then 𝐴 ⋆ 𝐴 is called the square code, commonly written as 

𝐴c.  

 

The dimension of the square code, 𝐶c, with 𝐶 being a random code of length 𝑛 and 

dimension 𝑘 is 

dim 	 𝐶c = minÆÇ
𝑘 + 1
2 È , 𝑛É = minÊ

𝑘(𝑘 + 1)
2 , 𝑛Ë. 

Whereas, the dimension of the square code of the GRS code is dim 	 𝐶c = 2𝑘 − 1. The 

square code distinguisher works if the dim 	 𝐶c < 𝑛		or if dim𝐶c < �(�p;)
c

. 

We also define the following two words, puncturing and shortening, which are some 

traditional ways to obtain some new codes from existing ones. These two methods are 
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techniques to use the square code as a distinguisher of a random code and a non-

randomized code.  For 𝑐 ∈ 𝐹$%, 

 

Definition:  Let 𝐶 ⊆ 𝐹$% and 𝐿 ⊆ [1, 𝑛].	The puncturing of 𝐶 at 𝐿 is the code  

𝑃�(𝐶) = /(𝑐9)9∈[;,%]\�	𝑠. 𝑡. 𝑐 ∈ 𝐶Í. 

 

We puncture 𝐶 by deleting the coordinates represented in 𝐿 for all codewords of 𝐶. The 

resultant code is called the punctured code of 𝐶. The generator matrix of  𝑃�(𝐶)is 

obtained from the generator matrix of 𝐶 by deleting the columns in 𝐿. 

 

Definition:  Let 𝐶 ⊆ 𝐹$% and 𝐿 ⊆ [1, 𝑛].	The shortening of 𝐶 at 𝐿 is the code  

𝑆�(𝐶) = 𝑃�{	𝑐 ∈ 𝐶	𝑠. 𝑡. ∀𝑖 ∈ 𝐿, 𝑐9 = 0}. 

 (Alain Couvreur, et al.) 

 

Let 𝐶 be a linear code and consider the set of coordinates 𝐿 of 𝑖 elements and select all 

the codewords of 𝐶 that have 0 in the coordinates of	𝐿, this set is a subcode of 𝐶. 

Puncturing the subcode on 𝐿 will produce the shortened code 𝑆�(𝐶), where |𝑆�(𝐶)| =

𝑛 − 𝑖.  (Mohamed Saeed Taha) 
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Example: 

Let G be a generator matrix such that  𝐺 = Î

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

Ï 

Let 𝐿 = {5, 6}.  Then the generator matrix for 𝑃�(𝐶) is Î

1 1 1 1 1 1
0 0 0 0 1 1
0 0 1 1 1 1
0 1 0 1 0 1

Ï 

 

The 𝑆�(𝐶) = {001111, 111100, 110011, 101001}. 

 

The author found that they can distinguish some random codes from the GRS 

code by computing the square code of a shortened code.  For this attack to work, the 

author wants that the square of the shortenings of the code do not behave as random 

codes. The nature of a GRS code allows for its positions {1, … , 𝑛 + 𝑤} to be split into 

four separate categories. 

 

Definition: “The set of twin positions corresponds to columns that result in a mix of a 

random column and a GRS one.” (Alain Couvreur) 

 

The outline of this attack is as follows. 

1. “Choose the value of 𝐿. 

2. Shorten on 𝐿	positions.  Identify pairs of twin positions and repeat. 

3. Puncture the twin positions to get a GRS code and apply the Sidelnikov 

Shestakov attack. 
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4. For each pair of twin positions, recover the mixing matrix, by de-

randomization. 

5. Finish to recover the structure of the GRS code.” (Alain Couvreur) 

 

   

The formula that the author Alain Couvreur uses in his “Recovering Short Secret Keys of 

RLCE in Polynomial Time”, for his distinguisher attack is the following:  

dimH𝑆�(𝐶)I
∗c < Ç

𝑘 + 1 − |𝐿|
2 È 

and 

dim(𝑆�(𝐶))∗c < n + w − |L |. 

Then inserting the Reed Muller code information, we have that,  

dim(𝑆�(𝐶))∗c =min Æº»
𝑚
𝑖 ¼

cJ

9:K

+ 𝑤 − |𝐿|, 𝑛 + 𝑤 − |𝐿|É < Ç
𝑘 + 1 − |𝐿|

2 È 

and  

dim(𝑆�(𝐶))∗c =minÆº»
𝑚
𝑖 ¼

cJ

9:K

+ 𝑤 − |𝐿|, 𝑛 + 𝑤 − |𝐿|É < 𝑛 + 𝑤 − |𝐿|. 

 

We choose our parameters such that we have 

n + w ≤dim𝑅𝑀(2𝑟,𝑚) + 𝑤. 

Thus, 

dim(𝑆�(𝐶))∗c =𝑛 + 𝑤 − |𝐿|. 
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Moreover, we see that for our Reed Muller code 𝐶 of length 𝑛, methods of puncturing 

and shortening result in a code 𝐶′ with length 𝑛′ where we have that the dim𝐶zc =𝑛′.    

Hence, for this attack, the author says that  

“For this distinguisher to work we need to shorten the code enough so that its square does not 
fill in the ambient space, but not too much since the square of the shortened code should have 
a dimension strictly less than the typical dimension of the square of a random code “ (Alain 
Couvreur) 

 
But since the square of the Dimension of the shortened/punctured code fills the space, 

this attack will not work. 

 

 

 

5.2.5 ISD ATTACK 

 

In this nonstructural ISD attack, we use Sterns algorithm, that attempts to solve 

the problem of finding low weights codewords.  

 

Although there are many variations of the ISD algorithm, most modern and 

optimal ISD algorithms use or rely on Stern’s algorithm. The basis of Stern’s algorithm 

uses the following two parameters, 	p and 𝑙, such that 0 ≤ 𝑝 ≤ 𝑡 and 0 ≤ 𝑙 ≤ 𝑛 − 𝑘. Let 

𝐼 ⊂ {1,… , 𝑛}, an information set of size 𝑘.  “Stern’s algorithm divides the information set 

𝐼 into two equal-size subsets X and Y and looks for words having exactly weight p among 

the columns indexed by X, exactly weight 𝑝 among the columns indexed by 𝑌, and 

exactly weight 0 on a fixed uniform random set of 𝑙 positions outside the 𝐼-indexed 

columns.” (Christiane Peters) In every iteration round, an information set 𝐼 is selected.  
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We omit some details and just take the result, refer to RLCE Key Encapsulation 
Mechanism paper for more information. 

 
The success probability of one iteration of the algorithm for the Reed Muller RLCE code 

is  

»%p°L¢�
cÕ LÖ ¼ »

¢
Ö¼ Ç

%p°L¢L� cÕ LÖ
�
cÕ LÖ

È »¢LÖÖ ¼ H
%p°L�L¢pcÖ)

× I

»%p°�
cÕ
¼ Ç%p°L

�
cÕ

�
cÕ

È H%p°L�× I
. 

Thus, for this ISD with the Reed Muller RLCE added columns we have the average 

number of iterations of Stern’s algorithm, which is the multiplicative inverse of the 

success probability of the first round, is the following 

    𝑆ª =
Ê
ÂÃÄ
Á
Ø
ËÆ

ÂÃÄgÁØ
Á
Ø

É»ÂÃÄgÁÙ ¼

Ê
ÂÃÄgÅ
Á
ØgÚ

Ë»ÅÚ¼Æ
ÂÃÄgÅgÁØgÚ

Á
ØgÚ

É»ÅgÚÚ ¼»ÂÃÄgÁgÅÃØÚÙ ¼

; 

𝑤ℎ𝑒𝑟𝑒	𝑛 = 2G	𝑎𝑛𝑑	𝑡 = (2GLJ)	𝑎𝑛𝑑	𝑘 = ∑ HG9 I
J
9:K , 𝑤𝑖𝑡ℎ	𝑝 = 1	𝑎𝑛𝑑	𝑙 = 3	.  

(J. Stern.) 

Therefore, we have the following formula to compute the strengths for Stern’s ISD 
attack. 

𝜅µ = logc(𝑆ª

⎝

⎜
⎛
(2𝑛 + 2𝑤 − 𝑘)𝑘c + 2𝑙 â

𝑘
2
𝑝ã

(𝑞 − 1)Ö(𝑘 + 1)

+ (𝑛 − 𝑘 − 𝑙)(𝑘 + 1)(𝑞 − 1)cÖL× â
𝑘
2
𝑝ã

c

	

⎠

⎟
⎞
) 
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where,  (2𝑛 + 2𝑤 − 𝑘)𝑘c + 2𝑙 Ç
Á
Ø
ÖÈ (𝑞 − 1)

Ö(𝑘 + 1) + (𝑛 − 𝑘 − 𝑙)(𝑘 + 1)(𝑞 −

1)cÖL× Ç
Á
Ø
ÖÈ

c
 represents the number of operations needed per iteration for various steps 

𝑤𝑖𝑡ℎ	𝑝 = 1	𝑎𝑛𝑑	𝑙 = 3. (Wang) 

 

 

We omit many details and refer reader to read Coding theory and applications, we 

just simply take the result.  For the quantum version of Stern’s ISD algorithm, the 

Grover’s algorithm could be used to reduce the iteration steps to the square root of 𝑆ª . 

Grover’s algorithm is the fastest searching quantum algorithm. In the worse-case 

scenario, the Grover algorithm would only need to compute in comparison to classical 

ISD, the square root iterations.  Thus, we have  

𝜅$ = logc(√𝑆ª Æ(2𝑛 + 2𝑤 − 𝑘)𝑘c + 2𝑙 Ç
Á
Ø
ÖÈ (𝑞 − 1)

Ö(𝑘 + 1) + (𝑛 − 𝑘 − 𝑙)(𝑘 +

1)(𝑞 − 1)cÖL× Ç
Á
Ø
ÖÈ

c
	É) 𝑤𝑖𝑡ℎ	𝑝 = 1	𝑎𝑛𝑑	𝑙 = 3. (Wang) 
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5.3 PARAMETERS FOR RLCE REED MULLER 

 

Thus, for the above tactics to defeat the attack I recommend the following: 
 

For 128 bits security, I recommend 𝑅𝑀(7, 13), and 𝑤 = 13. 
 
For 192 bits security, I recommend 𝑅𝑀(7, 14) and 𝑤 = 18. 
 
For 256 bits security, I recommend 𝑅𝑀(9, 16)	 and 𝑤 = 21. 

 

For example, the RLCE scheme with Reed Muller codes in Table 1 has 128 bits security 
strength under ISD attacks and 90-bits security strength under quantum ISD attacks.  
 

 

Table 1. Set of parameters for Reed Muller RLCE scheme 

𝜅µ 𝜅$ [𝑛, 𝑘, 𝑡] 𝑤 𝑃𝜅 in bytes 
128 90 [2;o, 5812	,64] 13 216133 
192 121 [2;³, 9908	,128] 18 1002565 
256 178 [2;®, 50643	,128] 21 11784784 

 
 
 
 
 
 

Table 2: Public -Key size comparison (in bytes) 
 

𝜅 RM-RLCE Polar-RLCE GRS-RLCE Classic-
McEliece  

128 216133 97530 188001 255000 
192 1002565 256080 450761 511880 
256 11784784 379220 1232001 1326000 
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SECTION 6: CONCLUSION 

 

 

We know that post quantum cryptology is an important security priority.  In this 

dissertation, we study Reed Muller Codes in the Random Linear Code-Based Encryption 

scheme.  Although previous Reed Muller codes based on the McEliece cryptosystem 

have been proven to be vulnerable to the attacks of Minder-Shokrollahi and Borodin-

Chizhov and so forth, to our knowledge, this RLCE scheme allows us to prevent all 

previously known effective attack against it using the Reed Muller codes. Adding 

additional columns makes for longer codes but does not pose a problem for the success of 

the cryptosystem. We suggest parameters that optimize security strengths for bit levels 

128, 192, and 256.  Thus, Reed Muller codes proves to be a suitable contender for post 

quantum cryptology.   
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APPENDIX: MAPLE CODE 
 
Maple Code for Square Code Attack for security bit levels 128, 192, 256 
 

 

(1)(1)

(2)(2)

(3)(3)

(4)(4)

(3)(3)

(3)(3)

Square code for 128

m 13; r 7; w 13;
m 13

r 7

w 13

n 2m;  k sum
m
i , i = 0 ..9 ; t 2m r ; filtrationpa sum

m
i , i = 0 ..2  r ;

 minDim1 n w; minDim2  w sum
m
i , i = 0 ..2  r ;

n 8192

k 7814

t 64

filtrationpa 8192

minDim1 8205

minDim2 8205

Square code for 192

m 14; r 7; w 18;
m 14

r 7

w 18

n 2m;  k sum
m
i , i = 0 ..9 ; t 2m r ; filtrationpa sum

m
i , i = 0 ..2  r ;

 minDim1 n w; minDim2  w sum
m
i , i = 0 ..2  r ;

n 16384

k 14913

t 128

filtrationpa 16384

minDim1 16402

minDim2 16402
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Maple code for Minder – Shokrollahi’s Attack for security bit levels 128, 192, 256 
 

 

(3)(3)

(6)(6)

(4)(4)

(5)(5)

(2)(2)

(1)(1)

MS attack for 128

need 

r
m
2

;

 7
13
2

m
2

r

13
2

7

prob of finding a single word of min weight t  

213 7

64

1
64

213 13

5812
: evalf % ;

1.715427165 10 20

THE PROBABILITY THAT A FIXED WORD OF WEIGHT T SHOWS UP AS A ROW IN THE 
DIAGONALISED MATRIX IS 

5812
1

213 16 5812
63

213

64

: evalf %

5.905503102 10 33

5.905503102 10 33 249

3.324502696 10 18

MS attack for 192

7
14
2

7 7

prob of finding a single word of min weight t  

214 7



 46 

 
 



 47 

 
 
 
  



 48 
Maple code for ISD attack for security bit level 128 
 

 
 

(6)(6)

(1)(1)

(5)(5)

(4)(4)

(2)(2)

(3)(3)

2128

340282366920938463463374607431768211456
w 13

w 13

213 w
w ;

121509607796376926869726468338094338151425
ReedMuller ISD for kc=128

m 13; r 7; w 13;
m 13

r 7

w 13

n 2m; k sum
m
i , i = 0 ..r ; t 2m r ; evalf % ; n m; n k

n 8192

k 5812

t 64

64.

106496

2380
l 3; p 1;

l 3

p 1

c log2
n w !

k
2

! n w
k
2

!

n w
k
2

!

k
2

! n w k !

n w k
l

n w t !
k
2

p ! n w t
k
2

p !

t
p

n w t
k
2

p !

k
2

p ! n w t k !

t p
p

n w t k 2 p
l 2 n 2 w k k2 2

k
2
p q 1 pl k 1
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Maple code for ISD attack for security bit level 192 
 

 
 

(6)(6)

(3)(3)

(1)(1)

(2)(2)

(4)(4)

(5)(5)

2192

6277101735386680763835789423207666416102355444464034512896
w 18

w 18

214 w
w ;

1142217786244604289353595911474955393279637248783111648717825

ReedMuller ISD for kc=192

m 14; r 7; w 18;
m 14

r 7

w 18

n 2m; k sum
m
i , i = 0 ..r ; t 2m r ; evalf % ; n m; n k

n 16384

k 9908

t 128

128.

229376

6476
l 3; p 1;

l 3

p 1

c log2
n w !

k
2

! n w
k
2

!

n w
k
2

!

k
2

! n w k !

n w k
l

n w t !
k
2

p ! n w t
k
2

p !

t
p

n w t
k
2

p !

k
2

p ! n w t k !

t p
p

n w t k 2 p
l 2 n 2 w k k2 2

k
2
p q 1 pl k 1
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Maple code for ISD attack for security bit level 256 
 

 

(4)(4)

(6)(6)

(2)(2)

(1)(1)

(3)(3)

(5)(5)

2256

115792089237316195423570985008687907853269984665640564039457584007913129639936
w 21

w 21

216 w
w ;

274957301412552679303179833194479108067671747069179196545912514622547973476056\
6785

ReedMuller ISD for kc=256

m 16; r 9; w 21;
m 16

r 9

w 21

n 2m; k sum
m
i , i = 0 ..r ; t 2m r ; evalf % ; n m; n k

n 65536

k 50643

t 128

128.

1048576

14893
l 3; p 1;

l 3

p 1

c log2
n w !

k
2

! n w
k
2

!

n w
k
2

!

k
2

! n w k !

n w k
l

n w t !
k
2

p ! n w t
k
2

p !

t
p

n w t
k
2

p !

k
2

p ! n w t k !

t p
p
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