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Abstract

We derive the Simon-Wolff localization criterion from the spectral averaging using an intuitive
measure theoretic lemma.

1 Introduction

Let A be a cyclic self-adjoint operator in a (separable) Hilbert space H , ϕ (‖ϕ‖ = 1) its cyclic vector, and
P = Pϕ the orthogonal projection onto the one-dimensional subspace Cϕ (Pz = (z, ϕ)ϕ for all z ∈ H).
Define the operator family At by

At = A+ tP, t ∈ R.

Denote by µϕA(dλ) the spectral measure of the vector ϕ for A (see [RS]).

The celebrated Simon-Wolff theorem says [SW]:
Theorem 1 Let ∆ be a Borel subset of R. The operator At has only pure point spectrum on ∆ for
Lebesgue a.e. t ∈ R if and only if∫

R

µϕA(dλ)

(λ− E)2
<∞ for Lebesgue a.e. E ∈ ∆. (1)

This theorem plays a fundamental role in localization theory (for some of its applications see [SW],
[CL], [PF]). Several proofs of this theorem and its generalizations are known [SW], [H], [CHM], [P],
[S]. The proof in [S] is particulary short, but it uses the so called Aronszajn-Donoghue theory [Ar], [D]
formulated in terms of boundary values of a certain analytic function. The goal of the present work is to
give an intuitively clear proof the Simon-Wolff theorem which does not mention analytic functions at all.
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The remaining part of the paper is organized as follows. Section 2 contains several simple auxiliary
statements. The Simon-Wolff theorem is proved in Section 3. The proof uses a lemma that may be
interesting in its own right. The proof of the lemma is contained in the last section.

2 A different formulation of the Simon-Wolff theorem and a defini-
tion of the function τ

Throughout the paper we will use the following notations

I(E) :=

∫
R

µ(dλ)

(λ− E)2
and J(E) :=

∫
R

µ(dλ)

λ− E
,

where µ = µϕA is the spectral measure of ϕ for A. Let also

S := {E ∈ ∆ | I(E) <∞} . (2)

The Simon-Wolff theorem states that

At has only pure point spectrum in ∆ for a.e. t ∈ R iff |∆| = |S|.

In this statement, we are going to replace S by the set

D := {E ∈ ∆
∣∣ ∃ t ∈ R for which E ∈ σp(At)}, (3)

where σp(At) denotes the set of eigenvalues of the operator At.

Proposition 1 The integral J(E) is well-defined for any E ∈ S. If

E ∈ S and J(E) 6= 0, (4)

then E ∈ D. Any point of D \ S is an eigenvalue of A.

Proof. The Spectral Theorem (see [RS]) states that, for a cyclic self-adjoint operator A and its

normalized cyclic vector ϕ, there exists a unitary operator U : H → L2(R, µ) such that A = U−1MλU

and Uϕ = 1. Here 1(λ) ≡ 1 and Mλ is the operator of multiplication by the identity function m(λ) ≡ λ

in L2(R, µ).

If, for some E,
I(E) <∞,

then the function z(λ) = (λ − E)−1 belongs to L2(R, µ). Hence the equation (λ − E)z(λ) = 1 has a
solution in L2(R, µ); equivalently, the equation

(A− E)z = ϕ (5)

has a solution in H . Observe now that (z, ϕ) = J(E). Therefore, if J(E) 6= 0, then we can rewrite the
equation (5) as Az − ϕ = Ez, or Az − 1

(z,ϕ)
(z, ϕ)ϕ = Ez. Since (z, ϕ)ϕ = Pz, the previous equation

means that
Atz = Ez, (6)
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where t = −1/J(E). Therefore, conditions (4) imply that E ∈ D.

Let now E ∈ D \ S. According to the definition of the set D, there is a number t ∈ R such that the
equation

(A− E)z = −tPz (7)

has a non-trivial solution z ∈ H . Obviously, −tPz = −t(z, ϕ)ϕ is a vector of the form cϕ.

Let us show that c = 0. For that purpose, assume the opposite, i.e. that c 6= 0. In this case, (7) can be
re-written in the equivalent form

(λ− E)z(λ) = c1,

where z(λ) := Uz. Hence, z(λ) = c/(λ− E), which tells us that

|c|2
∫
R

µ(dλ)

(λ− E)2
= ||z||2 <∞.

Therefore, if c 6= 0, then E ∈ S, which contradicts our assumptions. Thus, c = 0 and the right hand side
of (7) is zero, which means that E is an eigenvalue of A. �

Corollary 1 Let S and D be the sets defined in (2) and (3). Then

S \D = Z ∩∆, (8)

where
Z := {E ∈ R | I(E) <∞ and J(E) = 0}. (9)

Proof. It follows from Proposition 1 that

S \D ⊂ Z ∩∆.

It remains to prove that if E ∈ S and J(E) = 0, then E /∈ D. Assume the opposite, i.e. that E ∈ S ∩D
and J(E) = 0. Since a point of the set S can not be an atom of the measure µ, we conclude that E is not
an eigenvalue of the operator A. We also conclude from the relation E ∈ D, that there is a number t 6= 0

and a non-zero vector z ∈ H , obeying the condition

Atz = Ez. (10)

Observe that tPz can not be zero, otherwise, (10) would mean that E is an eigenvalue of A. So,

−tPz = cϕ, with c 6= 0. (11)

Therefore, (10) and (11) imply that the function z(λ) = Uz coincides with c/(λ− E), because

(λ− E)z(λ) = c1.

In this case, (z, ϕ) = cJ(E) = 0. Consequently, Pz = 0, which contradicts (11). �

Proposition 2 The set Z is countable.
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Proof. Proposition 2 follows from the observation that if E ′, E ∈ Z are distinct, then the two

functions 1/(λ− E ′) and 1/(λ− E) are orthogonal to each other in the separable space L2(R, µ):

(E − E ′)
∫
R

µ(dλ)

(λ− E)(λ− E ′)
=

∫
R

µ(dλ)

(λ− E ′)
−
∫
R

µ(dλ)

(λ− E)
= 0.

The statement of Proposition 2 follows also from Proposition 8 stating the fact that Z coincides with the
set of eigenvalues of a selfadjoint operator A∞ acting in the orthogonal compliment to the vector ϕ. A
description of this operator is given in the Appendix of the present paper and in Section I.5 of [S]. �

According to our observations, S \ D = Z ∩ ∆ is countable. We also see that D \ S = σp(A) ∩ ∆

is countable as well. Therefore, |D| = |S| and the Simon-Wolff theorem is equivalent to the following
statement:

The spectrum of At is pure point in ∆ for a.e. t ∈ R iff |∆| = |D|.

Lemma 1 [D] If Aty = Ey and y 6= 0, then (y, ϕ) 6= 0.

Proof [D]. Assume the converse. Then Py = 0, hence Ay = Ey. Since y is cyclic for A, the linear span
of the vectors (A− λ)−1ϕ (λ ∈ C \ R) is dense in H . But

(y, (A− λ)−1ϕ) = ((A− λ̄)−1y, ϕ) = (E − λ̄)−1(y, ϕ) = 0,

and the above linear span cannot be dense, which is a contradiction.

Consequently, we can normalize eigenvectors y of the operators At by

(y, ϕ) = 1. (12)

In what follows, we always assume that eigenvectors are normalized according to (12).

Lemma 2 If At1y1 = E1y1, At2y2 = E2y2, and (y1, ϕ) = (y2, ϕ) = 1, then

t1 − t2 = (E1 − E2)(y1, y2). (13)

Proof.
(At1y1, y2)− (y1, At2y2) = (E1y1, y2)− (y1, E2y2) = (E1 − E2)(y1, y2).

On the other hand,

((A+ t1P )y1, y2)− (y1, (A+ t2P )y2) = t1(Py1, y2)− t2(y1, Py2)

= t1((y1, ϕ)ϕ, y2)− t2(y1, (y2, ϕ)ϕ) = t1(y1, ϕ)(ϕ, y2)− t2(y2, ϕ)(y1, ϕ) = t1 − t2.

�

Now, we define the function τ on the set D as follows:

Definition. For any E ∈ D the value τ(E) equals the number t ∈ R for which E ∈ σp(At). According to
(13) this t is uniquely defined.
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Note that Proposition 1 tells us that τ vanishes on D \S, because all points of D \S are eigenvalues of
A. Observe also that the multiplicity of any eigenvalue E of At is 1. If it was larger than 1, then one would
be able to find an eigenvector orthogonal to ϕ. Thus, for each E ∈ D, there is a unique vector yE ∈ H ,
such that (yE, ϕ) = 1 and Aτ(E)yE = EyE. The equation (13) can be now written in the form

τ(E1)− τ(E2) = (E1 − E2)(yE1 , yE2) for all E1, E2 ∈ D. (14)

3 The proof of Theorem 1

To prove the Simon-Wolff theorem, we use the following lemma.

Lemma 3 Let X be a Borel set in R and τ : X → R be a function such that for any non-isolated point
E ∈ X there exists a finite non-zero limit

τ ∗(E) := lim
X3E′→E

τ(E ′)− τ(E)

E ′ − E
6= 0. (15)

Define the function τ ∗(·) at isolated points of X arbitrarily (so that τ ∗(·) 6= 0). Then

|X| =
∫
R
dt

∑
E∈X : τ(E)=t

1

|τ ∗(E)|
, (16)

where the integrand is a Borel function on R with values in [0, ∞].

Although Lemma 3 is intuitively clear, a detailed proof seems appropriate. It is deferred until the last
section.

Let N be a positive integer. Define the set DN by

DN := {E ∈ D | ‖yE‖2 ≤ N}.

Here yE is the (unique) eigenvector of Aτ(E) corresponding to the eigenvalue E and normalized by
(yE, ϕ) = 1.
Proposition 3 Let ∆ be a Borel subset of R. Then the set DN is Borel for each N .

Proof. Since the sets D \ S and Z are countable, it is sufficient to prove that DN ∩ (S \ Z) is Borel.

For that purpose, we observe that

DN ∩ (S \ Z) =
{
E ∈ S \ Z

∣∣ ψ(E) ≤ N
}
,

where the function ψ : R→ [0,∞] is defined on S \ Z by

ψ(E) =
I(E)

J2(E)
.

The functions I and J are pointwise limits of Borel measurable functions

In(E) =

∫
λ∈R : |λ−E|≥ 1

n

µ(dλ)

(λ− E)2
, Jn(E) =

∫
λ∈R : |λ−E|≥ 1

n

µ(dλ)

(λ− E)
.
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Consequently, ψ is Borel measurable. Measurability of In and Jn follows from the fact that In and Jn are
continuous on the complment of a countable set. �

Lemma 4 Suppose E is a non-isolated point of DN . As DN 3 E ′ → E ∈ DN , we have

τ(E ′)− τ(E)

E ′ − E
→ ‖yE‖2. (17)

Proof. According to (14), we only need to show that

(yE′ , yE)→ ‖yE‖2,

as DN 3 E ′ → E ∈ DN . Assume the opposite, i.e. that there exists a positive number ε > 0 and a
sequence DN 3 En → E ∈ DN , such that∣∣(yEn , yE)− ‖yE‖2

∣∣ ≥ ε, ∀n. (18)

It follows from (14) that the function τ is Lipschitz on DN :

|τ(E ′)− τ(E)| ≤ N |E ′ − E|, E ′, E ∈ DN .

Consequently, the sequence of numbers tn := τ(En) converges to t := τ(E).

For the corresponding eigenvector yn := yEn , we have Atnyn = Enyn; moreover, ‖yn‖2 ≤ N and
(yn, ϕ) = 1.

Since any ball of radius N is weakly compact in H , we may assume without loss of generality that yn
converges weakly to some vector y; clearly, ‖y‖2 ≤ N and (y, ϕ) = 1.

In the equality
Ayn + tn(yn, ϕ)ϕ = Enyn

we have tn → t, (yn, ϕ) = (y, ϕ) = 1, En → E, and yn
w→ y. This implies the weak convergence of

Ayn to some vector z. Moreover,
z + t(y, ϕ)ϕ = Ey. (19)

On the other hand, (Ayn, h) = (yn, Ah) for any h ∈ Dom(A). Passing to the limit as n → ∞ in this
relation, we obtain the relation

(z, h) = (y, Ah), ∀h ∈ Dom(A),

which means that y ∈ Dom(A) and Ay = z. This, along with (19), implies the equality

Aty = Ey.

Put differently, the sequence of vectors yn converges weakly to yE . The latter contradicts (18). �

If E is an eigenvalue of At, then E is an atom of µt, the spectral measure of At, corresponding to the
vector ϕ. By the Spectral Theorem [RS], the mass of this atom equals

µt({E}) = ‖EAt({E})ϕ‖2 =

∣∣∣∣(ϕ, yE
‖yE‖

)∣∣∣∣2 =
1

‖yE‖2
(20)
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(here EAt(Y ), for any Borel set Y , denotes the spectral projection for At associated with Y ; we use the
fact that, by Lemma 5, ϕ is cyclic for At).

Let us apply Lemma 3 to X = DN and τ(E) defined in this section. Therefore,

|DN | =
∫ ∞
−∞

dt
∑

E∈DN : τ(E)=t

1

τ ∗(E)
=

∫ ∞
−∞

dt
∑

E∈DN : τ(E)=t

1

||yE||2
=

∫ ∞
−∞

dt
∑
E∈DN

µt({E}).

(The second equality makes use of (17). The third equality follows from (20).) Passing to the limit as
N →∞, we obtain:

|D| =
∫
R
dt

∑
E∈∆∩σp(At)

µt({E})dt

or, equivalently,

|D| =
∫
R
µpt (∆)dt. (21)

Here the symbol µpt denotes the pure point component in the standard decomposition of µt into its pure
point and continuous components: µt = µpt + µct .

On the other hand, there is a fundamental identity due to Atkinson [At] (which was later rediscovered
and/or cleverly used by Javrjan [J], Wegner [W], Carmona [C], Kotani [K], Delyon-Lévy-Souillard [DLS],
and Simon-Wolff [SW]):

|∆| =
∫
R
µt(∆)dt (22)

Subtracting (21) from (22), we obtain:

|∆ \D| =
∫ ∞
−∞

µct(∆)dt.

It follows that Lebesgue a.e. point of ∆ belongs to D if and only if

µct(∆) = 0 (23)

for Lebesgue a.e. t ∈ R.

Since, ϕ is cyclic for At for all t (see the lemma below), the equation (23) – the absence of the
continuous component of µt on ∆ – is equivalent to the fact that the operator At has in ∆ only pure point
spectrum. This completes the proof of the Simon-Wolff theorem up to the following statement:
Lemma 5 For any t ∈ R, the vector ϕ is cyclic for At.

Proof. Assume the converse. Then there is a nonzero y ∈ H such that ((At − λI)−1ϕ, y) = 0 for all

λ ∈ C \ R. By the resolvent identity,

(A− λI)−1 − (At − λI)−1 = (At − λI)−1(tP )(A− λI)−1,

so that
(A− λI)−1ϕ = (At − λI)−1ϕ+ ct(At − λI)−1ϕ

with some ct ∈ C. By the assumption, this vector is orthogonal to y for all λ ∈ C \ R, which contradicts
the cyclicity of ϕ for A. �
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4 Proof of Lemma 3

Before we prove Lemma 3, we make several remarks.

Remark 1. The existence of the finite limit (15) for all non-isolated points E of X implies that the
function τ : X → R is continuous.

Remark 2. Let us denote the integrand in (16) by g(t). The statement that g(·) is a Borel function
implies that τ(X) = {t ∈ R : g(t) > 0} is a Borel set. Note that, in general, a set of the form f(Y ),
where the set Y is Borel and the function f is continuous, is not necessarily Borel [Ke, Theorem 14.2].

The proof of Lemma 3 consists of justification of several statements.

Lemma 6 τ ∗ : X → R is a Borel function.

Proof. Denote the graph of τ(·) by G. Let Ĝ be a countable dense subset of G, and let X̂ := prE(Ĝ)

be the projection of Ĝ onto the E-axis.

For any non-isolated point E ∈ X , we have

τ ∗(E) = lim sup
X3E′→E

fE′(E) = lim sup
X̂3E′→E

fE′(E),

where

fE′(E) :=
τ(E ′)− τ(E)

E ′ − E
is a Borel function on X \ {E ′}.

By the definition of lim sup,

τ ∗(E) = lim
k→∞

(
sup{fE′(E) | E ′ ∈ X ∩ U∗1/k(E)

)
,

where U∗1/k(E) = [E − 1/k, E + 1/k] \ {E}. Since Ĝ is dense in G, we also have

τ ∗(E) = lim
k→∞

(
sup{fE′(E) | E ′ ∈ X̂ ∩ U∗1/k(E)

)
.

Therefore, τ ∗(E) < a iff there are m, k ∈ N such that fE′(E) ≤ a − 1/m whenever E ′ ∈ X̂ and
0 < |E − E ′| ≤ 1/k. In other words, τ ∗(E) < a iff there are m, k ∈ N such that for any E ′ ∈ X̂ we
have either fE′(E) ≤ a− 1/m or E /∈ U∗1/k(E ′). This means that the set {E ∈ X | τ ∗(E) < a} equals

⋃
m

⋃
k

⋂
E′∈X̂

({
E ∈ X

∣∣∣∣ fE′(E) ≤ a− 1

m

}⋃
(X \ U∗1/k(E ′)

)
and hence is a Borel set. �

Definition 1 We will say that a Borel subset Y of X is good if the following conditions are fulfilled:
(i) the function gY : R→ [0,∞] defined by the equation

gY (t) :=
∑

E∈Y : τ(E)=t

1

|τ ∗(E)|
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is Borel;
(ii) the equality holds: ∫

R
dt

∑
E∈Y : τ(E)=t

1

|τ ∗(E)|
= |Y |. (24)

Lemma 3 states that the set X is good.

Lemma 7 Given a Borel set Y (Y ⊂ X), let

Ỹ := {E ∈ Y | the set Y ∩ (E − ε, E + ε) is uncountable for all ε > 0}.

The set Ỹ is Borel; it is good iff Y is good.

Proof. The set ZY := Y \ Ỹ consists of all points E ∈ Y such that E is contained in an interval

whose intersection with Y is countable. These intervals can be chosen to have rational endpoints, which
shows that ZY is countable. Consequently, the set Ỹ is Borel. Since the functions

gY (t) =
∑

E∈Y : τ(E)=t

1

|τ ∗(x)|
and gỸ (t) =

∑
E∈Ỹ : τ(E)=t

1

|τ ∗(x)|

differ only on the countable set τ(ZY ), they are both Borel or both non-Borel. In the former case they
have the same integral over R. It is also obvious that |Ỹ | = |Y |. Therefore, if one of the sets Y and Ỹ is
good, the other set is good as well. �

Lemma 8
(a) If sets Y1, Y2, . . . are good and disjoint, then the set Y : = Y1 t Y2 t . . . is good.

(b) If sets Y1, Y2, . . . are good and Y1 ⊂ Y2 ⊂ . . ., then the set Y := Y1 ∪ Y2 ∪ . . . is good.

(c) If sets Y1, Y2, . . . are good, Y1 ⊃ Y2 ⊃ . . . and |Y1| <∞, then the set Y := Y1 ∩ Y2 ∩ . . . is good.

(d) The empty set ∅ is good.

Proof. (a) For any t ∈ R, we have gY (t) =
∑

n gYn(t), so gY (·) is Borel and

∫
R
gY (t)dt =

∑
n

∫
R
gYn(t)dt =

∑
n

|Yn| = |Y |.

(b) We have gYn(t)↗ gY (t) for all t ∈ R; therefore, gY (·) is Borel and∫
R
gY (t)dt = lim

n

∫
R
gYn(t)dt = lim

n
|Yn| = |Y |.

(c) We have gYn(t)↘ gY (t) for all t ∈ R; therefore, gY (·) is Borel and, since
∫
R gY1(t)dt = |Y1| <∞,∫

R
gY (t)dt = lim

n

∫
R
gYn(t)dt = lim

n
|Yn| = |Y |.

(d) Obvious. �
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Corollary 2 Suppose a Borel subset Y of X is such that for any n ∈ N the set Y
⋂

[−n, n] is good. Then
the set Y is good too.

Proof. We have Y =
⋃
n (Y

⋂
[−n, n]), so the statement follows from Lemma 8(b). �

The corollary can be applied to the set X . Therefore, in the rest of the proof we will assume that the
set X is bounded.

In the remaining part of the proof, we will gradually expand the class of subsets of X known to be
good until it includes the set X itself. Every time we state that all subsets of X having a certain property
are good, it will be sufficient (due to Lemma 7) to consider only those subsets that have no isolated points.

Lemma 9 Suppose that, under the assumptions of Lemma 3, a Borel subset Y of X has the property that
there are two constants A,B (0 < A ≤ B <∞) such that

A(E ′ − E) ≤ τ(E ′)− τ(E) ≤ B(E ′ − E) (25)

for all E,E ′ ∈ Y (E < E ′). Then the set Y is good.

Proof. Let I = [inf Y, supY ] ≡ [α, β] (α < β) and J = [τ(α), τ(β)]. By (25), τ(·) can be continued
(uniquely) to a continuous function τ : I → J that is linear on each connected component of the open set
I \ Y , where Y is the closure of Y . Then (25) still holds for all E,E ′ ∈ I (E < E ′). Hence τ : I → J

is a homeomorphism, and τ(Y ), like Y , is a Borel set. In addition, t 7→ τ ∗(τ−1(t)) is a Borel function on
τ(Y ) as a composition of two Borel functions.

Since (25) holds for all E,E ′ ∈ Y (E < E ′), the function τ−1 : J → I is absolutely continuous and
has, for a.e. t ∈ J , a derivative (τ−1)′(t) ∈ [B−1, A−1]. For any u, v ∈ J (u < v), the equation holds:

τ−1(v)− τ−1(u) =

∫ v

u

(τ−1)′(t)dt.

In other words, if W is a subinterval of J , then

|τ−1(W )| =
∫
W

(τ−1)′(t)dt.

It follows (by summation) that the same is true if W is any relatively open subset of the closed interval J
and, by approximation from outside, ifW is any Borel subset of J . In particular, this is true forW = τ(Y ):

|Y | =
∫
τ(Y )

(τ−1)′(t)dt.

Since (τ−1)′(t) =
1

τ ′(τ−1(t))
and τ ′(E) = τ ∗(E) for E ∈ Y , we get

|Y | =
∫
τ(Y )

dt

τ ∗(τ−1(t))
.

As τ : Y → τ(Y ) is a bijection, this is equivalent to (24). �
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Lemma 10 Suppose that, under the assumptions of Lemma 3, a Borel subset Y of X is such that for some
constants A,B (0 < A ≤ B <∞) and δ > 0 the double inequality

A(E ′ − E) ≤ τ(E ′)− τ(E) ≤ B(E ′ − E) (26)

holds for all E,E ′ ∈ Y with 0 < E ′ − E < δ. Then the set Y is good.

Proof. Partition Y into a countable set of Borel sets of diameter < δ each. All of them are good by

Lemma 9, so Y is good by Lemma 8(a). �

Lemma 11 Under the assumptions of Lemma 3, for any a, b ∈ R such that 0 < a ≤ b <∞, the set X[a,b]

of all E ∈ X for which
a ≤ τ ∗(E) ≤ b (27)

is good.

Proof. As we did before, denote by X̂ a countable subset of X such that the set {(E, τ(E)) | E ∈ X̂}

is dense in the graph of τ , and denote by gE′(·) the function

gE′(E) :=
τ(E ′)− τ(E)

E ′ − E
, E ∈ X \ {E ′}.

Fix m ∈ N such that 1/m < a and define a sequence of sets Xm
k (k ∈ N) as follows: the set Xm

k consists
of all E ∈ X such that

a− 1

m
≤ gE′(E) ≤ b+

1

m
(28)

for all E ′ ∈ X̂ with 0 < |E ′ − E| ≤ 1/k.

The set Xm
k is Borel. To show this, let us verify that the set (Xm

k )− of all E ∈ X satisfying the first
inequality in (28) for all E ′ ∈ X̂ with 0 < |E ′ −E| ≤ 1/k is Borel. The arguments are similar to those in
the proof of Lemma 6. A point E ∈ X belongs to (Xm

k )− iff gE′(E) ≥ a− 1
m

for all E ′ ∈ X̂ ∩ U∗1/k(E).

This is equivalent to the fact that for any E ′ ∈ X̂ , E satisfies at least one of the two conditions: either
gE′(E) ≥ a − 1/m or E /∈ U∗1/k(E

′). Since the functions gE′(·) (E ′ ∈ X̂) are Borel and the set X̂ is
countable, this shows that the set (Xm

k )− is Borel. Similarly, the set (Xm
k )+ (defined in an obvious way)

is Borel, so the set Xm
k = (Xm

k )− ∩ (Xm
k )+ is Borel too.

Now note that in the definition of the set Xm
k the set X̂ can be replaced by X:

Xm
k =

{
E ∈ X

∣∣∣∣ gE′(E) ∈
[
a− 1

m
, b+

1

m

]
if E ′ ∈ X and 0 < |E ′ − E| ≤ 1

k

}
. (29)

The sets Xm
k (k ∈ N) are nested: Xm

k ⊂ Xm
k+1 for all k ∈ N. The Borel set

Xm :=
⋃
k∈N

Xm
k (30)

consists of all points E ∈ X such that gE′(E) ∈ [a − 1/m, b + 1/m] for all E ′ ∈ X (E ′ 6= E) close
enough to E. Consequently, the Borel set

X∞ :=
⋂
m

Xm (31)

11



coincides with the set X[a,b] of all E ∈ X such that τ ∗(E) ∈ [a, b].

The set X[a,b] is good. To see why, we first note that for any m, k ∈ N the set Xm
k defined by (29)

is good: this follows from Lemma 10, which should be applied with A = a − 1/m, B = b + 1/m and
δ = 1/k. Second, the set Xm defined by (30) is good by Lemma 8(b). Finally, the set X[a,b] = X∞

defined by (31) is good by Lemma 8(c) (we use the assumption that the set X is bounded and hence
|X| <∞). �

Corollary 3 Under the assumptions of Lemma 3, let a, b ∈ R be two constants such that 0 < a < b <∞.
The set

X(a,b] := {E ∈ X | a < τ ∗(E) ≤ b}
is good.

Proof. We have

X(a,b] =
⋃

n∈N : n>1/(b−a)

X[a+ 1
n
,b],

so the statement follows from Lemma 8(b). �

End of proof of Lemma 3.

We partition X into countably many disjoint Borel sets

X+
k := X(2k,2k+1] ≡ {E ∈ X | 2k < τ ∗(E) ≤ 2k+1} (k ∈ Z)

and

X−k := X[−2k+1,−2k) ≡ {E ∈ X | − 2k+1 ≤ τ ∗(E) < −2k} (k ∈ Z).

Each set X+
k is good by Corollary 3. Each set X−k is good by Corollary 3 applied to the function −τ(·)

instead of τ(·). By Lemma 8(a), the set X is good. �

5 Appendix: infinite coupling

In this section, we give a natural definition of a certain operator A∞ playing the role of At for t = ∞.
First, we extend the function J(E) originally defined on the set S to a function on (C \ R) ∪ S

J(z) :=

∫
R

µ(dλ)

λ− z
, z ∈ C \ R. (32)

Proposition 4 Let J(z) be defined by (32). Then

±Im J(z) > 0 for ± Im z > 0.

In particular, J(z) /∈ R for all z ∈ C \ R.

Proof. Indeed,

Im J(z) = Im z

∫
R

µ(dλ)

(λ− Re z)2 + (Im z)2
.

�

12



Proposition 5 For any z ∈ C \ R,

(At − z)−1 = (A− z)−1 − t

1 + tJ(z)
(A− z)−1P (A− z)−1. (33)

Proof. Obviously, the range of the operator in the right hand side of (33) is contained in Dom(A).

Therefore, we can multiply this oparator by At − z from the left. The product is equal to I , because

(At − z)(A− z)−1 = I + tP (A− z)−1

and
P (A− z)−1P = J(z)P.

�

Corollary 4 For any z ∈ C \ R,

(At − z)−1 −→ R(z) := (A− z)−1 − 1

J(z)
(A− z)−1P (A− z)−1, as t→∞, (34)

in the operator norm topology.

Proposition 6 The range of the bounded operatorR(z) is contained in the spaceHϕ of vectors orthogonal
to ϕ. In particular, Hϕ is invariant for R(z).

Proof. It is sufficient to show that PR(z) = 0. The latter follows once one combines the equality

PR(z) = P (A− z)−1 − 1

J(z)
P (A− z)−1P (A− z)−1

with the fact that P (A− z)−1P = J(z)P. �

Proposition 7 Let A∞ be the operator in Hϕ defined on Dom(A∞) = Dom(A) ∩Hϕ by

A∞y = (I − P )Ay.

Then A∞ is densily defined and selfadjoint in Hϕ. Moreover,

(A∞ − z)−1 = R(z)
∣∣
Hϕ

∀z ∈ C \ R. (35)

Proof. The operator A∞ is symmetric, because

(A∞u, v) ∈ R, ∀u, v ∈ Dom(A∞) ⊂ Hϕ.

This opertor is densily defined. Indeed, let y ∈ Hϕ be given and let h ∈ Dom(A) be a vector such that
(h, ϕ) = 1 (such a vector exists, because A is densily defined). Suppose that hn ∈ Dom(A) is a sequence
of vectors converging to y. Then

hn − (hn, ϕ)h ∈ Dom(A∞)

converges to y, as n→∞.

To establish that A∞ is selfadjoint, we observe that the definition of R(z) given by (34) leads to

(A∞ − z)R(z)
∣∣
Hϕ

= (I − P )(I − 1

J(z)
P (A− z)−1)

∣∣
Hϕ

= I
∣∣
Hϕ
. (36)

Consequently, the range of the operator (A∞ − z) is the whole space Hϕ, which implies that A∞ is
selfadjoint. The relation (35) follows from (36). �
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Proposition 8 A real number E is an eigenvalue of A∞ if and only if E ∈ S and J(E) = 0.

Proof. Again, we use the Spectral Theorem (see [RS]) which states that, for a cyclic self-adjoint

operator A and its normalized cyclic vector ϕ, there exists a unitary operator U : H → L2(R, µ) such that
A = U−1MλU and Uϕ = 1. Here 1(λ) ≡ 1 and Mλ is the operator of multiplication by the identity
function m(λ) ≡ λ in L2(R, µ).

If, for some E,
I(E) <∞ and J(E) = 0, (37)

then the function z(λ) = (λ − E)−1 belongs to L2(R, µ) and is orthogonal to 1. Hence the equation
(λ− E)z(λ) = 1 has a solution in L2(R, µ) orhtogonal to 1; equivalently, the equation

(A− E)z = ϕ (38)

has a solution in H orthogonal to ϕ. Observe now that (Az, ϕ) = ((A−E)z, ϕ) = (ϕ, ϕ) = 1. Therefore,
we can rewrite the equation (38) as Az − (Az, ϕ)ϕ = Ez. Since (Az, ϕ)ϕ = PAz, the previous equation
means that

A∞z = Ez. (39)

Therefore, conditions (37) imply that E ∈ σp(A∞).

Let now E ∈ σp(A∞). Then the equation

(A− E)z = PAz (40)

has a non-trivial solution z ∈ Hϕ. Obviously, PAz = (Az, ϕ)ϕ is a vector of the form cϕ.

Assume that c 6= 0. In this case, (40) can be re-written equivalently as

(λ− E)z(λ) = c1, (41)

where z(λ) := Uz. Hence, z(λ) = c/(λ− E), which tells us that

I(E) =

∫
R

µ(dλ)

(λ− E)2
= |c|−2||z||2 <∞.

Therefore, if c 6= 0, then E ∈ S. On the other hand, since

0 = (z, ϕ) = c

∫
R

µ(dλ)

λ− E
= cJ(E),

we obtain also that J(E) = 0.

It remains to consider the case c = 0. In this case, (41) tells us that the support of z(λ) consists of the
point λ = E. The latter implies that

(z, ϕ) =

∫
R
z(λ)µ(dλ) = z(E)µ({E}) 6= 0,

which contradicts the assumption z ∈ Hϕ. �

Corollary 5 Let the sets S and D be defined by (2) and (3) correspondingly. Then

D \ S = σp(A0) ∩∆ and S \D = σp(A∞) ∩∆.
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