A real-analytic proof of the Simon-Wolff theorem

Alexander Y. Gordon and Oleg Safronov

Department of Mathematics,

University of North Carolina at Charlotte,

Charlotte, NC 28223

E-mail: osafrono@uncc.edu

November 20, 2019

Abstract

We derive the Simon-Wolff localization criterion from the spectral averaging using an intuitive measure theoretic lemma.

1 Introduction

Let A be a cyclic self-adjoint operator in a (separable) Hilbert space H, $\varphi(\|\varphi\| = 1)$ its cyclic vector, and $P = P_{\varphi}$ the orthogonal projection onto the one-dimensional subspace $\mathbf{C}\varphi$ ($Pz = (z, \varphi)\varphi$ for all $z \in H$). Define the operator family A_t by

 $A_t = A + tP, \ t \in \mathbb{R}.$

Denote by $\mu^{\varphi}_{A}(d\lambda)$ the spectral measure of the vector φ for A (see [RS]).

The celebrated Simon-Wolff theorem says [SW]:

Theorem 1 Let Δ be a Borel subset of \mathbb{R} . The operator A_t has only pure point spectrum on Δ for Lebesgue a.e. $t \in \mathbb{R}$ if and only if

$$\int_{\mathbb{R}} \frac{\mu_A^{\varphi}(d\lambda)}{(\lambda - E)^2} < \infty \quad \text{for Lebesgue a.e. } E \in \Delta.$$
(1)

This theorem plays a fundamental role in localization theory (for some of its applications see [SW], [CL], [PF]). Several proofs of this theorem and its generalizations are known [SW], [H], [CHM], [P], [S]. The proof in [S] is particularly short, but it uses the so called Aronszajn-Donoghue theory [Ar], [D] formulated in terms of boundary values of a certain analytic function. The goal of the present work is to give an intuitively clear proof the Simon-Wolff theorem which does not mention analytic functions at all.

The remaining part of the paper is organized as follows. Section 2 contains several simple auxiliary statements. The Simon-Wolff theorem is proved in Section 3. The proof uses a lemma that may be interesting in its own right. The proof of the lemma is contained in the last section.

2 A different formulation of the Simon-Wolff theorem and a definition of the function τ

Throughout the paper we will use the following notations

$$I(E) := \int_{\mathbb{R}} \frac{\mu(d\lambda)}{(\lambda - E)^2}$$
 and $J(E) := \int_{\mathbb{R}} \frac{\mu(d\lambda)}{\lambda - E}$

where $\mu = \mu_A^{\varphi}$ is the spectral measure of φ for A. Let also

$$S := \{ E \in \Delta \mid I(E) < \infty \}.$$
⁽²⁾

The Simon-Wolff theorem states that

 A_t has only pure point spectrum in Δ for a.e. $t \in \mathbb{R}$ iff $|\Delta| = |S|$.

In this statement, we are going to replace S by the set

$$D := \{ E \in \Delta \mid \exists t \in \mathbb{R} \text{ for which } E \in \sigma_p(A_t) \},$$
(3)

where $\sigma_p(A_t)$ denotes the set of eigenvalues of the operator A_t .

Proposition 1 The integral J(E) is well-defined for any $E \in S$. If

$$E \in S \quad and \quad J(E) \neq 0, \tag{4}$$

then $E \in D$. Any point of $D \setminus S$ is an eigenvalue of A.

Proof. The Spectral Theorem (see [RS]) states that, for a cyclic self-adjoint operator A and its normalized cyclic vector φ , there exists a unitary operator $U: H \to L^2(\mathbb{R}, \mu)$ such that $A = U^{-1}M_{\lambda}U$ and $U\varphi = \mathbf{1}$. Here $\mathbf{1}(\lambda) \equiv 1$ and M_{λ} is the operator of multiplication by the identity function $m(\lambda) \equiv \lambda$ in $L^2(\mathbb{R}, \mu)$.

If, for some E,

 $I(E) < \infty,$

then the function $z(\lambda) = (\lambda - E)^{-1}$ belongs to $L^2(\mathbb{R}, \mu)$. Hence the equation $(\lambda - E)z(\lambda) = 1$ has a solution in $L^2(\mathbb{R}, \mu)$; equivalently, the equation

$$(A - E)z = \varphi \tag{5}$$

has a solution in *H*. Observe now that $(z, \varphi) = J(E)$. Therefore, if $J(E) \neq 0$, then we can rewrite the equation (5) as $Az - \varphi = Ez$, or $Az - \frac{1}{(z,\varphi)}(z,\varphi)\varphi = Ez$. Since $(z,\varphi)\varphi = Pz$, the previous equation means that

$$A_t z = E z, (6)$$

where t = -1/J(E). Therefore, conditions (4) imply that $E \in D$.

Let now $E \in D \setminus S$. According to the definition of the set D, there is a number $t \in \mathbb{R}$ such that the equation

$$(A - E)z = -tPz \tag{7}$$

has a non-trivial solution $z \in H$. Obviously, $-tPz = -t(z, \varphi)\varphi$ is a vector of the form $c\varphi$.

Let us show that c = 0. For that purpose, assume the opposite, i.e. that $c \neq 0$. In this case, (7) can be re-written in the equivalent form

$$(\lambda - E)z(\lambda) = c\mathbf{1},$$

where $z(\lambda) := Uz$. Hence, $z(\lambda) = c/(\lambda - E)$, which tells us that

$$|c|^2 \int_{\mathbb{R}} \frac{\mu(d\lambda)}{(\lambda - E)^2} = ||z||^2 < \infty.$$

Therefore, if $c \neq 0$, then $E \in S$, which contradicts our assumptions. Thus, c = 0 and the right hand side of (7) is zero, which means that E is an eigenvalue of A. \Box

Corollary 1 Let S and D be the sets defined in (2) and (3). Then

$$S \setminus D = Z \cap \Delta,\tag{8}$$

where

$$Z := \{ E \in \mathbb{R} \mid I(E) < \infty \text{ and } J(E) = 0 \}.$$
(9)

Proof. It follows from Proposition 1 that

$$S \setminus D \subset Z \cap \Delta.$$

It remains to prove that if $E \in S$ and J(E) = 0, then $E \notin D$. Assume the opposite, i.e. that $E \in S \cap D$ and J(E) = 0. Since a point of the set S can not be an atom of the measure μ , we conclude that E is not an eigenvalue of the operator A. We also conclude from the relation $E \in D$, that there is a number $t \neq 0$ and a non-zero vector $z \in H$, obeying the condition

$$A_t z = E z. (10)$$

Observe that tPz can not be zero, otherwise, (10) would mean that E is an eigenvalue of A. So,

$$-tPz = c\varphi, \quad \text{with } c \neq 0.$$
 (11)

Therefore, (10) and (11) imply that the function $z(\lambda) = Uz$ coincides with $c/(\lambda - E)$, because

$$(\lambda - E)z(\lambda) = c\mathbf{1}.$$

In this case, $(z, \varphi) = cJ(E) = 0$. Consequently, Pz = 0, which contradicts (11). \Box

Proposition 2 The set Z is countable.

Proof. Proposition 2 follows from the observation that if $E', E \in Z$ are distinct, then the two functions $1/(\lambda - E')$ and $1/(\lambda - E)$ are orthogonal to each other in the separable space $L^2(\mathbb{R}, \mu)$:

$$(E - E') \int_{\mathbb{R}} \frac{\mu(d\lambda)}{(\lambda - E)(\lambda - E')} = \int_{\mathbb{R}} \frac{\mu(d\lambda)}{(\lambda - E')} - \int_{\mathbb{R}} \frac{\mu(d\lambda)}{(\lambda - E)} = 0.$$

The statement of Proposition 2 follows also from Proposition 8 stating the fact that Z coincides with the set of eigenvalues of a selfadjoint operator A_{∞} acting in the orthogonal compliment to the vector φ . A description of this operator is given in the Appendix of the present paper and in Section I.5 of [S]. \Box

According to our observations, $S \setminus D = Z \cap \Delta$ is countable. We also see that $D \setminus S = \sigma_p(A) \cap \Delta$ is countable as well. Therefore, |D| = |S| and the Simon-Wolff theorem is equivalent to the following statement:

The spectrum of A_t is pure point in Δ for a.e. $t \in \mathbb{R}$ iff $|\Delta| = |D|$.

Lemma 1 [D] If $A_t y = Ey$ and $y \neq 0$, then $(y, \varphi) \neq 0$.

Proof [D]. Assume the converse. Then Py = 0, hence Ay = Ey. Since y is cyclic for A, the linear span of the vectors $(A - \lambda)^{-1}\varphi$ ($\lambda \in \mathbb{C} \setminus \mathbb{R}$) is dense in H. But

$$(y, (A - \lambda)^{-1}\varphi) = ((A - \bar{\lambda})^{-1}y, \varphi) = (E - \bar{\lambda})^{-1}(y, \varphi) = 0,$$

and the above linear span cannot be dense, which is a contradiction.

Consequently, we can normalize eigenvectors y of the operators A_t by

$$(y,\varphi) = 1. \tag{12}$$

In what follows, we always assume that eigenvectors are normalized according to (12).

Lemma 2 If
$$A_{t_1}y_1 = E_1y_1$$
, $A_{t_2}y_2 = E_2y_2$, and $(y_1, \varphi) = (y_2, \varphi) = 1$, then
 $t_1 - t_2 = (E_1 - E_2)(y_1, y_2).$ (13)

Proof.

$$(A_{t_1}y_1, y_2) - (y_1, A_{t_2}y_2) = (E_1y_1, y_2) - (y_1, E_2y_2) = (E_1 - E_2)(y_1, y_2).$$

On the other hand,

$$((A + t_1 P)y_1, y_2) - (y_1, (A + t_2 P)y_2) = t_1(Py_1, y_2) - t_2(y_1, Py_2)$$
$$= t_1((y_1, \varphi)\varphi, y_2) - t_2(y_1, (y_2, \varphi)\varphi) = t_1(y_1, \varphi)(\varphi, y_2) - t_2(\overline{y_2, \varphi})(y_1, \varphi) = t_1 - t_2.$$

Now, we define the function τ on the set D as follows:

Definition. For any $E \in D$ the value $\tau(E)$ equals the number $t \in \mathbb{R}$ for which $E \in \sigma_p(A_t)$. According to (13) this t is uniquely defined.

Note that Proposition 1 tells us that τ vanishes on $D \setminus S$, because all points of $D \setminus S$ are eigenvalues of A. Observe also that the multiplicity of any eigenvalue E of A_t is 1. If it was larger than 1, then one would be able to find an eigenvector orthogonal to φ . Thus, for each $E \in D$, there is a unique vector $y_E \in H$, such that $(y_E, \varphi) = 1$ and $A_{\tau(E)}y_E = Ey_E$. The equation (13) can be now written in the form

$$\tau(E_1) - \tau(E_2) = (E_1 - E_2)(y_{E_1}, y_{E_2}) \quad \text{for all} \ E_1, E_2 \in D.$$
(14)

3 The proof of Theorem 1

To prove the Simon-Wolff theorem, we use the following lemma.

Lemma 3 Let X be a Borel set in \mathbb{R} and $\tau \colon X \to \mathbb{R}$ be a function such that for any non-isolated point $E \in X$ there exists a finite non-zero limit

$$\tau^*(E) := \lim_{X \ni E' \to E} \frac{\tau(E') - \tau(E)}{E' - E} \neq 0.$$
 (15)

Define the function $\tau^*(\cdot)$ at isolated points of X arbitrarily (so that $\tau^*(\cdot) \neq 0$). Then

$$|X| = \int_{\mathbb{R}} dt \sum_{E \in X: \ \tau(E) = t} \frac{1}{|\tau^*(E)|},$$
(16)

where the integrand is a Borel function on \mathbb{R} with values in $[0, \infty]$.

Although Lemma 3 is intuitively clear, a detailed proof seems appropriate. It is deferred until the last section.

Let N be a positive integer. Define the set D_N by

$$D_N := \{ E \in D \mid ||y_E||^2 \le N \}$$

Here y_E is the (unique) eigenvector of $A_{\tau(E)}$ corresponding to the eigenvalue E and normalized by $(y_E, \varphi) = 1$.

Proposition 3 Let Δ be a Borel subset of \mathbb{R} . Then the set D_N is Borel for each N.

Proof. Since the sets $D \setminus S$ and Z are countable, it is sufficient to prove that $D_N \cap (S \setminus Z)$ is Borel. For that purpose, we observe that

$$D_N \cap (S \setminus Z) = \left\{ E \in S \setminus Z \mid \psi(E) \le N \right\},\$$

where the function $\psi \colon \mathbb{R} \to [0,\infty]$ is defined on $S \setminus Z$ by

$$\psi(E) = \frac{I(E)}{J^2(E)}.$$

The functions I and J are pointwise limits of Borel measurable functions

$$I_n(E) = \int_{\lambda \in \mathbb{R}: \ |\lambda - E| \ge \frac{1}{n}} \frac{\mu(d\lambda)}{(\lambda - E)^2}, \qquad J_n(E) = \int_{\lambda \in \mathbb{R}: \ |\lambda - E| \ge \frac{1}{n}} \frac{\mu(d\lambda)}{(\lambda - E)}$$

Consequently, ψ is Borel measurable. Measurability of I_n and J_n follows from the fact that I_n and J_n are continuous on the complement of a countable set. \Box

Lemma 4 Suppose E is a non-isolated point of D_N . As $D_N \ni E' \to E \in D_N$, we have

$$\frac{\tau(E') - \tau(E)}{E' - E} \to \|y_E\|^2.$$
(17)

Proof. According to (14), we only need to show that

$$(y_{E'}, y_E) \to ||y_E||^2,$$

as $D_N \ni E' \to E \in D_N$. Assume the opposite, i.e. that there exists a positive number $\varepsilon > 0$ and a sequence $D_N \ni E_n \to E \in D_N$, such that

$$\left| (y_{E_n}, y_E) - \| y_E \|^2 \right| \ge \varepsilon, \qquad \forall n.$$
(18)

It follows from (14) that the function τ is Lipschitz on D_N :

$$|\tau(E') - \tau(E)| \le N|E' - E|, \qquad E', E \in D_N.$$

Consequently, the sequence of numbers $t_n := \tau(E_n)$ converges to $t := \tau(E)$.

For the corresponding eigenvector $y_n := y_{E_n}$, we have $A_{t_n}y_n = E_ny_n$; moreover, $||y_n||^2 \leq N$ and $(y_n, \varphi) = 1$.

Since any ball of radius N is weakly compact in H, we may assume without loss of generality that y_n converges weakly to some vector y; clearly, $||y||^2 \le N$ and $(y, \varphi) = 1$.

In the equality

$$Ay_n + t_n(y_n, \varphi)\varphi = E_n y_n$$

we have $t_n \to t$, $(y_n, \varphi) = (y, \varphi) = 1$, $E_n \to E$, and $y_n \xrightarrow{w} y$. This implies the weak convergence of Ay_n to some vector z. Moreover,

$$z + t(y, \varphi)\varphi = Ey. \tag{19}$$

On the other hand, $(Ay_n, h) = (y_n, Ah)$ for any $h \in Dom(A)$. Passing to the limit as $n \to \infty$ in this relation, we obtain the relation

$$(z,h) = (y,Ah), \quad \forall h \in Dom(A),$$

which means that $y \in Dom(A)$ and Ay = z. This, along with (19), implies the equality

$$A_t y = E y.$$

Put differently, the sequence of vectors y_n converges weakly to y_E . The latter contradicts (18).

If E is an eigenvalue of A_t , then E is an atom of μ_t , the spectral measure of A_t , corresponding to the vector φ . By the Spectral Theorem [RS], the mass of this atom equals

$$\mu_t(\{E\}) = \|\mathcal{E}_{A_t}(\{E\})\varphi\|^2 = \left| \left(\varphi, \frac{y_E}{\|y_E\|} \right) \right|^2 = \frac{1}{\|y_E\|^2}$$
(20)

(here $\mathcal{E}_{A_t}(Y)$, for any Borel set Y, denotes the spectral projection for A_t associated with Y; we use the fact that, by Lemma 5, φ is cyclic for A_t).

Let us apply Lemma 3 to $X = D_N$ and $\tau(E)$ defined in this section. Therefore,

$$|D_N| = \int_{-\infty}^{\infty} dt \sum_{E \in D_N: \ \tau(E) = t} \frac{1}{\tau^*(E)} = \int_{-\infty}^{\infty} dt \sum_{E \in D_N: \ \tau(E) = t} \frac{1}{||y_E||^2} = \int_{-\infty}^{\infty} dt \sum_{E \in D_N} \mu_t(\{E\})$$

(The second equality makes use of (17). The third equality follows from (20).) Passing to the limit as $N \to \infty$, we obtain:

$$|D| = \int_{\mathbb{R}} dt \sum_{E \in \Delta \cap \sigma_p(A_t)} \mu_t(\{E\}) dt$$

or, equivalently,

$$|D| = \int_{\mathbb{R}} \mu_t^p(\Delta) dt.$$
(21)

Here the symbol μ_t^p denotes the pure point component in the standard decomposition of μ_t into its pure point and continuous components: $\mu_t = \mu_t^p + \mu_t^c$.

On the other hand, there is a fundamental identity due to Atkinson [At] (which was later rediscovered and/or cleverly used by Javrjan [J], Wegner [W], Carmona [C], Kotani [K], Delyon-Lévy-Souillard [DLS], and Simon-Wolff [SW]):

$$|\Delta| = \int_{\mathbb{R}} \mu_t(\Delta) dt \tag{22}$$

Subtracting (21) from (22), we obtain:

$$|\Delta \setminus D| = \int_{-\infty}^{\infty} \mu_t^c(\Delta) dt$$

It follows that *Lebesgue a.e.* point of Δ belongs to *D* if and only if

$$\mu_t^c(\Delta) = 0 \tag{23}$$

for Lebesgue a.e. $t \in \mathbb{R}$.

Since, φ is cyclic for A_t for all t (see the lemma below), the equation (23) – the absence of the continuous component of μ_t on Δ – is equivalent to the fact that the operator A_t has in Δ only pure point spectrum. This completes the proof of the Simon-Wolff theorem up to the following statement:

Lemma 5 For any $t \in \mathbb{R}$, the vector φ is cyclic for A_t .

Proof. Assume the converse. Then there is a nonzero $y \in H$ such that $((A_t - \lambda I)^{-1}\varphi, y) = 0$ for all $\lambda \in \mathbb{C} \setminus \mathbb{R}$. By the resolvent identity,

$$(A - \lambda I)^{-1} - (A_t - \lambda I)^{-1} = (A_t - \lambda I)^{-1} (tP)(A - \lambda I)^{-1},$$

so that

$$(A - \lambda I)^{-1}\varphi = (A_t - \lambda I)^{-1}\varphi + c_t(A_t - \lambda I)^{-1}\varphi$$

with some $c_t \in \mathbb{C}$. By the assumption, this vector is orthogonal to y for all $\lambda \in \mathbb{C} \setminus \mathbb{R}$, which contradicts the cyclicity of φ for A. \Box

4 Proof of Lemma 3

Before we prove Lemma 3, we make several remarks.

Remark 1. The existence of the finite limit (15) for all non-isolated points E of X implies that the function $\tau: X \to \mathbb{R}$ is continuous.

Remark 2. Let us denote the integrand in (16) by g(t). The statement that $g(\cdot)$ is a Borel function implies that $\tau(X) = \{t \in \mathbb{R}: g(t) > 0\}$ is a Borel set. Note that, in general, a set of the form f(Y), where the set Y is Borel and the function f is continuous, is not necessarily Borel [Ke, Theorem 14.2].

The *proof* of Lemma 3 consists of justification of several statements.

Lemma 6 $\tau^* : X \to \mathbb{R}$ is a Borel function.

Proof. Denote the graph of $\tau(\cdot)$ by G. Let \widehat{G} be a countable dense subset of G, and let $\widehat{X} := \operatorname{pr}_E(\widehat{G})$ be the projection of \widehat{G} onto the E-axis.

For any non-isolated point $E \in X$, we have

$$\tau^*(E) = \limsup_{X \ni E' \to E} f_{E'}(E) = \limsup_{\widehat{X} \ni E' \to E} f_{E'}(E),$$

where

$$f_{E'}(E) := \frac{\tau(E') - \tau(E)}{E' - E}$$

is a Borel function on $X \setminus \{E'\}$.

By the definition of lim sup,

$$\tau^*(E) = \lim_{k \to \infty} \left(\sup\{ f_{E'}(E) \mid E' \in X \cap U^*_{1/k}(E) \right)$$

where $U_{1/k}^*(E) = [E - 1/k, E + 1/k] \setminus \{E\}$. Since \widehat{G} is dense in G, we also have

$$\tau^*(E) = \lim_{k \to \infty} \left(\sup\{ f_{E'}(E) \mid E' \in \widehat{X} \cap U^*_{1/k}(E) \right).$$

Therefore, $\tau^*(E) < a$ iff there are $m, k \in \mathbb{N}$ such that $f_{E'}(E) \leq a - 1/m$ whenever $E' \in \widehat{X}$ and $0 < |E - E'| \leq 1/k$. In other words, $\tau^*(E) < a$ iff there are $m, k \in \mathbb{N}$ such that for any $E' \in \widehat{X}$ we have either $f_{E'}(E) \leq a - 1/m$ or $E \notin U^*_{1/k}(E')$. This means that the set $\{E \in X \mid \tau^*(E) < a\}$ equals

$$\bigcup_{m} \bigcup_{k} \bigcap_{E' \in \widehat{X}} \left(\left\{ E \in X \mid f_{E'}(E) \le a - \frac{1}{m} \right\} \bigcup (X \setminus U_{1/k}^*(E')) \right)$$

and hence is a Borel set. \Box

Definition 1 We will say that a Borel subset Y of X is *good* if the following conditions are fulfilled: (i) the function $g_Y \colon \mathbb{R} \to [0, \infty]$ defined by the equation

$$g_Y(t) := \sum_{E \in Y: \ \tau(E) = t} \frac{1}{|\tau^*(E)|}$$

is Borel;

(ii) the equality holds:

$$\int_{\mathbb{R}} dt \sum_{E \in Y: \ \tau(E) = t} \frac{1}{|\tau^*(E)|} = |Y|.$$
(24)

Lemma 3 states that the set X is good.

Lemma 7 Given a Borel set $Y (Y \subset X)$, let

$$\widetilde{Y} := \{ E \in Y | \text{ the set } Y \cap (E - \varepsilon, E + \varepsilon) \text{ is uncountable for all } \varepsilon > 0 \}.$$

The set \widetilde{Y} is Borel; it is good iff Y is good.

Proof. The set $Z_Y := Y \setminus \tilde{Y}$ consists of all points $E \in Y$ such that E is contained in an interval whose intersection with Y is countable. These intervals can be chosen to have rational endpoints, which shows that Z_Y is countable. Consequently, the set \tilde{Y} is Borel. Since the functions

$$g_Y(t) = \sum_{E \in Y: \ \tau(E) = t} \frac{1}{|\tau^*(x)|}$$
 and $g_{\widetilde{Y}}(t) = \sum_{E \in \widetilde{Y}: \ \tau(E) = t} \frac{1}{|\tau^*(x)|}$

differ only on the countable set $\tau(Z_Y)$, they are both Borel or both non-Borel. In the former case they have the same integral over \mathbb{R} . It is also obvious that $|\tilde{Y}| = |Y|$. Therefore, if one of the sets Y and \tilde{Y} is good, the other set is good as well. \Box

Lemma 8

(a) If sets Y_1, Y_2, \ldots are good and disjoint, then the set $Y := Y_1 \sqcup Y_2 \sqcup \ldots$ is good.

(b) If sets Y_1, Y_2, \ldots are good and $Y_1 \subset Y_2 \subset \ldots$, then the set $Y := Y_1 \cup Y_2 \cup \ldots$ is good.

(c) If sets Y_1, Y_2, \ldots are good, $Y_1 \supset Y_2 \supset \ldots$ and $|Y_1| < \infty$, then the set $Y := Y_1 \cap Y_2 \cap \ldots$ is good. (d) The empty set \emptyset is good.

Proof. (a) For any $t \in \mathbb{R}$, we have $g_Y(t) = \sum_n g_{Y_n}(t)$, so $g_Y(\cdot)$ is Borel and

$$\int_{\mathbb{R}} g_Y(t)dt = \sum_n \int_{\mathbb{R}} g_{Y_n}(t)dt = \sum_n |Y_n| = |Y|.$$

(b) We have $g_{Y_n}(t) \nearrow g_Y(t)$ for all $t \in \mathbb{R}$; therefore, $g_Y(\cdot)$ is Borel and

$$\int_{\mathbb{R}} g_Y(t)dt = \lim_n \int_{\mathbb{R}} g_{Y_n}(t)dt = \lim_n |Y_n| = |Y|.$$

(c) We have $g_{Y_n}(t) \searrow g_Y(t)$ for all $t \in \mathbb{R}$; therefore, $g_Y(\cdot)$ is Borel and, since $\int_{\mathbb{R}} g_{Y_1}(t) dt = |Y_1| < \infty$,

$$\int_{\mathbb{R}} g_Y(t)dt = \lim_n \int_{\mathbb{R}} g_{Y_n}(t)dt = \lim_n |Y_n| = |Y|.$$

(d) Obvious.

Corollary 2 Suppose a Borel subset Y of X is such that for any $n \in \mathbb{N}$ the set $Y \cap [-n, n]$ is good. Then the set Y is good too.

Proof. We have $Y = \bigcup_n (Y \cap [-n, n])$, so the statement follows from Lemma 8(b).

The corollary can be applied to the set X. Therefore, in the rest of the proof we will assume that *the* set X is bounded.

In the remaining part of the proof, we will gradually expand the class of subsets of X known to be good until it includes the set X itself. Every time we state that all subsets of X having a certain property are good, it will be sufficient (due to Lemma 7) to consider only those subsets that have no isolated points.

Lemma 9 Suppose that, under the assumptions of Lemma 3, a Borel subset Y of X has the property that there are two constants A, B ($0 < A \le B < \infty$) such that

$$A(E' - E) \le \tau(E') - \tau(E) \le B(E' - E)$$
(25)

for all $E, E' \in Y$ (E < E'). Then the set Y is good.

Proof. Let $I = [\inf Y, \sup Y] \equiv [\alpha, \beta]$ $(\alpha < \beta)$ and $J = [\tau(\alpha), \tau(\beta)]$. By (25), $\tau(\cdot)$ can be continued (uniquely) to a continuous function $\tau: I \to J$ that is linear on each connected component of the open set $I \setminus \overline{Y}$, where \overline{Y} is the closure of Y. Then (25) still holds for all $E, E' \in I$ (E < E'). Hence $\tau: I \to J$ is a homeomorphism, and $\tau(Y)$, like Y, is a Borel set. In addition, $t \mapsto \tau^*(\tau^{-1}(t))$ is a Borel function on $\tau(Y)$ as a composition of two Borel functions.

Since (25) holds for all $E, E' \in Y$ (E < E'), the function $\tau^{-1} \colon J \to I$ is absolutely continuous and has, for a.e. $t \in J$, a derivative $(\tau^{-1})'(t) \in [B^{-1}, A^{-1}]$. For any $u, v \in J$ (u < v), the equation holds:

$$\tau^{-1}(v) - \tau^{-1}(u) = \int_{u}^{v} (\tau^{-1})'(t) dt.$$

In other words, if W is a subinterval of J, then

$$|\tau^{-1}(W)| = \int_{W} (\tau^{-1})'(t) dt.$$

It follows (by summation) that the same is true if W is any relatively open subset of the closed interval J and, by approximation from outside, if W is any Borel subset of J. In particular, this is true for $W = \tau(Y)$:

$$|Y| = \int_{\tau(Y)} (\tau^{-1})'(t) dt$$

Since $(\tau^{-1})'(t) = \frac{1}{\tau'(\tau^{-1}(t))}$ and $\tau'(E) = \tau^*(E)$ for $E \in Y$, we get

$$|Y| = \int_{\tau(Y)} \frac{dt}{\tau^*(\tau^{-1}(t))}.$$

As $\tau \colon Y \to \tau(Y)$ is a bijection, this is equivalent to (24). \Box

Lemma 10 Suppose that, under the assumptions of Lemma 3, a Borel subset Y of X is such that for some constants A, B ($0 < A \le B < \infty$) and $\delta > 0$ the double inequality

$$A(E' - E) \le \tau(E') - \tau(E) \le B(E' - E)$$
 (26)

holds for all $E, E' \in Y$ with $0 < E' - E < \delta$. Then the set Y is good.

Proof. Partition Y into a countable set of Borel sets of diameter $< \delta$ each. All of them are good by Lemma 9, so Y is good by Lemma 8(a). \Box

Lemma 11 Under the assumptions of Lemma 3, for any $a, b \in \mathbb{R}$ such that $0 < a \le b < \infty$, the set $X_{[a,b]}$ of all $E \in X$ for which

$$a \le \tau^*(E) \le b \tag{27}$$

is good.

Proof. As we did before, denote by \widehat{X} a countable subset of X such that the set $\{(E, \tau(E)) \mid E \in \widehat{X}\}$ is dense in the graph of τ , and denote by $g_{E'}(\cdot)$ the function

$$g_{E'}(E) := \frac{\tau(E') - \tau(E)}{E' - E}, \qquad E \in X \setminus \{E'\}.$$

Fix $m \in \mathbb{N}$ such that 1/m < a and define a sequence of sets X_k^m $(k \in \mathbb{N})$ as follows: the set X_k^m consists of all $E \in X$ such that

$$a - \frac{1}{m} \le g_{E'}(E) \le b + \frac{1}{m}$$
 (28)

for all $E' \in \widehat{X}$ with $0 < |E' - E| \le 1/k$.

The set X_k^m is Borel. To show this, let us verify that the set $(X_k^m)^-$ of all $E \in X$ satisfying the first inequality in (28) for all $E' \in \hat{X}$ with $0 < |E' - E| \le 1/k$ is Borel. The arguments are similar to those in the proof of Lemma 6. A point $E \in X$ belongs to $(X_k^m)^-$ iff $g_{E'}(E) \ge a - \frac{1}{m}$ for all $E' \in \hat{X} \cap U_{1/k}^*(E)$. This is equivalent to the fact that for any $E' \in \hat{X}$, E satisfies at least one of the two conditions: either $g_{E'}(E) \ge a - 1/m$ or $E \notin U_{1/k}^*(E')$. Since the functions $g_{E'}(\cdot)$ $(E' \in \hat{X})$ are Borel and the set \hat{X} is countable, this shows that the set $(X_k^m)^-$ is Borel. Similarly, the set $(X_k^m)^+$ (defined in an obvious way) is Borel, so the set $X_k^m = (X_k^m)^- \cap (X_k^m)^+$ is Borel too.

Now note that in the definition of the set X_k^m the set \hat{X} can be replaced by X:

$$X_{k}^{m} = \left\{ E \in X \mid g_{E'}(E) \in \left[a - \frac{1}{m}, b + \frac{1}{m} \right] \text{ if } E' \in X \text{ and } 0 < |E' - E| \le \frac{1}{k} \right\}.$$
 (29)

The sets X_k^m $(k \in \mathbb{N})$ are nested: $X_k^m \subset X_{k+1}^m$ for all $k \in \mathbb{N}$. The Borel set

$$X^m := \bigcup_{k \in \mathbb{N}} X_k^m \tag{30}$$

consists of all points $E \in X$ such that $g_{E'}(E) \in [a - 1/m, b + 1/m]$ for all $E' \in X$ $(E' \neq E)$ close enough to E. Consequently, the Borel set

$$X^{\infty} := \bigcap_{m} X^{m} \tag{31}$$

coincides with the set $X_{[a,b]}$ of all $E \in X$ such that $\tau^*(E) \in [a,b]$.

The set $X_{[a,b]}$ is good. To see why, we first note that for any $m, k \in \mathbb{N}$ the set X_k^m defined by (29) is good: this follows from Lemma 10, which should be applied with A = a - 1/m, B = b + 1/m and $\delta = 1/k$. Second, the set X^m defined by (30) is good by Lemma 8(b). Finally, the set $X_{[a,b]} = X^\infty$ defined by (31) is good by Lemma 8(c) (we use the assumption that the set X is bounded and hence $|X| < \infty$). \Box

Corollary 3 Under the assumptions of Lemma 3, let $a, b \in \mathbb{R}$ be two constants such that $0 < a < b < \infty$. The set

$$X_{(a,b]} := \{ E \in X \mid a < \tau^*(E) \le b \}$$

is good.

Proof. We have

$$X_{(a,b]} = \bigcup_{n \in \mathbb{N}: \ n > 1/(b-a)} X_{[a+\frac{1}{n},b]},$$

so the statement follows from Lemma 8(b).

End of proof of Lemma 3.

We partition X into countably many disjoint Borel sets

$$X_k^+ := X_{(2^k, 2^{k+1}]} \equiv \{ E \in X \mid 2^k < \tau^*(E) \le 2^{k+1} \} \ (k \in \mathbb{Z})$$

and

$$X_k^- := X_{[-2^{k+1}, -2^k)} \equiv \{ E \in X \mid -2^{k+1} \le \tau^*(E) < -2^k \} \ (k \in \mathbb{Z})$$

Each set X_k^+ is good by Corollary 3. Each set X_k^- is good by Corollary 3 applied to the function $-\tau(\cdot)$ instead of $\tau(\cdot)$. By Lemma 8(a), the set X is good. \Box

5 Appendix: infinite coupling

In this section, we give a natural definition of a certain operator A_{∞} playing the role of A_t for $t = \infty$. First, we extend the function J(E) originally defined on the set S to a function on $(\mathbb{C} \setminus \mathbb{R}) \cup S$

$$J(z) := \int_{\mathbb{R}} \frac{\mu(d\lambda)}{\lambda - z}, \qquad z \in \mathbb{C} \setminus \mathbb{R}.$$
(32)

Proposition 4 Let J(z) be defined by (32). Then

$$\pm \operatorname{Im} J(z) > 0$$
 for $\pm \operatorname{Im} z > 0$.

In particular, $J(z) \notin \mathbb{R}$ for all $z \in \mathbb{C} \setminus \mathbb{R}$.

Proof. Indeed,

$$\operatorname{Im} J(z) = \operatorname{Im} z \, \int_{\mathbb{R}} \frac{\mu(d\lambda)}{(\lambda - \operatorname{Re} z)^2 + (\operatorname{Im} z)^2}$$

Proposition 5 *For any* $z \in \mathbb{C} \setminus \mathbb{R}$ *,*

$$(A_t - z)^{-1} = (A - z)^{-1} - \frac{t}{1 + tJ(z)}(A - z)^{-1}P(A - z)^{-1}.$$
(33)

Proof. Obviously, the range of the operator in the right hand side of (33) is contained in Dom(A). Therefore, we can multiply this oparator by $A_t - z$ from the left. The product is equal to I, because

$$(A_t - z)(A - z)^{-1} = I + tP(A - z)^{-1}$$

and

$$P(A-z)^{-1}P = J(z)P.$$

Corollary 4 *For any* $z \in \mathbb{C} \setminus \mathbb{R}$ *,*

$$(A_t - z)^{-1} \longrightarrow R(z) := (A - z)^{-1} - \frac{1}{J(z)}(A - z)^{-1}P(A - z)^{-1}, \quad \text{as } t \to \infty,$$
 (34)

in the operator norm topology.

Proposition 6 The range of the bounded operator R(z) is contained in the space H_{φ} of vectors orthogonal to φ . In particular, H_{φ} is invariant for R(z).

Proof. It is sufficient to show that PR(z) = 0. The latter follows once one combines the equality

$$PR(z) = P(A-z)^{-1} - \frac{1}{J(z)}P(A-z)^{-1}P(A-z)^{-1}$$

with the fact that $P(A-z)^{-1}P = J(z)P$. \Box

Proposition 7 Let A_{∞} be the operator in H_{φ} defined on $Dom(A_{\infty}) = Dom(A) \cap H_{\varphi}$ by

$$A_{\infty}y = (I - P)Ay.$$

Then A_{∞} is densily defined and selfadjoint in H_{φ} . Moreover,

$$(A_{\infty} - z)^{-1} = R(z)\big|_{H_{\varphi}} \qquad \forall z \in \mathbb{C} \setminus \mathbb{R}.$$
(35)

Proof. The operator A_{∞} is symmetric, because

$$(A_{\infty}u, v) \in \mathbb{R}, \quad \forall u, v \in Dom(A_{\infty}) \subset H_{\varphi}.$$

This opertor is densily defined. Indeed, let $y \in H_{\varphi}$ be given and let $h \in Dom(A)$ be a vector such that $(h, \varphi) = 1$ (such a vector exists, because A is densily defined). Suppose that $h_n \in Dom(A)$ is a sequence of vectors converging to y. Then

$$h_n - (h_n, \varphi)h \in Dom(A_\infty)$$

converges to y, as $n \to \infty$.

To establish that A_{∞} is selfadjoint, we observe that the definition of R(z) given by (34) leads to

$$(A_{\infty} - z)R(z)\big|_{H_{\varphi}} = (I - P)(I - \frac{1}{J(z)}P(A - z)^{-1})\big|_{H_{\varphi}} = I\big|_{H_{\varphi}}.$$
(36)

Consequently, the range of the operator $(A_{\infty} - z)$ is the whole space H_{φ} , which implies that A_{∞} is selfadjoint. The relation (35) follows from (36). \Box

Proposition 8 A real number E is an eigenvalue of A_{∞} if and only if $E \in S$ and J(E) = 0.

Proof. Again, we use the Spectral Theorem (see [RS]) which states that, for a cyclic self-adjoint operator A and its normalized cyclic vector φ , there exists a unitary operator $U: H \to L^2(\mathbb{R}, \mu)$ such that $A = U^{-1}M_{\lambda}U$ and $U\varphi = \mathbf{1}$. Here $\mathbf{1}(\lambda) \equiv 1$ and M_{λ} is the operator of multiplication by the identity function $m(\lambda) \equiv \lambda$ in $L^2(\mathbb{R}, \mu)$.

If, for some E,

$$I(E) < \infty$$
 and $J(E) = 0,$ (37)

then the function $z(\lambda) = (\lambda - E)^{-1}$ belongs to $L^2(\mathbb{R}, \mu)$ and is orthogonal to 1. Hence the equation $(\lambda - E)z(\lambda) = 1$ has a solution in $L^2(\mathbb{R}, \mu)$ orthogonal to 1; equivalently, the equation

$$(A-E)z = \varphi \tag{38}$$

has a solution in H orthogonal to φ . Observe now that $(Az, \varphi) = ((A - E)z, \varphi) = (\varphi, \varphi) = 1$. Therefore, we can rewrite the equation (38) as $Az - (Az, \varphi)\varphi = Ez$. Since $(Az, \varphi)\varphi = PAz$, the previous equation means that

$$A_{\infty}z = Ez. \tag{39}$$

Therefore, conditions (37) imply that $E \in \sigma_p(A_{\infty})$.

Let now $E \in \sigma_p(A_\infty)$. Then the equation

$$(A - E)z = PAz \tag{40}$$

has a non-trivial solution $z \in H_{\varphi}$. Obviously, $PAz = (Az, \varphi)\varphi$ is a vector of the form $c\varphi$.

Assume that $c \neq 0$. In this case, (40) can be re-written equivalently as

$$(\lambda - E)z(\lambda) = c\mathbf{1},\tag{41}$$

where $z(\lambda) := Uz$. Hence, $z(\lambda) = c/(\lambda - E)$, which tells us that

$$I(E) = \int_{\mathbb{R}} \frac{\mu(d\lambda)}{(\lambda - E)^2} = |c|^{-2} ||z||^2 < \infty.$$

Therefore, if $c \neq 0$, then $E \in S$. On the other hand, since

$$0 = (z, \varphi) = c \int_{\mathbb{R}} \frac{\mu(d\lambda)}{\lambda - E} = cJ(E),$$

we obtain also that J(E) = 0.

It remains to consider the case c = 0. In this case, (41) tells us that the support of $z(\lambda)$ consists of the point $\lambda = E$. The latter implies that

$$(z,\varphi) = \int_{\mathbb{R}} z(\lambda) \,\mu(d\lambda) = z(E) \,\mu(\{E\}) \neq 0,$$

which contradicts the assumption $z \in H_{\varphi}$. \Box

Corollary 5 Let the sets S and D be defined by (2) and (3) correspondingly. Then

 $D \setminus S = \sigma_p(A_0) \cap \Delta$ and $S \setminus D = \sigma_p(A_\infty) \cap \Delta$.

References

- [Ar] Aronszajn, N: On a problem of Weyl in the theory of singular Strurm-Liouville equations, Amer.J. of Math. 7 No 3 (1957) 597-610
- [At] Atkinson, F. V.: Discrete and continuous boundary problems. New York: Academic Press 1964.
- [C] Carmona, R.: One-dimensional Schrödinger operators with random or deterministic potentials: new spectral types. J. Func. Anal. **51**, 229-258 (1983).
- [CL] Carmona, R., Lacroix, J.: Spectral theory of random Schrödinger operators. Boston, MA: Birkhauser 1990.
- [CHM] Combes, J. M., Hislop, P. D., Mourre, E.: Spectral averaging, perturbation of singular spectra, and localization. 1995.
- [DLS] Delyon, F., Lèvy, Y., Souillard, B.: Anderson localization for one- and quasi-one-dimensional systems. J. Stat. Phys. **41**, 375-388 (1985).
- [D] Donoghue, W.: On the perturbation of spectra. Comm. Pure Appl. Math. 18, 559-579 (1965).
- [H] Howland, J.: Perturbation theory of dense point spectra. J. Funct. Anal. 74, 52-80 (1987).
- [J] Javrjan, V. A.: A certain inverse problem for Sturm Liouville operators. Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6, 246-251 (1971).
- [Ke] Kechris, A. S.: Classical descriptive set theory. New York: Springer, 1995.
- [K] Kotani, S.: Lyapunov exponents and spectra for one-dimensional random Schrödinger operators. Contemporary Mathematics 50, 277-286 (1986).
- [O] Oxtoby, J.: Measure and category. New York: Springer, 1971.
- [PF] Pastur, L., Figotin, A.: Random and almost-periodic operators.
- [P] Poltoratsky, A.: Finite frank perturbations of singular spectra. Intern. Math. Res. Notices 1997, 421-436.
- [RS] Reed, M., Simon, B.: Methods of modern mathematical physics, I. Functional analysis. Academic Press, New York, 1972.
- [S] Simon, B.: Spectral analysis of rank one perturbations and applications, lectures
- [SW] Simon, B., Wolff, T.: Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Comm. Pure Appl. Math. **39**, 75-90 (1986).
- [W] Wegner, F.: Bounds on the density of states in disordered systems. Z. Phys. B 44, 9-15 (1981).