A real-analytic proof of the Simon-Wolff theorem

Alexander Y. Gordon and Oleg Safronov

Department of Mathematics, University of North Carolina at Charlotte,

Charlotte, NC 28223
E-mail: osafrono@uncc.edu

November 20, 2019

Abstract

We derive the Simon-Wolff localization criterion from the spectral averaging using an intuitive measure theoretic lemma.

1 Introduction

Let A be a cyclic self-adjoint operator in a (separable) Hilbert space $H, \varphi(\|\varphi\|=1)$ its cyclic vector, and $P=P_{\varphi}$ the orthogonal projection onto the one-dimensional subspace $\mathbf{C} \varphi(P z=(z, \varphi) \varphi$ for all $z \in H)$. Define the operator family A_{t} by

$$
A_{t}=A+t P, \quad t \in \mathbb{R}
$$

Denote by $\mu_{A}^{\varphi}(d \lambda)$ the spectral measure of the vector φ for A (see [RS]).
The celebrated Simon-Wolff theorem says [SW]:
Theorem 1 Let Δ be a Borel subset of \mathbb{R}. The operator A_{t} has only pure point spectrum on Δ for Lebesgue a.e. $t \in \mathbb{R}$ if and only if

$$
\begin{equation*}
\int_{\mathbb{R}} \frac{\mu_{A}^{\varphi}(d \lambda)}{(\lambda-E)^{2}}<\infty \text { for Lebesgue a.e. } E \in \Delta . \tag{1}
\end{equation*}
$$

This theorem plays a fundamental role in localization theory (for some of its applications see [SW], [CL], [PF]). Several proofs of this theorem and its generalizations are known [SW], [H], [CHM], [P], [S]. The proof in [S] is particulary short, but it uses the so called Aronszajn-Donoghue theory [Ar], [D] formulated in terms of boundary values of a certain analytic function. The goal of the present work is to give an intuitively clear proof the Simon-Wolff theorem which does not mention analytic functions at all.

The remaining part of the paper is organized as follows. Section 2 contains several simple auxiliary statements. The Simon-Wolff theorem is proved in Section 3. The proof uses a lemma that may be interesting in its own right. The proof of the lemma is contained in the last section.

2 A different formulation of the Simon-Wolff theorem and a definition of the function τ

Throughout the paper we will use the following notations

$$
I(E):=\int_{\mathbb{R}} \frac{\mu(d \lambda)}{(\lambda-E)^{2}} \quad \text { and } \quad J(E):=\int_{\mathbb{R}} \frac{\mu(d \lambda)}{\lambda-E}
$$

where $\mu=\mu_{A}^{\varphi}$ is the spectral measure of φ for A. Let also

$$
\begin{equation*}
S:=\{E \in \Delta \mid I(E)<\infty\} \tag{2}
\end{equation*}
$$

The Simon-Wolff theorem states that

$$
A_{t} \text { has only pure point spectrum in } \Delta \text { for a.e. } t \in \mathbb{R} \text { iff }|\Delta|=|S| .
$$

In this statement, we are going to replace S by the set

$$
\begin{equation*}
D:=\left\{E \in \Delta \mid \exists t \in \mathbb{R} \text { for which } E \in \sigma_{p}\left(A_{t}\right)\right\} \tag{3}
\end{equation*}
$$

where $\sigma_{p}\left(A_{t}\right)$ denotes the set of eigenvalues of the operator A_{t}.
Proposition 1 The integral $J(E)$ is well-defined for any $E \in S$. If

$$
\begin{equation*}
E \in S \quad \text { and } \quad J(E) \neq 0 \tag{4}
\end{equation*}
$$

then $E \in D$. Any point of $D \backslash S$ is an eigenvalue of A.
Proof. The Spectral Theorem (see [RS]) states that, for a cyclic self-adjoint operator A and its normalized cyclic vector φ, there exists a unitary operator $U: H \rightarrow L^{2}(\mathbb{R}, \mu)$ such that $A=U^{-1} M_{\lambda} U$ and $U \varphi=1$. Here $1(\lambda) \equiv 1$ and M_{λ} is the operator of multiplication by the identity function $m(\lambda) \equiv \lambda$ in $L^{2}(\mathbb{R}, \mu)$.

If, for some E,

$$
I(E)<\infty
$$

then the function $z(\lambda)=(\lambda-E)^{-1}$ belongs to $L^{2}(\mathbb{R}, \mu)$. Hence the equation $(\lambda-E) z(\lambda)=1$ has a solution in $L^{2}(\mathbb{R}, \mu)$; equivalently, the equation

$$
\begin{equation*}
(A-E) z=\varphi \tag{5}
\end{equation*}
$$

has a solution in H. Observe now that $(z, \varphi)=J(E)$. Therefore, if $J(E) \neq 0$, then we can rewrite the equation (5) as $A z-\varphi=E z$, or $A z-\frac{1}{(z, \varphi)}(z, \varphi) \varphi=E z$. Since $(z, \varphi) \varphi=P z$, the previous equation means that

$$
\begin{equation*}
A_{t} z=E z, \tag{6}
\end{equation*}
$$

where $t=-1 / J(E)$. Therefore, conditions (4) imply that $E \in D$.
Let now $E \in D \backslash S$. According to the definition of the set D, there is a number $t \in \mathbb{R}$ such that the equation

$$
\begin{equation*}
(A-E) z=-t P z \tag{7}
\end{equation*}
$$

has a non-trivial solution $z \in H$. Obviously, $-t P z=-t(z, \varphi) \varphi$ is a vector of the form $c \varphi$.
Let us show that $c=0$. For that purpose, assume the opposite, i.e. that $c \neq 0$. In this case, (7) can be re-written in the equivalent form

$$
(\lambda-E) z(\lambda)=c \mathbf{1}
$$

where $z(\lambda):=U z$. Hence, $z(\lambda)=c /(\lambda-E)$, which tells us that

$$
|c|^{2} \int_{\mathbb{R}} \frac{\mu(d \lambda)}{(\lambda-E)^{2}}=\|z\|^{2}<\infty
$$

Therefore, if $c \neq 0$, then $E \in S$, which contradicts our assumptions. Thus, $c=0$ and the right hand side of (7) is zero, which means that E is an eigenvalue of A.

Corollary 1 Let S and D be the sets defined in (2) and (3). Then

$$
\begin{equation*}
S \backslash D=Z \cap \Delta, \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
Z:=\{E \in \mathbb{R} \mid I(E)<\infty \text { and } J(E)=0\} \tag{9}
\end{equation*}
$$

Proof. It follows from Proposition 1 that

$$
S \backslash D \subset Z \cap \Delta
$$

It remains to prove that if $E \in S$ and $J(E)=0$, then $E \notin D$. Assume the opposite, i.e. that $E \in S \cap D$ and $J(E)=0$. Since a point of the set S can not be an atom of the measure μ, we conclude that E is not an eigenvalue of the operator A. We also conclude from the relation $E \in D$, that there is a number $t \neq 0$ and a non-zero vector $z \in H$, obeying the condition

$$
\begin{equation*}
A_{t} z=E z \tag{10}
\end{equation*}
$$

Observe that $t P z$ can not be zero, otherwise, (10) would mean that E is an eigenvalue of A. So,

$$
\begin{equation*}
-t P z=c \varphi, \quad \text { with } c \neq 0 \tag{11}
\end{equation*}
$$

Therefore, (10) and (11) imply that the function $z(\lambda)=U z$ coincides with $c /(\lambda-E)$, because

$$
(\lambda-E) z(\lambda)=c \mathbf{1}
$$

In this case, $(z, \varphi)=c J(E)=0$. Consequently, $P z=0$, which contradicts (11).
Proposition 2 The set Z is countable.

Proof. Proposition 2 follows from the observation that if $E^{\prime}, E \in Z$ are distinct, then the two functions $1 /\left(\lambda-E^{\prime}\right)$ and $1 /(\lambda-E)$ are orthogonal to each other in the separable space $L^{2}(\mathbb{R}, \mu)$:

$$
\left(E-E^{\prime}\right) \int_{\mathbb{R}} \frac{\mu(d \lambda)}{(\lambda-E)\left(\lambda-E^{\prime}\right)}=\int_{\mathbb{R}} \frac{\mu(d \lambda)}{\left(\lambda-E^{\prime}\right)}-\int_{\mathbb{R}} \frac{\mu(d \lambda)}{(\lambda-E)}=0 .
$$

The statement of Proposition 2 follows also from Proposition 8 stating the fact that Z coincides with the set of eigenvalues of a selfadjoint operator A_{∞} acting in the orthogonal compliment to the vector φ. A description of this operator is given in the Appendix of the present paper and in Section I. 5 of [S].

According to our observations, $S \backslash D=Z \cap \Delta$ is countable. We also see that $D \backslash S=\sigma_{p}(A) \cap \Delta$ is countable as well. Therefore, $|D|=|S|$ and the Simon-Wolff theorem is equivalent to the following statement:

The spectrum of A_{t} is pure point in Δ for a.e. $t \in \mathbb{R} \quad$ iff $\quad|\Delta|=|D|$.
Lemma 1 [D] If $A_{t} y=$ Ey and $y \neq 0$, then $(y, \varphi) \neq 0$.
Proof [D]. Assume the converse. Then $P y=0$, hence $A y=E y$. Since y is cyclic for A, the linear span of the vectors $(A-\lambda)^{-1} \varphi(\lambda \in \mathbf{C} \backslash \mathbb{R})$ is dense in H. But

$$
\left(y,(A-\lambda)^{-1} \varphi\right)=\left((A-\bar{\lambda})^{-1} y, \varphi\right)=(E-\bar{\lambda})^{-1}(y, \varphi)=0
$$

and the above linear span cannot be dense, which is a contradiction.
Consequently, we can normalize eigenvectors y of the operators A_{t} by

$$
\begin{equation*}
(y, \varphi)=1 \tag{12}
\end{equation*}
$$

In what follows, we always assume that eigenvectors are normalized according to (12).
Lemma 2 If $A_{t_{1}} y_{1}=E_{1} y_{1}, A_{t_{2}} y_{2}=E_{2} y_{2}$, and $\left(y_{1}, \varphi\right)=\left(y_{2}, \varphi\right)=1$, then

$$
\begin{equation*}
t_{1}-t_{2}=\left(E_{1}-E_{2}\right)\left(y_{1}, y_{2}\right) \tag{13}
\end{equation*}
$$

Proof.

$$
\left(A_{t_{1}} y_{1}, y_{2}\right)-\left(y_{1}, A_{t_{2}} y_{2}\right)=\left(E_{1} y_{1}, y_{2}\right)-\left(y_{1}, E_{2} y_{2}\right)=\left(E_{1}-E_{2}\right)\left(y_{1}, y_{2}\right)
$$

On the other hand,

$$
\begin{gathered}
\left(\left(A+t_{1} P\right) y_{1}, y_{2}\right)-\left(y_{1},\left(A+t_{2} P\right) y_{2}\right)=t_{1}\left(P y_{1}, y_{2}\right)-t_{2}\left(y_{1}, P y_{2}\right) \\
=t_{1}\left(\left(y_{1}, \varphi\right) \varphi, y_{2}\right)-t_{2}\left(y_{1},\left(y_{2}, \varphi\right) \varphi\right)=t_{1}\left(y_{1}, \varphi\right)\left(\varphi, y_{2}\right)-t_{2} \overline{\left(y_{2}, \varphi\right)}\left(y_{1}, \varphi\right)=t_{1}-t_{2} .
\end{gathered}
$$

Now, we define the function τ on the set D as follows:

Definition. For any $E \in D$ the value $\tau(E)$ equals the number $t \in \mathbb{R}$ for which $E \in \sigma_{p}\left(A_{t}\right)$. According to (13) this t is uniquely defined.

Note that Proposition 1 tells us that τ vanishes on $D \backslash S$, because all points of $D \backslash S$ are eigenvalues of A. Observe also that the multiplicity of any eigenvalue E of A_{t} is 1 . If it was larger than 1 , then one would be able to find an eigenvector orthogonal to φ. Thus, for each $E \in D$, there is a unique vector $y_{E} \in H$, such that $\left(y_{E}, \varphi\right)=1$ and $A_{\tau(E)} y_{E}=E y_{E}$. The equation (13) can be now written in the form

$$
\begin{equation*}
\tau\left(E_{1}\right)-\tau\left(E_{2}\right)=\left(E_{1}-E_{2}\right)\left(y_{E_{1}}, y_{E_{2}}\right) \text { for all } E_{1}, E_{2} \in D \tag{14}
\end{equation*}
$$

3 The proof of Theorem 1

To prove the Simon-Wolff theorem, we use the following lemma.
Lemma 3 Let X be a Borel set in \mathbb{R} and $\tau: X \rightarrow \mathbb{R}$ be a function such that for any non-isolated point $E \in X$ there exists a finite non-zero limit

$$
\begin{equation*}
\tau^{*}(E):=\lim _{X \ni E^{\prime} \rightarrow E} \frac{\tau\left(E^{\prime}\right)-\tau(E)}{E^{\prime}-E} \neq 0 . \tag{15}
\end{equation*}
$$

Define the function $\tau^{*}(\cdot)$ at isolated points of X arbitrarily (so that $\tau^{*}(\cdot) \neq 0$). Then

$$
\begin{equation*}
|X|=\int_{\mathbb{R}} d t \sum_{E \in X: \tau(E)=t} \frac{1}{\left|\tau^{*}(E)\right|} \tag{16}
\end{equation*}
$$

where the integrand is a Borel function on \mathbb{R} with values in $[0, \infty]$.
Although Lemma 3 is intuitively clear, a detailed proof seems appropriate. It is deferred until the last section.

Let N be a positive integer. Define the set D_{N} by

$$
D_{N}:=\left\{E \in D \mid\left\|y_{E}\right\|^{2} \leq N\right\} .
$$

Here y_{E} is the (unique) eigenvector of $A_{\tau(E)}$ corresponding to the eigenvalue E and normalized by $\left(y_{E}, \varphi\right)=1$.
Proposition 3 Let Δ be a Borel subset of \mathbb{R}. Then the set D_{N} is Borel for each N.
Proof. Since the sets $D \backslash S$ and Z are countable, it is sufficient to prove that $D_{N} \cap(S \backslash Z)$ is Borel. For that purpose, we observe that

$$
D_{N} \cap(S \backslash Z)=\{E \in S \backslash Z \mid \psi(E) \leq N\},
$$

where the function $\psi: \mathbb{R} \rightarrow[0, \infty]$ is defined on $S \backslash Z$ by

$$
\psi(E)=\frac{I(E)}{J^{2}(E)}
$$

The functions I and J are pointwise limits of Borel measurable functions

$$
I_{n}(E)=\int_{\lambda \in \mathbb{R}:|\lambda-E| \geq \frac{1}{n}} \frac{\mu(d \lambda)}{(\lambda-E)^{2}}, \quad J_{n}(E)=\int_{\lambda \in \mathbb{R}:|\lambda-E| \geq \frac{1}{n}} \frac{\mu(d \lambda)}{(\lambda-E)}
$$

Consequently, ψ is Borel measurable. Measurability of I_{n} and J_{n} follows from the fact that I_{n} and J_{n} are continuous on the complment of a countable set.

Lemma 4 Suppose E is a non-isolated point of D_{N}. As $D_{N} \ni E^{\prime} \rightarrow E \in D_{N}$, we have

$$
\begin{equation*}
\frac{\tau\left(E^{\prime}\right)-\tau(E)}{E^{\prime}-E} \rightarrow\left\|y_{E}\right\|^{2} \tag{17}
\end{equation*}
$$

Proof. According to (14), we only need to show that

$$
\left(y_{E^{\prime}}, y_{E}\right) \rightarrow\left\|y_{E}\right\|^{2}
$$

as $D_{N} \ni E^{\prime} \rightarrow E \in D_{N}$. Assume the opposite, i.e. that there exists a positive number $\varepsilon>0$ and a sequence $D_{N} \ni E_{n} \rightarrow E \in D_{N}$, such that

$$
\begin{equation*}
\left|\left(y_{E_{n}}, y_{E}\right)-\left\|y_{E}\right\|^{2}\right| \geq \varepsilon, \quad \forall n \tag{18}
\end{equation*}
$$

It follows from (14) that the function τ is Lipschitz on D_{N} :

$$
\left|\tau\left(E^{\prime}\right)-\tau(E)\right| \leq N\left|E^{\prime}-E\right|, \quad E^{\prime}, E \in D_{N}
$$

Consequently, the sequence of numbers $t_{n}:=\tau\left(E_{n}\right)$ converges to $t:=\tau(E)$.
For the corresponding eigenvector $y_{n}:=y_{E_{n}}$, we have $A_{t_{n}} y_{n}=E_{n} y_{n}$; moreover, $\left\|y_{n}\right\|^{2} \leq N$ and $\left(y_{n}, \varphi\right)=1$.

Since any ball of radius N is weakly compact in H, we may assume without loss of generality that y_{n} converges weakly to some vector y; clearly, $\|y\|^{2} \leq N$ and $(y, \varphi)=1$.

In the equality

$$
A y_{n}+t_{n}\left(y_{n}, \varphi\right) \varphi=E_{n} y_{n}
$$

we have $t_{n} \rightarrow t,\left(y_{n}, \varphi\right)=(y, \varphi)=1, E_{n} \rightarrow E$, and $y_{n} \xrightarrow{w} y$. This implies the weak convergence of $A y_{n}$ to some vector z. Moreover,

$$
\begin{equation*}
z+t(y, \varphi) \varphi=E y \tag{19}
\end{equation*}
$$

On the other hand, $\left(A y_{n}, h\right)=\left(y_{n}, A h\right)$ for any $h \in \operatorname{Dom}(A)$. Passing to the limit as $n \rightarrow \infty$ in this relation, we obtain the relation

$$
(z, h)=(y, A h), \quad \forall h \in \operatorname{Dom}(A),
$$

which means that $y \in \operatorname{Dom}(A)$ and $A y=z$. This, along with (19), implies the equality

$$
A_{t} y=E y
$$

Put differently, the sequence of vectors y_{n} converges weakly to y_{E}. The latter contradicts (18).
If E is an eigenvalue of A_{t}, then E is an atom of μ_{t}, the spectral measure of A_{t}, corresponding to the vector φ. By the Spectral Theorem [RS], the mass of this atom equals

$$
\begin{equation*}
\mu_{t}(\{E\})=\left\|\mathcal{E}_{A_{t}}(\{E\}) \varphi\right\|^{2}=\left|\left(\varphi, \frac{y_{E}}{\left\|y_{E}\right\|}\right)\right|^{2}=\frac{1}{\left\|y_{E}\right\|^{2}} \tag{20}
\end{equation*}
$$

(here $\mathcal{E}_{A_{t}}(Y)$, for any Borel set Y, denotes the spectral projection for A_{t} associated with Y; we use the fact that, by Lemma 5, φ is cyclic for A_{t}).

Let us apply Lemma 3 to $X=D_{N}$ and $\tau(E)$ defined in this section. Therefore,

$$
\left|D_{N}\right|=\int_{-\infty}^{\infty} d t \sum_{E \in D_{N}: \tau(E)=t} \frac{1}{\tau^{*}(E)}=\int_{-\infty}^{\infty} d t \sum_{E \in D_{N}: \tau(E)=t} \frac{1}{\left\|y_{E}\right\|^{2}}=\int_{-\infty}^{\infty} d t \sum_{E \in D_{N}} \mu_{t}(\{E\}) .
$$

(The second equality makes use of (17). The third equality follows from (20).) Passing to the limit as $N \rightarrow \infty$, we obtain:

$$
|D|=\int_{\mathbb{R}} d t \sum_{E \in \Delta \cap \sigma_{p}\left(A_{t}\right)} \mu_{t}(\{E\}) d t
$$

or, equivalently,

$$
\begin{equation*}
|D|=\int_{\mathbb{R}} \mu_{t}^{p}(\Delta) d t \tag{21}
\end{equation*}
$$

Here the symbol μ_{t}^{p} denotes the pure point component in the standard decomposition of μ_{t} into its pure point and continuous components: $\mu_{t}=\mu_{t}^{p}+\mu_{t}^{c}$.

On the other hand, there is a fundamental identity due to Atkinson [At] (which was later rediscovered and/or cleverly used by Javrjan [J], Wegner [W], Carmona [C], Kotani [K], Delyon-Lévy-Souillard [DLS], and Simon-Wolff [SW]):

$$
\begin{equation*}
|\Delta|=\int_{\mathbb{R}} \mu_{t}(\Delta) d t \tag{22}
\end{equation*}
$$

Subtracting (21) from (22), we obtain:

$$
|\Delta \backslash D|=\int_{-\infty}^{\infty} \mu_{t}^{c}(\Delta) d t
$$

It follows that Lebesgue a.e. point of Δ belongs to D if and only if

$$
\begin{equation*}
\mu_{t}^{c}(\Delta)=0 \tag{23}
\end{equation*}
$$

for Lebesgue a.e. $t \in \mathbb{R}$.
Since, φ is cyclic for A_{t} for all t (see the lemma below), the equation (23) - the absence of the continuous component of μ_{t} on Δ - is equivalent to the fact that the operator A_{t} has in Δ only pure point spectrum. This completes the proof of the Simon-Wolff theorem up to the following statement:
Lemma 5 For any $t \in \mathbb{R}$, the vector φ is cyclic for A_{t}.
Proof. Assume the converse. Then there is a nonzero $y \in H$ such that $\left(\left(A_{t}-\lambda I\right)^{-1} \varphi, y\right)=0$ for all $\lambda \in \mathbb{C} \backslash \mathbb{R}$. By the resolvent identity,

$$
(A-\lambda I)^{-1}-\left(A_{t}-\lambda I\right)^{-1}=\left(A_{t}-\lambda I\right)^{-1}(t P)(A-\lambda I)^{-1}
$$

so that

$$
(A-\lambda I)^{-1} \varphi=\left(A_{t}-\lambda I\right)^{-1} \varphi+c_{t}\left(A_{t}-\lambda I\right)^{-1} \varphi
$$

with some $c_{t} \in \mathbb{C}$. By the assumption, this vector is orthogonal to y for all $\lambda \in \mathbb{C} \backslash \mathbb{R}$, which contradicts the cyclicity of φ for A.

4 Proof of Lemma 3

Before we prove Lemma 3, we make several remarks.
Remark 1. The existence of the finite limit (15) for all non-isolated points E of X implies that the function $\tau: X \rightarrow \mathbb{R}$ is continuous.

Remark 2. Let us denote the integrand in (16) by $g(t)$. The statement that $g(\cdot)$ is a Borel function implies that $\tau(X)=\{t \in \mathbb{R}: g(t)>0\}$ is a Borel set. Note that, in general, a set of the form $f(Y)$, where the set Y is Borel and the function f is continuous, is not necessarily Borel [Ke, Theorem 14.2].

The proof of Lemma 3 consists of justification of several statements.
Lemma $6 \quad \tau^{*}: X \rightarrow \mathbb{R}$ is a Borel function.
Proof. Denote the graph of $\tau(\cdot)$ by G. Let \widehat{G} be a countable dense subset of G, and let $\widehat{X}:=\operatorname{pr}_{E}(\widehat{G})$ be the projection of \widehat{G} onto the E-axis.

For any non-isolated point $E \in X$, we have

$$
\tau^{*}(E)=\limsup _{X \ni E^{\prime} \rightarrow E} f_{E^{\prime}}(E)=\limsup _{\widehat{X} \ni E^{\prime} \rightarrow E} f_{E^{\prime}}(E),
$$

where

$$
f_{E^{\prime}}(E):=\frac{\tau\left(E^{\prime}\right)-\tau(E)}{E^{\prime}-E}
$$

is a Borel function on $X \backslash\left\{E^{\prime}\right\}$.
By the definition of limsup,

$$
\tau^{*}(E)=\lim _{k \rightarrow \infty}\left(\sup \left\{f_{E^{\prime}}(E) \mid E^{\prime} \in X \cap U_{1 / k}^{*}(E)\right)\right.
$$

where $U_{1 / k}^{*}(E)=[E-1 / k, E+1 / k] \backslash\{E\}$. Since \widehat{G} is dense in G, we also have

$$
\tau^{*}(E)=\lim _{k \rightarrow \infty}\left(\sup \left\{f_{E^{\prime}}(E) \mid E^{\prime} \in \widehat{X} \cap U_{1 / k}^{*}(E)\right)\right.
$$

Therefore, $\tau^{*}(E)<a$ iff there are $m, k \in \mathbb{N}$ such that $f_{E^{\prime}}(E) \leq a-1 / m$ whenever $E^{\prime} \in \widehat{X}$ and $0<\left|E-E^{\prime}\right| \leq 1 / k$. In other words, $\tau^{*}(E)<a$ iff there are $m, k \in \mathbb{N}$ such that for any $E^{\prime} \in \widehat{X}$ we have either $f_{E^{\prime}}(E) \leq a-1 / m$ or $E \notin U_{1 / k}^{*}\left(E^{\prime}\right)$. This means that the set $\left\{E \in X \mid \tau^{*}(E)<a\right\}$ equals

$$
\bigcup_{m} \bigcup_{k} \bigcap_{E^{\prime} \in \widehat{X}}\left(\left\{E \in X \left\lvert\, f_{E^{\prime}}(E) \leq a-\frac{1}{m}\right.\right\} \bigcup\left(X \backslash U_{1 / k}^{*}\left(E^{\prime}\right)\right)\right.
$$

and hence is a Borel set.
Definition 1 We will say that a Borel subset Y of X is good if the following conditions are fulfilled:
(i) the function $g_{Y}: \mathbb{R} \rightarrow[0, \infty]$ defined by the equation

$$
g_{Y}(t):=\sum_{E \in Y: \tau(E)=t} \frac{1}{\left|\tau^{*}(E)\right|}
$$

is Borel;
(ii) the equality holds:

$$
\begin{equation*}
\int_{\mathbb{R}} d t \sum_{E \in Y: \tau(E)=t} \frac{1}{\left|\tau^{*}(E)\right|}=|Y| . \tag{24}
\end{equation*}
$$

Lemma 3 states that the set X is good.
Lemma 7 Given a Borel set $Y(Y \subset X)$, let

$$
\widetilde{Y}:=\{E \in Y \mid \text { the set } Y \cap(E-\varepsilon, E+\varepsilon) \text { is uncountable for all } \varepsilon>0\} .
$$

The set \widetilde{Y} is Borel; it is good iff Y is good.
Proof. The set $Z_{Y}:=Y \backslash \tilde{Y}$ consists of all points $E \in Y$ such that E is contained in an interval whose intersection with Y is countable. These intervals can be chosen to have rational endpoints, which shows that Z_{Y} is countable. Consequently, the set \widetilde{Y} is Borel. Since the functions

$$
g_{Y}(t)=\sum_{E \in Y: \tau(E)=t} \frac{1}{\left|\tau^{*}(x)\right|} \quad \text { and } \quad g_{\tilde{Y}}(t)=\sum_{E \in \tilde{Y}: \tau(E)=t} \frac{1}{\left|\tau^{*}(x)\right|}
$$

differ only on the countable set $\tau\left(Z_{Y}\right)$, they are both Borel or both non-Borel. In the former case they have the same integral over \mathbb{R}. It is also obvious that $|\widetilde{Y}|=|Y|$. Therefore, if one of the sets Y and \widetilde{Y} is good, the other set is good as well.

Lemma 8

(a) If sets Y_{1}, Y_{2}, \ldots are good and disjoint, then the set $Y:=Y_{1} \sqcup Y_{2} \sqcup \ldots$ is good.
(b) If sets Y_{1}, Y_{2}, \ldots are good and $Y_{1} \subset Y_{2} \subset \ldots$, then the set $Y:=Y_{1} \cup Y_{2} \cup \ldots$ is good.
(c) If sets Y_{1}, Y_{2}, \ldots are good, $Y_{1} \supset Y_{2} \supset \ldots$ and $\left|Y_{1}\right|<\infty$, then the set $Y:=Y_{1} \cap Y_{2} \cap \ldots$ is good.
(d) The empty set \varnothing is good.

Proof. (a) For any $t \in \mathbb{R}$, we have $g_{Y}(t)=\sum_{n} g_{Y_{n}}(t)$, so $g_{Y}(\cdot)$ is Borel and

$$
\int_{\mathbb{R}} g_{Y}(t) d t=\sum_{n} \int_{\mathbb{R}} g_{Y_{n}}(t) d t=\sum_{n}\left|Y_{n}\right|=|Y| .
$$

(b) We have $g_{Y_{n}}(t) \nearrow g_{Y}(t)$ for all $t \in \mathbb{R}$; therefore, $g_{Y}(\cdot)$ is Borel and

$$
\int_{\mathbb{R}} g_{Y}(t) d t=\lim _{n} \int_{\mathbb{R}} g_{Y_{n}}(t) d t=\lim _{n}\left|Y_{n}\right|=|Y|
$$

(c) We have $g_{Y_{n}}(t) \searrow g_{Y}(t)$ for all $t \in \mathbb{R}$; therefore, $g_{Y}(\cdot)$ is Borel and, since $\int_{\mathbb{R}} g_{Y_{1}}(t) d t=\left|Y_{1}\right|<\infty$,

$$
\int_{\mathbb{R}} g_{Y}(t) d t=\lim _{n} \int_{\mathbb{R}} g_{Y_{n}}(t) d t=\lim _{n}\left|Y_{n}\right|=|Y|
$$

(d) Obvious.

Corollary 2 Suppose a Borel subset Y of X is such that for any $n \in \mathbb{N}$ the set $Y \bigcap[-n, n]$ is good. Then the set Y is good too.

Proof. We have $Y=\bigcup_{n}(Y \bigcap[-n, n])$, so the statement follows from Lemma 8(b).
The corollary can be applied to the set X. Therefore, in the rest of the proof we will assume that the set X is bounded.

In the remaining part of the proof, we will gradually expand the class of subsets of X known to be good until it includes the set X itself. Every time we state that all subsets of X having a certain property are good, it will be sufficient (due to Lemma 7) to consider only those subsets that have no isolated points.

Lemma 9 Suppose that, under the assumptions of Lemma 3, a Borel subset Y of X has the property that there are two constants $A, B(0<A \leq B<\infty)$ such that

$$
\begin{equation*}
A\left(E^{\prime}-E\right) \leq \tau\left(E^{\prime}\right)-\tau(E) \leq B\left(E^{\prime}-E\right) \tag{25}
\end{equation*}
$$

for all $E, E^{\prime} \in Y\left(E<E^{\prime}\right)$. Then the set Y is good.
Proof. Let $I=[\inf Y, \sup Y] \equiv[\alpha, \beta](\alpha<\beta)$ and $J=[\tau(\alpha), \tau(\beta)]$. By (25), $\tau(\cdot)$ can be continued (uniquely) to a continuous function $\tau: I \rightarrow J$ that is linear on each connected component of the open set $I \backslash \bar{Y}$, where \bar{Y} is the closure of Y. Then (25) still holds for all $E, E^{\prime} \in I\left(E<E^{\prime}\right)$. Hence $\tau: I \rightarrow J$ is a homeomorphism, and $\tau(Y)$, like Y, is a Borel set. In addition, $t \mapsto \tau^{*}\left(\tau^{-1}(t)\right)$ is a Borel function on $\tau(Y)$ as a composition of two Borel functions.

Since (25) holds for all $E, E^{\prime} \in Y\left(E<E^{\prime}\right)$, the function $\tau^{-1}: J \rightarrow I$ is absolutely continuous and has, for a.e. $t \in J$, a derivative $\left(\tau^{-1}\right)^{\prime}(t) \in\left[B^{-1}, A^{-1}\right]$. For any $u, v \in J(u<v)$, the equation holds:

$$
\tau^{-1}(v)-\tau^{-1}(u)=\int_{u}^{v}\left(\tau^{-1}\right)^{\prime}(t) d t
$$

In other words, if W is a subinterval of J, then

$$
\left|\tau^{-1}(W)\right|=\int_{W}\left(\tau^{-1}\right)^{\prime}(t) d t
$$

It follows (by summation) that the same is true if W is any relatively open subset of the closed interval J and, by approximation from outside, if W is any Borel subset of J. In particular, this is true for $W=\tau(Y)$:

$$
|Y|=\int_{\tau(Y)}\left(\tau^{-1}\right)^{\prime}(t) d t
$$

Since $\left(\tau^{-1}\right)^{\prime}(t)=\frac{1}{\tau^{\prime}\left(\tau^{-1}(t)\right)}$ and $\tau^{\prime}(E)=\tau^{*}(E)$ for $E \in Y$, we get

$$
|Y|=\int_{\tau(Y)} \frac{d t}{\tau^{*}\left(\tau^{-1}(t)\right)}
$$

As $\tau: Y \rightarrow \tau(Y)$ is a bijection, this is equivalent to (24).

Lemma 10 Suppose that, under the assumptions of Lemma 3, a Borel subset Y of X is such that for some constants $A, B(0<A \leq B<\infty)$ and $\delta>0$ the double inequality

$$
\begin{equation*}
A\left(E^{\prime}-E\right) \leq \tau\left(E^{\prime}\right)-\tau(E) \leq B\left(E^{\prime}-E\right) \tag{26}
\end{equation*}
$$

holds for all $E, E^{\prime} \in Y$ with $0<E^{\prime}-E<\delta$. Then the set Y is good.
Proof. Partition Y into a countable set of Borel sets of diameter $<\delta$ each. All of them are good by Lemma 9, so Y is good by Lemma 8(a).

Lemma 11 Under the assumptions of Lemma 3, for any $a, b \in \mathbb{R}$ such that $0<a \leq b<\infty$, the set $X_{[a, b]}$ of all $E \in X$ for which

$$
\begin{equation*}
a \leq \tau^{*}(E) \leq b \tag{27}
\end{equation*}
$$

is good.
Proof. As we did before, denote by \widehat{X} a countable subset of X such that the set $\{(E, \tau(E)) \mid E \in \widehat{X}\}$ is dense in the graph of τ, and denote by $g_{E^{\prime}}(\cdot)$ the function

$$
g_{E^{\prime}}(E):=\frac{\tau\left(E^{\prime}\right)-\tau(E)}{E^{\prime}-E}, \quad E \in X \backslash\left\{E^{\prime}\right\}
$$

Fix $m \in \mathbb{N}$ such that $1 / m<a$ and define a sequence of sets $X_{k}^{m}(k \in \mathbb{N})$ as follows: the set X_{k}^{m} consists of all $E \in X$ such that

$$
\begin{equation*}
a-\frac{1}{m} \leq g_{E^{\prime}}(E) \leq b+\frac{1}{m} \tag{28}
\end{equation*}
$$

for all $E^{\prime} \in \widehat{X}$ with $0<\left|E^{\prime}-E\right| \leq 1 / k$.
The set X_{k}^{m} is Borel. To show this, let us verify that the set $\left(X_{k}^{m}\right)^{-}$of all $E \in X$ satisfying the first inequality in (28) for all $E^{\prime} \in \widehat{X}$ with $0<\left|E^{\prime}-E\right| \leq 1 / k$ is Borel. The arguments are similar to those in the proof of Lemma 6 . A point $E \in X$ belongs to ($\left.X_{k}^{m}\right)^{-}$iff $g_{E^{\prime}}(E) \geq a-\frac{1}{m}$ for all $E^{\prime} \in \widehat{X} \cap U_{1 / k}^{*}(E)$. This is equivalent to the fact that for any $E^{\prime} \in \widehat{X}, E$ satisfies at least one of the two conditions: either $g_{E^{\prime}}(E) \geq a-1 / m$ or $E \notin U_{1 / k}^{*}\left(E^{\prime}\right)$. Since the functions $g_{E^{\prime}}(\cdot)\left(E^{\prime} \in \widehat{X}\right)$ are Borel and the set \widehat{X} is countable, this shows that the set $\left(X_{k}^{m}\right)^{-}$is Borel. Similarly, the set $\left(X_{k}^{m}\right)^{+}$(defined in an obvious way) is Borel, so the set $X_{k}^{m}=\left(X_{k}^{m}\right)^{-} \cap\left(X_{k}^{m}\right)^{+}$is Borel too.

Now note that in the definition of the set X_{k}^{m} the set \widehat{X} can be replaced by X :

$$
\begin{equation*}
X_{k}^{m}=\left\{E \in X \left\lvert\, g_{E^{\prime}}(E) \in\left[a-\frac{1}{m}, b+\frac{1}{m}\right]\right. \text { if } E^{\prime} \in X \text { and } 0<\left|E^{\prime}-E\right| \leq \frac{1}{k}\right\} \tag{29}
\end{equation*}
$$

The sets $X_{k}^{m}(k \in \mathbb{N})$ are nested: $X_{k}^{m} \subset X_{k+1}^{m}$ for all $k \in \mathbb{N}$. The Borel set

$$
\begin{equation*}
X^{m}:=\bigcup_{k \in \mathbb{N}} X_{k}^{m} \tag{30}
\end{equation*}
$$

consists of all points $E \in X$ such that $g_{E^{\prime}}(E) \in[a-1 / m, b+1 / m]$ for all $E^{\prime} \in X\left(E^{\prime} \neq E\right)$ close enough to E. Consequently, the Borel set

$$
\begin{equation*}
X^{\infty}:=\bigcap_{m} X^{m} \tag{31}
\end{equation*}
$$

coincides with the set $X_{[a, b]}$ of all $E \in X$ such that $\tau^{*}(E) \in[a, b]$.
The set $X_{[a, b]}$ is good. To see why, we first note that for any $m, k \in \mathbb{N}$ the set X_{k}^{m} defined by (29) is good: this follows from Lemma 10, which should be applied with $A=a-1 / m, B=b+1 / m$ and $\delta=1 / k$. Second, the set X^{m} defined by (30) is good by Lemma 8(b). Finally, the set $X_{[a, b]}=X^{\infty}$ defined by (31) is good by Lemma 8(c) (we use the assumption that the set X is bounded and hence $|X|<\infty)$.

Corollary 3 Under the assumptions of Lemma 3, let $a, b \in \mathbb{R}$ be two constants such that $0<a<b<\infty$. The set

$$
X_{(a, b]}:=\left\{E \in X \mid a<\tau^{*}(E) \leq b\right\}
$$

is good.
Proof. We have

$$
X_{(a, b]}=\bigcup_{n \in \mathbb{N}: n>1 /(b-a)} X_{\left[a+\frac{1}{n}, b\right]},
$$

so the statement follows from Lemma 8(b).

End of proof of Lemma 3.

We partition X into countably many disjoint Borel sets

$$
X_{k}^{+}:=X_{\left(2^{k}, 2^{k+1}\right]} \equiv\left\{E \in X \mid 2^{k}<\tau^{*}(E) \leq 2^{k+1}\right\} \quad(k \in \mathbb{Z})
$$

and

$$
X_{k}^{-}:=X_{\left[-2^{k+1},-2^{k}\right)} \equiv\left\{E \in X \mid-2^{k+1} \leq \tau^{*}(E)<-2^{k}\right\} \quad(k \in \mathbb{Z})
$$

Each set X_{k}^{+}is good by Corollary 3. Each set X_{k}^{-}is good by Corollary 3 applied to the function $-\tau(\cdot)$ instead of $\tau(\cdot)$. By Lemma 8(a), the set X is good.

5 Appendix: infinite coupling

In this section, we give a natural definition of a certain operator A_{∞} playing the role of A_{t} for $t=\infty$. First, we extend the function $J(E)$ originally defined on the set S to a function on $(\mathbb{C} \backslash \mathbb{R}) \cup S$

$$
\begin{equation*}
J(z):=\int_{\mathbb{R}} \frac{\mu(d \lambda)}{\lambda-z}, \quad z \in \mathbb{C} \backslash \mathbb{R} . \tag{32}
\end{equation*}
$$

Proposition 4 Let $J(z)$ be defined by (32). Then

$$
\pm \operatorname{Im} J(z)>0 \quad \text { for } \quad \pm \operatorname{Im} z>0
$$

In particular, $J(z) \notin \mathbb{R}$ for all $z \in \mathbb{C} \backslash \mathbb{R}$.
Proof. Indeed,

$$
\operatorname{Im} J(z)=\operatorname{Im} z \int_{\mathbb{R}} \frac{\mu(d \lambda)}{(\lambda-\operatorname{Re} z)^{2}+(\operatorname{Im} z)^{2}}
$$

Proposition 5 For any $z \in \mathbb{C} \backslash \mathbb{R}$,

$$
\begin{equation*}
\left(A_{t}-z\right)^{-1}=(A-z)^{-1}-\frac{t}{1+t J(z)}(A-z)^{-1} P(A-z)^{-1} . \tag{33}
\end{equation*}
$$

Proof. Obviously, the range of the operator in the right hand side of (33) is contained in $\operatorname{Dom}(A)$. Therefore, we can multiply this oparator by $A_{t}-z$ from the left. The product is equal to I, because

$$
\left(A_{t}-z\right)(A-z)^{-1}=I+t P(A-z)^{-1}
$$

and

$$
P(A-z)^{-1} P=J(z) P .
$$

Corollary 4 For any $z \in \mathbb{C} \backslash \mathbb{R}$,

$$
\begin{equation*}
\left(A_{t}-z\right)^{-1} \longrightarrow R(z):=(A-z)^{-1}-\frac{1}{J(z)}(A-z)^{-1} P(A-z)^{-1}, \quad \text { as } t \rightarrow \infty, \tag{34}
\end{equation*}
$$

in the operator norm topology.
Proposition 6 The range of the bounded operator $R(z)$ is contained in the space H_{φ} of vectors orthogonal to φ. In particular, H_{φ} is invariant for $R(z)$.

Proof. It is sufficient to show that $P R(z)=0$. The latter follows once one combines the equality

$$
P R(z)=P(A-z)^{-1}-\frac{1}{J(z)} P(A-z)^{-1} P(A-z)^{-1}
$$

with the fact that $P(A-z)^{-1} P=J(z) P$.
Proposition 7 Let A_{∞} be the operator in H_{φ} defined on $\operatorname{Dom}\left(A_{\infty}\right)=\operatorname{Dom}(A) \cap H_{\varphi}$ by

$$
A_{\infty} y=(I-P) A y .
$$

Then A_{∞} is densily defined and selfadjoint in H_{φ}. Moreover,

$$
\begin{equation*}
\left(A_{\infty}-z\right)^{-1}=\left.R(z)\right|_{H_{\varphi}} \quad \forall z \in \mathbb{C} \backslash \mathbb{R} . \tag{35}
\end{equation*}
$$

Proof. The operator A_{∞} is symmetric, because

$$
\left(A_{\infty} u, v\right) \in \mathbb{R}, \quad \forall u, v \in \operatorname{Dom}\left(A_{\infty}\right) \subset H_{\varphi} .
$$

This opertor is densily defined. Indeed, let $y \in H_{\varphi}$ be given and let $h \in \operatorname{Dom}(A)$ be a vector such that $(h, \varphi)=1$ (such a vector exists, because A is densily defined). Suppose that $h_{n} \in \operatorname{Dom}(A)$ is a sequence of vectors converging to y. Then

$$
h_{n}-\left(h_{n}, \varphi\right) h \in \operatorname{Dom}\left(A_{\infty}\right)
$$

converges to y, as $n \rightarrow \infty$.
To establish that A_{∞} is selfadjoint, we observe that the definition of $R(z)$ given by (34) leads to

$$
\begin{equation*}
\left.\left(A_{\infty}-z\right) R(z)\right|_{H_{\varphi}}=\left.(I-P)\left(I-\frac{1}{J(z)} P(A-z)^{-1}\right)\right|_{H_{\varphi}}=\left.I\right|_{H_{\varphi}} . \tag{36}
\end{equation*}
$$

Consequently, the range of the operator $\left(A_{\infty}-z\right)$ is the whole space H_{φ}, which implies that A_{∞} is selfadjoint. The relation (35) follows from (36).

Proposition 8 A real number E is an eigenvalue of A_{∞} if and only if $E \in S$ and $J(E)=0$.
Proof. Again, we use the Spectral Theorem (see [RS]) which states that, for a cyclic self-adjoint operator A and its normalized cyclic vector φ, there exists a unitary operator $U: H \rightarrow L^{2}(\mathbb{R}, \mu)$ such that $A=U^{-1} M_{\lambda} U$ and $U \varphi=1$. Here $1(\lambda) \equiv 1$ and M_{λ} is the operator of multiplication by the identity function $m(\lambda) \equiv \lambda$ in $L^{2}(\mathbb{R}, \mu)$.

If, for some E,

$$
\begin{equation*}
I(E)<\infty \quad \text { and } \quad J(E)=0 \tag{37}
\end{equation*}
$$

then the function $z(\lambda)=(\lambda-E)^{-1}$ belongs to $L^{2}(\mathbb{R}, \mu)$ and is orthogonal to 1 . Hence the equation $(\lambda-E) z(\lambda)=1$ has a solution in $L^{2}(\mathbb{R}, \mu)$ orhtogonal to 1 ; equivalently, the equation

$$
\begin{equation*}
(A-E) z=\varphi \tag{38}
\end{equation*}
$$

has a solution in H orthogonal to φ. Observe now that $(A z, \varphi)=((A-E) z, \varphi)=(\varphi, \varphi)=1$. Therefore, we can rewrite the equation (38) as $A z-(A z, \varphi) \varphi=E z$. Since $(A z, \varphi) \varphi=P A z$, the previous equation means that

$$
\begin{equation*}
A_{\infty} z=E z \tag{39}
\end{equation*}
$$

Therefore, conditions (37) imply that $E \in \sigma_{p}\left(A_{\infty}\right)$.
Let now $E \in \sigma_{p}\left(A_{\infty}\right)$. Then the equation

$$
\begin{equation*}
(A-E) z=P A z \tag{40}
\end{equation*}
$$

has a non-trivial solution $z \in H_{\varphi}$. Obviously, $P A z=(A z, \varphi) \varphi$ is a vector of the form $c \varphi$.
Assume that $c \neq 0$. In this case, (40) can be re-written equivalently as

$$
\begin{equation*}
(\lambda-E) z(\lambda)=c \mathbf{1} \tag{41}
\end{equation*}
$$

where $z(\lambda):=U z$. Hence, $z(\lambda)=c /(\lambda-E)$, which tells us that

$$
I(E)=\int_{\mathbb{R}} \frac{\mu(d \lambda)}{(\lambda-E)^{2}}=|c|^{-2}\|z\|^{2}<\infty
$$

Therefore, if $c \neq 0$, then $E \in S$. On the other hand, since

$$
0=(z, \varphi)=c \int_{\mathbb{R}} \frac{\mu(d \lambda)}{\lambda-E}=c J(E)
$$

we obtain also that $J(E)=0$.
It remains to consider the case $c=0$. In this case, (41) tells us that the support of $z(\lambda)$ consists of the point $\lambda=E$. The latter implies that

$$
(z, \varphi)=\int_{\mathbb{R}} z(\lambda) \mu(d \lambda)=z(E) \mu(\{E\}) \neq 0
$$

which contradicts the assumption $z \in H_{\varphi}$.
Corollary 5 Let the sets S and D be defined by (2) and (3) correspondingly. Then

$$
D \backslash S=\sigma_{p}\left(A_{0}\right) \cap \Delta \quad \text { and } \quad S \backslash D=\sigma_{p}\left(A_{\infty}\right) \cap \Delta .
$$

References

[Ar] Aronszajn, N: On a problem of Weyl in the theory of singular Strurm-Liouville equations, Amer. J. of Math. 7 No 3 (1957) 597-610
[At] Atkinson, F. V.: Discrete and continuous boundary problems. New York: Academic Press 1964.
[C] Carmona, R.: One-dimensional Schrödinger operators with random or deterministic potentials: new spectral types. J. Func. Anal. 51, 229-258 (1983).
[CL] Carmona, R., Lacroix, J.: Spectral theory of random Schrödinger operators. Boston, MA: Birkhauser 1990.
[CHM] Combes, J. M., Hislop, P. D., Mourre, E.: Spectral averaging, perturbation of singular spectra, and localization. 1995.
[DLS] Delyon, F., Lèvy, Y., Souillard, B.: Anderson localization for one- and quasi-one-dimensional systems. J. Stat. Phys. 41, 375-388 (1985).
[D] Donoghue, W.: On the perturbation of spectra. Comm. Pure Appl. Math. 18, 559-579 (1965).
[H] Howland, J.: Perturbation theory of dense point spectra. J. Funct. Anal. 74, 52-80 (1987).
[J] Javrjan, V. A.: A certain inverse problem for Sturm - Liouville operators. Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6, 246-251 (1971).
[Ke] Kechris, A. S.: Classical descriptive set theory. New York: Springer, 1995.
[K] Kotani, S.: Lyapunov exponents and spectra for one-dimensional random Schrödinger operators. Contemporary Mathematics 50, 277-286 (1986).
[O] Oxtoby, J.: Measure and category. New York: Springer, 1971.
[PF] Pastur, L., Figotin, A.: Random and almost-periodic operators.
[P] Poltoratsky, A.: Finite frank perturbations of singular spectra. Intern. Math. Res. Notices 1997, 421-436.
[RS] Reed, M., Simon, B.: Methods of modern mathematical physics, I. Functional analysis. Academic Press, New York, 1972.
[S] Simon, B.: Spectral analysis of rank one perturbations and applications, lectures
[SW] Simon, B., Wolff, T.: Singular continuous spectrum under rank one perturbations and localization for random Hamiltonians. Comm. Pure Appl. Math. 39, 75-90 (1986).
[W] Wegner, F.: Bounds on the density of states in disordered systems. Z. Phys. B 44, 9-15 (1981).

