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Abstract

SHA YU. INDEPENDENT SCREENING FOR NONPARAMETRIC ADDITIVE
COX MODEL. (Under the direction of DR. JIANCHENG JIANG)

Survival data with ultrahigh dimensional covariates are increasingly common re-

cently due to the rapid development in technologies. It is challenging to model them

using survival models in order to understand the association between covariate in-

formation and clinical information. In this paper, we focus on the nonparametric

additive Cox’s proportional model and propose an independent screening method for

ultrahigh dimensional data. The proposed screening method is based on the favored

bandwidth of the local partial likelihood estimator. Moreover, we develop a two-step

procedure to recover all important covariates. This procedure first captures impor-

tant variables with nonlinear impacts, and then identifies important variables with

linear impacts. We further prove that the nonlinear step screening achieves the model

selection consistency. Monte Carlo simulations are carried out to evaluate the per-

formance of the proposed screening procedure, which provides evidence supporting

the theory. Furthermore, we demonstrate the proposed methodology via a real data

example.
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CHAPTER 1: INTRODUCTION

Due to the development of information technology, a massive amount of covariate

information has been collected in survival analysis. However, it is likely that only a

fraction of the covariates are associated with clinical time. In practice, a parsimonious

model may be preferred for improving the predictability and interpretability of the

model. Thus, how to select relevant covariates is crucial in modeling, which has paved

the way for variable selection in survival analysis.

Survival analysis is used to analyze the time until an event of interest occurs. The

time can be measured in years, months, weeks, etc, and it records the time duration

starting from a predefined time point until an event occurs. This time variable is

called survival time. The event of interest can refer to death, relapse, credit default,

or any designated experience of interest that might happen. The main goal of survival

analysis is to study the association between survival time T and a vector of covariate

variables X. This goal is often achieved by studying the conditional hazard function

of T given X = x, denoted by λ(t|x). The definition of λ(t|x) is

λ(t|x) = lim
∆t↓0

P{t ≤ T < t+ ∆t|T ≥ t,X = x}
∆t

.

It gives the instantaneous hazard rate at time t conditionally on that the individual

has survived up to time t and a given value of covariate.

The Cox model introduced by Cox (1972)[1] is the most widely used model in

survival analysis. The model has a simple form and the convenience in dealing with

censoring contributes to its popularity. The model is given by

λ(t|x) = λ0(t)Ψ(x).
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The first factor λ0(t) represents the baseline hazard function and it is the conditional

function of T given X = 0 when Ψ(0) = 1. The second factor Ψ(x) is the covariate

effect. The Cox model assumes that the ratio of the hazards for any two individuals

is constant over time.

Taking the preparametrization Ψ(x) = exp(ψ(x)), Cox proposed the proportional

hazards regression model

λ(t|x) = λ0(t)exp(ψ(x)), (1.1)

where ψ(x) is referred as the risk function. See Fleming and Harrington (1991)[2],

Anderson et al. (1993)[3] and references therein for more detailed literature review

concerning this model. In this paper, we focus on the Cox proportional model.

Various methods have been developed for variable selection in survival analysis. For

instance, Faraggi and Simon (1997)[4] worked on the Bayesian analysis of the Cox’s

proportional model to make inference about the parameters and proposed a variable

selection method based on the Bayesian approach. Lee et al. (2011)[5] proposed

a Bayesian variable selection scheme for a Bayesian semiparametric survival model.

For the Bayesian variable selection procedure, it is computational intense to calcu-

late the posterior probabilities in a high-dimensional setting. Many effective variable

selection criterion are based on the penalization framework. Some classical variable

selection techniques in linear regression models have been extended to survival anal-

ysis, such as AIC (Akaika, 1974[6]) and BIC (Schwartz[7]). In these methods, subset

selection such as step wise selection and best subset selection are required. However,

the subset selection suffers from the lack of stability (Breiman,1996[8]) and lack of

interpretability in its theoretic properties. Tibshirani (1997)[9] extended the LASSO

variable selection procedure to Cox model. Fan and Li (2001)[10] proposed a variable

selection method with the smoothly clipped absolute deviation (SCAD) penalty based

on a non-concave penalization likelihood and further extended it to Cox proportional

model (Fan and LI, 2002[11]). In addition, they proved that the penalized likeli-
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hood estimator possesses the oracle property. Cai, Fan and Li (2005)[12] worked on

variable selection for multivariate survival data. Zhang and Lu (2007)[13] further de-

veloped the adaptive LASSO for Cox’s proportional model. These penalization-based

methods are showed to perform well in variable selection.

Many variable selection methods for Cox’s proportional model relies on the linear

assumption, which may be unrealistic in many practical situations. This motivates

the research about Cox’s proportional model with semi-parametric and nonparametric

relative risk. Plenty of smoothing techniques, such as spline and local polynomial

smoothing, have been applied to this model. Particularly, Fan, Gijbels and King

(1997)[14] adopted the local polynomial smoothing methods and developed a local

partial likelihood approach. Then risk function is obtained by maximizing the local

partial likelihood. This approach is adopted in our work.

For Cox’s proportional model with nonparametric risk function, it is rather chal-

lenging to deal with the variable selection. For nonparametric Cox model, Hastie and

Tibshirani (1990)[15] modified the step-wise selection by considering several nonlinear

model selection. Gray (1992, 1994 [16][17]) applied the spline smoothing technique

to estimate the covariate effect and then performed model selection with hypothe-

sis testing procedures. However, these approaches assume the Cox model with fixed

dimensionality and thus cannot deal with ultrahigh dimensional data.

Due to the development of technology, high or ultrahigh dimensional data are in-

creasingly common in many fields recently, and the demand for variable selection

is more urgent. The definition of ultrahigh dimension introduced by Fan and Lv

(2008)[18] is that the dimensionality grows exponentially with the sample size, i.e.

logp = O(nα) for some α ∈ (0, 1/2). To deal with the ultrahigh dimensional data,

Bradic, Fan and Jiang (2011)[19] generalized the penalized partial likelihood method

to Cox’s proportional model. Huang, et al. (2013)[20] worked on the absolute pe-

nalized maximum partial likelihood estimator in sparse, high-dimensional Cox pro-
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portional hazards regression models. However, these variable selection methods may

have problem in stability, accuracy and computation efficiency when dealing with

ultrahigh dimensional data. This motivates the development of screening techniques,

which can effectively reduce the number of covariates under consideration. Fan and

Lv (2008)[18] proposed sure independent screening (SIS) for linear regression. They

performed marginal regression on each predictor and ranked the variables based on the

marginal correlation between each predictor and the response. They further proved

that the SIS keeps all important predictor variables with the probability going to

one. This idea has been extended to plenty of more general settings including gener-

alized linear model (Fan and Song, 2010[21]), additive model (Fan et al., 2011[22]),

varying-coefficient model (Liu et al., 2014[23]), quantile regression (He, Wang, and

Hong, 2013[24]; Wu and Yin 2015[25]) and so forth. Fan, Feng and Wu (2010)[21]

also extended the SIS to Cox’s proportional model with the linear risk effect model

assumption. Still for Cox model, Zhao and Li (2012)[26] proposed a principled sure

independent screening method, in which the importance of predictors are quanti-

fied by the t-value of the estimated coefficient obtained by maximizing the marginal

partial likelihood. However, all of these procedures are proposed under linear or para-

metric assumptions. To the best of our knowledge, there is no work on screening for

nonparametric additive Cox’s model with high or ultrahigh dimensional data. This

motivates us to develop a marginal screening procedure for nonparametric additive

Cox’s model.

In this dissertation, we introduce a penalization form statistic to quantify the non-

linearity impact of each covariate, and we call it information criteria (IC). This IC is

inspired by the likelihood cross validation (LCV) [27]. In this method, we first perform

the marginal nonparametric smoothing on each covariate and get the maximum local

partial likelihood estimator. Then we get the estimate of global partial likelihood by

evaluating the maximum local partial likelihood estimator at each observation and
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the negative global partial likelihood serves as the first term in IC. The penalty term

is especially desired to achieve the goal of distinguishing the covariates with nonlinear

impact from those with linear impact. For each covariate, the favored bandwidth can

be attained by minimizing this IC. Then we rank the covariate based on its favored

bandwidth from the smallest to the largest and keep the top ones to recover the

covariates with nonlinear impacts. For the covariate not selected in this step, we

further fit a parametric cox model and get the estimate of the coefficient. Then we

divide the estimated coefficient by its standard deviation and get the corresponding z

value. Similarly, we rank the covariate by the estimated z value in descending order

and keep the top-ranked covariates. Theses covariates are regarded as important

variables with linear impact. Combining these two steps, we accomplish the goal of

identifying all the important covariates.

The contribution of this paper arises in two aspects. First, we propose the infor-

mation criteria (IC) to quantify the nonlinear impact of covariate for nonparametric

additive Cox model. It is also proved that the screening step based on this infor-

mation criteria (IC) achieves the model selection consistency. Second, we develop a

two-step screening method to identify all the important covariates for nonparametric

additive Cox model in ultrahigh dimensional case.

The remainder of the thesis is organized as follows. In section 2, we first introduce

the local partial likelihood and the maximum local partial likelihood estimator of the

Cox’s proportional model. Then we derive an approximation form of the likelihood

cross validation. After this, we propose the information criteria (IC) and non-linearity

measure and then develop a two-step screening procedure. At last, we derive the

influence function for nonparametric Cox’s proportional model, which dramatically

improve the computing efficiency of the proposed screening procedure. Five theorems

are presented in Section 3 in order to establish the model selection consistency. In

Section 4, we conduct extensive simulations to assess the performance of proposed
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procedure. We conclude this dissertation in Section 6. Proofs of the theorems and

derivation of the influence function are relegated to the Appendix.



CHAPTER 2: METHODOLOGY

We consider the multivariate data set {(Xi, Ti) : i = 1, . . . , n}, which forms an

i.i.d. sample from the population (X, T ), where X = (X1, · · · , Xd)
T and Xi =

(Xi1, · · · , Xid)
T is a column vector of covariates for individual i. In practice, the

survival times T1, · · · , Tn are not fully observed for a variety of reasons, for instance,

the termination of study or the lost of follow-up during the study period. We refer

to this kind of incomplete observations as right censored. We consider the indepen-

dent censoring scheme here. That is, we assume the censoring times C1, . . . , Cn are

independent of the survival times T1, . . . , Tn given the covariates X. We denote the

observed event time for individual i as Zi = min(Ti, Ci) with a censoring indicator

δi = I{Ti ≤ Ci}. δi = 1 means the survival time is observed and δi = 0 means the

survival time is censored. Now we form the observed data as

{(Xi, Zi, δi) : Xi ∈ Rd, δi ∈ {0, 1}, i = 1, . . . , n},

which are i.i.d samples from the population

(X,min(T,C), I{T ≤ C}).

In this paper, we assume that the random variables T and C are continuous. Without

loss of generality, we assume that each continuous covariate is in the range of [0, 1].

For the ultrahigh dimensional case, that is, d grows that an exponential rate of the

sample size, we work on the univariate Cox’s proportional model on covariate Xk for
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k = 1, . . . , d,

λk(t|Xk) = λ0,k(t) exp{ψk(Xk)}, (2.1)

where λ0,k(t) is the baseline hazard function. We do not assume any parametric form

about the risk effect ψk(·).

Then by Fan, Gijbels and King (1997)[14], under the proportional model 2.1,

Ψk(x) =
E{δ|Xk = xk}

E{Λ0,k(Z)|Xk = xk}
, (2.2)

where Λ0,k(t) =
∫ t

0
λ0,k(u)du is the cumulative baseline hazard function. This in-

dicates that the function Ψk(x) can be estimated using regression techniques if the

baseline hazard function is known.

Consider for now the case ψk(xk) = ψk(xk;βk) and λ0,k(t) = λ0,k(t; θ), then the log

likelihood for the proportional hazards model 2.1 is

logLk =
n∑
i=1

[
δi{λ0,k(Zi; θ) + ψk(Xik;βk)} − Λ0,k(Zi; θ)exp{ψk(Xik;βk)}

]
. (2.3)

However, for robustness of inference we do not consider this situation with known

baseline. Instead we do not pre-assume knowing its parametric form. This leads us

to consider the local partial likelihood estimation (Fan, Gijbels and King, 1997[14]).

2.1 Local Partial Likelihood

For Cox’s model, a standard approach to estimate the risk function ψ(x) is the

partial likelihood method (Cox, 1975[28]). Let t01 < · · · < t0N denoted the ordered

observed failure times and let (j) denote the label of the item failing at time t0j . Let

Rj be the risk set right before time t0j : Rj = {i : Zi ≥ t0j}. The ’least informative’

nonparametric modeling of ∆0(t) assumes that ∆0(t) has a jump of size θj at time t0j :
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Λ0(t; θ) =
∑N

i=1 θjI{t0j ≤ t}. Then

Λ0(t; θ) =
N∑
i=1

θjI{i ∈ Rj}. (2.4)

Using the Breslow estimator of the baseline hazard function (Breslow 1972[29])

θ̂j =
[∑
i∈Rj

exp{ψk(Xik;βk)}
]−1

. (2.5)

Substituting 2.4 and 2.5 into 2.3 leads to the log partial likelihood function (Cox

1975)
N∑
j=1

[
ψk{X(j)k;βk} − log

{∑
i∈Rj

exp(ψk{Xik;βk})
}]
. (2.6)

Let Yj(t) = I(Zj ≥ t), then 2.6 is equivalent to

n∑
i=1

δi

[
ψk{Xik;βk} − log

{ n∑
j=1

Yj(Zi)exp(ψk{Xjk;βk})
}]

(2.7)

Note the partial likelihood in 2.6 and 2.7 is a profile likelihood and it can be de-

rived from the full likelihood with the least informative nonparametric modelling of

the baseline hazard function in 2.4.

Now suppose the form of ψk(x) is unknown and the pth order derivative of ψk(x)

at the point x exists. Then for X in the neighborhood of x, by pth order Taylor’s

expansion,

ψk(X) ≈ ψk(x) + ψ′k(x)(X − x) + · · ·+ ψ
(p)
k (x)

p!
(X − x)p.

We further define

X̃k = {1, Xk − x, . . . , (Xk − x)p}T and X̃ik = {1, Xik − x, . . . , (Xik − x)p}T ,
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where T denotes the transpose of a vector. Let h be the bandwidth parameter that

controls the size of the local neighborhood andK(·) be a kernel function with compact

support. Then locally around x, as h→ 0,

ψk(Xk) ≈ X̃T
kβk, (2.8)

where

βk = (β0k, . . . , βpk)
T = {ψk(x), . . . ,

ψ
(p)
k (x)

p!
}T .

With the local approximation 2.8, for covariateXk, Fan, Gijbels and King (1997)[14]

introduced the local partial likelihood

Lx(βk) =
1

n

n∑
i=1

δiKh(Xik − x)
[
X̃T
ikβk − log

{ n∑
j=1

Yj(Zi)exp(X̃
T
jkβk)Kh(Xjk − x)

}]
,

(2.9)

which is a localized version of the partial likelihood 2.7.

Let β̂k maximize 2.9 with respect to βk = (β0k, . . . , βpk)
T . Since 2.9 does not

contain the intercept β0k, then ψk(x) cannot be directly estimated. Note that the

derivative of ψk(x) is estimated by β̂1k, then we get the estimate of ψk(x)

ψ̂k(x) =

∫ x

0

β̂1k(t)dt.

In practice, this integral can be approximated by Trapezoidal rule as suggested by

Tibshirani and Hastie (1987)[30].
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2.2 Maximum Local Partial Likelihood Estimator

Recall the local partial likelihood 2.9 does not involve the intercept β0k = ψk(x),

we now define

β∗k = (β1k, . . . , βpk)
T , β̂∗k = (β̂1k, . . . , β̂pk)

T
and

X̃∗ik = {Xik − x, . . . , (Xik − x)p}T .

Then, let β̂∗k be the maximizer of the local partial likelihood

Lx(β∗k) =
1

n

n∑
i=1

δiKh(Xik − x)
[
X̃∗Tik β

∗
k − log

{ n∑
j=1

Yj(Zi)exp(X̃
∗T
jk β

∗
k)Kh(Xjk − x)

}]
,

(2.10)

where Yj(t) = I(Zj ≥ t).

Tibshirani[9] applied the iterative reweighted least squares (IRLS) strategy to ob-

tain the LASSO estimator of parametric Cox’s model. We extend the idea to non-

parametric Cox model and solve for the estimator β̂∗k . To this end we define

ηik = X̃∗Tik β
∗
k, Wk = (X̃∗1k, . . . , X̃

∗
nk)

T

,and

ηk = (η1k, . . . , ηnk)
T = Wkβ

∗
k.

Then

L′x(β∗k) =
∂Lx(β∗k)
∂β∗k

= WT
k

∂Lx(ηk)
∂ηk

≡WT
kBk,

Lx′′(β∗k) = WT
k

∂2Lx(ηk)
∂ηk∂ηTk

Wk ≡Wk
TAkWk,

where Bk = ∂Lx(ηk)
∂ηk

and Ak = −∂L2x(ηk)

∂ηk∂η
T
k
.

Obviously, the maximum local likelihood estimator β̂∗k is attained by solving the
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equation L′n(β̂∗k) = 0. Applying the first order Taylor expansion of L′x(β∗k) for a given

initial value β̃0
k, we obtain that

0 = L′x(β∗k) ≈ L′x(β̃0
k) + Lx′′(β̃0

k)(β̂
∗
k − β̃0

k)

= WT
kBk −Wk

TAkWk(β̂
∗
k − β̃0

k),

which is equivalent to

β̂∗k = β̃0
k + (WT

kAkWk)
−1
WT

kBk ≡ (WT
kAkWk)

−1
WT

kAkCk, (2.11)

where Ck = ηk + Ak
−1Bk. Therefore, β̂∗k minimizes (Ck − ηk)TAk(Ck − ηk).

The procedures for solving β̂∗k are described as follows:

1. Fix h and initialize β̃0
k.

2. Compute ηk, Ak, Bk and Ck based on β̃0
k.

3. Minimize (Ck − ηk)TAk(Ck − ηk) and update β̂k∗.

4. Repeat step 2 and step 3 until β̂k∗ does not change. At convergence, Ak, Bk

and Ck are calculated at β̂k∗.

It could be time consuming to compute the n by n full matrix Ak and its inverse

in above procedures. As suggested by Tibshirani (1997)[9], we replace the matrix

Ak with a diagonal matrix, which has the same diagonal elements of Ak to ease the

computation burden. Hastie and Tibishirani (1990)[15] argued that this modification

has little impact on the performance.

Since ψ̂′k(x) = β̂1k = eT1 β̂k
∗, where e1 = (1, 0, . . . , 0)T ∈ Rp. Assume ψk(0) = 0 and

X1k, . . . , Xnk in [0, 1], then we obtain

ψ̂k(Xik) =

∫ Xik

0

β̂k(t)dt =

∫ Xik

0

eT1 β̂k
∗(t)dt
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for j = 1, . . . , n for predictor Xk.

2.3 Likelihood Cross Validation and Its Approximation

One major problem in local likelihood estimation is the choice of the bandwidth.

One possible approach is to maximize the likelihood cross validation. We introduce

the likelihood cross validation in this section and derive its approximation. The

likelihood cross validation is the extension of cross validation and it is natural to be

considered for the methods based on likelihood.

Deviance is a measure of goodness of fit and can be constructed by the likelihood.

Now define the parameter vector ψ̂k = (ψ̂k(X1k), . . . , ψ̂k(Xnk))
T , and let L(ψ̂k) de-

noted the averaged log partial likelihood for predictor Xk as defined in 2.7. Then, we

have

L(ψ̂k) =
1

n

n∑
i=1

l(δi, zi, ψ̂k(Xik)) =
1

n

n∑
i=1

δi

[
ψ̂k(Xik)− log

{ n∑
j=1

Yj(Zi)exp(ψ̂k(Xjk))
}]
.

(2.12)

The deviance is introduced to measure the difference of the log-likelihood between

the fitted model and the saturated model. For a singe observation (Xik, δi, zi), the

deviance is defined as [31]

D(δi, zi, ψ̂k(Xik)) = 2
(
supψk l(δi, zi, ψk(Xik))− l(δi, zi, ψ̂k(Xik))

)
.

Since the partial likelihood of fitted model l(δi, zi, ψ̂k(Xik)) is always smaller than

the partial likelihood of saturated model. As a consequence, the deviance is always

non-negative. The total deviance is defined by

n∑
i=1

D(δi, zi, ψ̂k(Xik)). (2.13)
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It is a generalization of the residual sum of squares for regression models [32].

Now we introduce the definition of likelihood cross validation (LCV) proposed by

Habbema et al. (1974) [27]. The likelihood cross validation criterion is defined by

substituting the leave-xi-out estimate ψ̂k,−i(Xik) in the total deviance 2.13,

LCV (ψ̂k) =
n∑
i=1

D(δi, zi, ψ̂k,−i(Xik))

= C − 2
n∑
i=1

l(δi, zi, ψ̂k,−i(Xik)), (2.14)

where C depends on the observations (δi, zi), but not the estimate ψ̂k(Xik) and hence

not the bandwidth.

It could be time consuming to compute the n leave-xi-out estimates and thus

approximations must be developed. One possible approach is to build connection

between l(δi, zi, ψ̂k,−i(Xik)) and l(δi, zi, ψ̂k(Xik)). This is referred to as the method

of infinitesimal perturbations and was first studied by Cook (1997)[33] for linear

models. Next we first review the existing method of infinitesimal perturbations for

local likelihood model and then propose our approach for nonparametric Cox’s model.

2.3.1 Existing Method of Infinitesimal Perturbations for Local Likelihood Model

Loader[32] considered the likelihood regressing model, in which each response vari-

able is assumed to have a density

Yi ∼ f(y, θ(xi)),

where θ(xi) is an unknown function of the covariate xi.

For local likelihood model, θ(x) is not assumed to have a parametric form and a

polynomial is fitted locally instead. Let l(y, θ) = log(f(y, θ), then the local polynomial
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log-likelihood is defined as[32]:

Lx(a) =
n∑
i=1

wi(x)l(Yi, < a,A(xi − x) >),

where a is the coefficient vector,A(·) denotes a vector of fitting functions and wi(x) =

W (xi−x
h

) with a weight function W (·) and a bandwidth h. Then the estimate â is

attained by maximizing the above equation.

Now define

X = (A(x1 − x), . . . , A(xn − x))T ,

W = diag(w1(x), . . . , wn(x)) and Y = (Y1, . . . , Yn)T .

Loader [32] worked on the modified local likelihood equation

XTWl̇(Y,Xa)− λW (0)e1l̇(Yi, < a,A(0) >) = 0, (2.15)

where l̇(y, θ) denotes the first partial derivative of l(y, θ) with respect to θ. According

to above equation, â is a function of λ, denoted as â(λ). Specifically, â(0) is local

likelihood estimator with all observations and â(1) is estimated by eliminating xi.

Equation 2.15 is essentially the partial derivative of the full local likelihood sub-

tracted by the ith observation’s contribution to the local likelihood. This approach

cannot be directly applied to Cox’s model since the contribution of the ith observation

is related to others and thus cannot be isolated. Next, we propose a new method to

approximate the leave-xi-out estimate with the full estimate for nonparametric Cox’s

model.
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2.3.2 Method of Infinitesimal Perturbations for Nonparametric Cox’s Model

Next, we work on method of infinitesimal perturbations for nonparametric Cox’s

model, that is, relate the estimate ψ̂k,−i(Xik) with the estimate ψ̂k(Xik).

Following the same notations as in Fan, Gijbels and King (1997)[14], we define

β0
k = {ψ′k(x), . . . , ψ

(p)
k (x)}T , α̂k = H∗(β̂∗k − β0

k) and Uik = (H∗)−1X̃∗Tik ,

where H∗ = diag(h, . . . , hP ). Then, by 2.10, α̂k maximizes

Lx(αk) =
1

n

n∑
i=1

δiKh(Xik − x)
[
X̃∗Tik β

0
k + UT

ikαk

− log
{ n∑
j=1

Yj(Zi)exp(X̃
∗T
ik β

0
k + UT

ikαk)Kh(Xjk − x)
}] (2.16)

with respect to αk. We now propose a more general form. Let αk maximizes

Lx(αk, τ) =
1

n

n∑
i=1

δiKh(Xik − x)I{Zi ≤ τ}
[
X̃∗Tik β

0
k + UT

ikαk−

log
{ n∑
j=1

Yj(Zi)exp(X̃
∗T
ik + UT

ikαk)Kh(Xjk − x)
}]
,

where τ denotes the observation ending time. Then in our case, τ =∞.

To simply the notation, we define

Ni(u) = I{Zi ≤ u, δi = 1}, Yi(u) = I{Zi ≥ u},

S
(0)
nk (αk, u) =

1

n

n∑
i=1

Yi(u)exp(X̃∗Tik β
0
k + UT

ikαk)Kh(Xik − x),

S
(1)
nk (αk, u) =

1

n

n∑
i=1

Yi(u)exp(X̃∗Tik β
0
k + UT

ikαk)Kh(Xik − x)Uik,
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and

S
(2)
nk (αk, u) =

1

n

n∑
i=1

Yi(u)exp(X̃∗Tik β
0
k + UT

ikαk)Kh(Xik − x)UikU
T
ik.

Using the notation of counting process, we get the local partial likelihood

Lx(αk, τ) =
1

n

∫ τ

o

n∑
i=1

Kh(Xik − x)
[
X̃∗Tik β

0
k+

UT
ikαk − log

{
nS

(0)
nk (αk, u)

}]
dNi(u).

(2.17)

To evaluate influence of perturbing the ith observation to the local likelihood, we

consider the modified local likelihood equation,

(1− λ)
∂

∂αk
L(αk, τ) + λ

∂

∂αk
Lx,−i(αk, τ) = 0, (2.18)

where Lx,−i(αk, τ) denotes the local partial likelihood with Xik left out and λ is a

parameter and the solution is α̂k(λ). Note that α̂k(0) is the full local partial log-

likelihood estimate, while α̂k(1) is the leave-xi-out estimate. Taking derivative over

λ on both sides of 2.18, we get

− ∂

∂α̂k
L(α̂k, τ) + (1− λ)

∂2

∂α̂k∂α̂Tk
Lx(α̂k, τ)

∂

∂λ
α̂k(λ) +

∂

∂α̂k
Lx,−i(α̂k, τ)

λ
∂2

∂α̂k∂α̂Tk
Lx,−i(α̂k, τ)

∂

∂λ
α̂k(λ) = 0.

Letting λ = 0, we get

∂

∂α̂k
[Lx,−i(α̂k, τ)− Lx(α̂k, τ)] +

∂2

∂α̂k∂α̂Tk
Lx(α̂k, τ)

∂

∂λ
α̂k(λ)|λ=0 = 0. (2.19)
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Note that

∂2

∂αk∂αTk
Lx(αk, τ) ≡ L′′x(αk, τ) = −

∫ τ

0

S
(2)
nk (αk, τ)S

(0)
nk (αk, τ)− S(1)

nk (αk, τ)
⊗2

S
(0)
nk (αk, τ)

⊗2

1

n

n∑
i=1

Kh(Xik − x)dNi(u),

where ⊗ denotes the kronecker product.

We now define

Qik(x, τ) ≡ ∂

∂αk

[
Lx(αk, τ)− Lx,−i(αk, τ)

]
|αk=α̂k

=
1

n

∫ τ

0

n∑
l=1

Kh(Xlk − x)
[
Ulk −

S
(1)
nk (αk, τ)

S
(0)
nk (αk, τ)

]
dNl(u)−

− 1

n

∫ τ

0

n∑
l=1,l 6=i

Kh(Xlk − x)
[
Ulk −

S
(1)
nk,−i(αk, τ)

S
(0)
nk,−i(αk, τ)

]
dNl(u)

=
1

n
δiKh(Xik − x)Uik −

1

n

∫ τ

0

n∑
l=1,l 6=i

Kh(Xlk − x)
[S(1)

nk (αk, τ)

S
(0)
nk (αk, τ)

]
dNl(u)

+
1

n

∫ τ

0

n∑
l=1,l 6=i

Kh(Xlk − x)
[S(1)

nk,−i(αk, τ)

S
(0)
nk,−i(αk, τ)

]
dNl(u),

where

S
(0)
nk,−i(αk, u) =

1

n

n∑
l=1,l 6=i

Yl(u)exp(X̃∗Tlk β
0
k + UT

lkαk)Kh(Xlk − x) and

S
(1)
nk,−i(αk, u) =

1

n

n∑
l=1,l 6=i

Yl(u)exp(X̃∗Tlk β
0
k + UT

lkαk)Kh(Xlk − x)Ulk.

We also define Hk(x, τ) ≡ −L′′x(αk, τ)|αk=α̂k . Then from equation 2.19, we have

∂

∂λ
α̂k(λ)|λ=0 = −Hk(x, τ)−1Qik(x, τ).
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Using the first order Taylor expansion, we get

α̂k(1) ≈ α̂k(0) +
∂

∂λ
α̂k(λ)|λ=0.

That is,

α̂k,−i(x) ≈ α̂k(x)−Hk(x, τ)−1Qik(x, τ). (2.20)

For the case p = 1, we have

α̂k(x) = h(β̂∗k(x)− β0
k(x)) = h(ψ̂′k(x)− ψ′k(x)). (2.21)

Define

rik(x, τ) =

∫ x

0

Hk(t, τ)−1Qik(t, τ)dt. (2.22)

In our case, τ = ∞. To simply the notation, denote rik(x) ≡ rik(x,∞). Then

combining 2.20, 2.21 and 2.22 gives

ψ̂k,−i(Xik) = ψ̂k(Xik)−
1

h

∫ Xik

0

Hk(t, τ)−1Qik(t, τ)dt

≡ ψ̂k(Xik)−
1

h
rik(Xik).

(2.23)

Note that equation 2.23 helps achieve the goal of approximating the estimate

ψ̂k,−i(Xik) with the estimate ψ̂k(Xik). And this significantly improves the compu-

tation efficiency. Since at each observation Xik, the risk function is estimated by

ψ̂k(Xik) =
∫ Xik

0
β̂k(t)dt. We apply trapezoidal rule to approximate this integral using

the observation {Xjk : j = 1, . . . , n and Xjk ≤ Xik} as the grid points. Before the

approximation, we need to go through the iterative procedure as described in Section

2.1 multiple times to obtain the estimate β̂k,−i(Xjk) for all j = 1, . . . , n such that

Xjk ≤ Xik. But using the approximation 2.23, theses estimates can be approximated

by β̂k(Xjk) directly without going through the iterative procedure.
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Substituting 2.23 into l(δi, zi, ψ̂k,−i(Xik)) gives

l(δi, zi, ψ̂k,−i(Xik)) = δi

[
ψ̂k,−i(Xik)− log

{ n∑
j=1

Yj(Zi)exp(ψ̂k,−i(Xjk))
}]

= δi

[
ψ̂k(Xik)−

1

h
rik(Xik)− log

{ n∑
j=1

Yj(Zi)e
ψ̂k(Xjk)e−

1
h
rik(Xjk)

}]
.

Since ψ̂k,−i(Xik)→ ψ̂k(Xik) as n→∞. Then by Taylor expansion of rik(x) in the

neighborhood of 0, we have

e−rik(x) ≈ 1− rik(x).

Thus when n is large enough,

l(δi, zi, ψ̂k,−i(Xik)) ≈ l(δi, zi, ψ̂k(Xik))− δi
[1

h
rik(Xik)+

log
{

1−
∑n

j=1 Yj(Zi)exp
(
ψ̂k(Xjk)rik(Xjk)

)
h
∑n

j=1 Yj(Zi)exp(ψ̂k(Xjk))

}]
.

(2.24)

As a result, we could approximate LCVk by

LCVk(h) ≈ C − 2nL(ψ̂k) + 2
n∑
i=1

δi

[1

h
rik(Xik)+

log
{

1−
∑n

j=1 Yj(Zi)exp
(
ψ̂k(Xjk)rik(Xjk)

)
h
∑n

j=1 Yj(Zi)exp(ψ̂k(Xjk))

}]
.

2.4 Information Criteria and Non-linearity Measure

Inspired by the likelihood cross validation, we now introduce the following statistic

to extract the information from data concerning the optimal bandwidth. We name
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the proposed statistic as information formation criteria (IC) and it is defined as

ICk(h) = −L(ψ̂k) +
1

n

n∑
i=1

δi

[1

h
rik(Xik)+

log
{

1−
∑n

j=1 Yj(Zi)exp
(
ψ̂k(Xjk)rik(Xjk)

)
h
∑n

j=1 Yj(Zi)exp(ψ̂k(Xjk))

}]
τ(
nlogd

h
)

1
2

,

(2.25)

where τ is imposed to control the penalty level. And this specific penalty is specially

designed to help group the covariates with small favored bandwidth and those with

infinite favored bandwidth. The order in the penalty term is specially designed to

represent the uniform property across d predictors. We will establish the theoretical

property of IC in Section 3.

For each predictor Xk, we obtain the favored bandwidth according to ICk(h) as

follows

ĥk = argmin
h

ICk(h).

When h = ∞, to get the estimator ψ̂k, we need to maximize the local partial

likelihood 2.10. Consider the case p = 1, then the local partial likelihood becomes

1

nh
√

2π

n∑
i=1

δi

[
Xikβ

∗
k − log

{ n∑
j=1

Yj(Zi)Riexp(Xjkβ
∗
k)
}]

+
log(h

√
2π)

nh
√

2π

n∑
i=1

δi.

Maximizing the above equation is equivalent to maximize the global partial likeli-

hood of Cox model with parametric risk effect since the local term cancels out. The

estimated coefficient is a constant and we denote it by β̃k. As a result, the corre-

sponding risk function, denoted by ψ̃k, is a linear function of the predictor. That is,

ψ̃k(x) = β̃kx. Now we define ψ̃k as

ψ̃k = (ψk(X1k), . . . , ψk(Xnk))
T

= (β̃kX1k, . . . , β̃kXnk)
T
.
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Then we take a look at the penalty term in the definition of ICk and it equals 0

when h =∞. Thus, we get

ICk(∞) = −L(ψ̃k) = − 1

n

n∑
i=1

δi

[
ψ̃k(Xik)− log

{ n∑
j=1

Yj(Zi)exp(ψ̃k(Xjk))
}]
. (2.26)

Since the first term in ICk(h) is the likelihood and it is a measurement of the

goodness of fit for the local partial likelihood estimator ϕ̂k(·). If the variable Xk

has nonlinear impact, then the likelihood will decrease as h increases since a larger

smoothing bias is yielded with a bigger smoothing bandwidth. This in fact implies

that variables with nonlinear impact favor small bandwidth. On the other hand, the

likelihood is not expected to present a big change as h varies if the variable has a

linear impact. And an infinite bandwidth is preferred for these variables. Intuited by

this, we can rank the variables by the favored bandwidth from smallest to the largest

and keep those with small favored bandwidth. This proposed information criteria is

inspired by Feng et al.[34]. They worked on the general nonparametric model and

proposed a penalized log residual sum of squares with the Nadaraya-Waston (NW)

estimator such that the optimal bandwidth obtained by minimizing this statistic can

be treated as a measure of the variable importance. However, their approach cannot

be applied to the Cox’s proportional model. In our research, the information criteria

is based on the likelihood cross validation with the local partial likelihood estimator.

This IC involves the first and second derivative of the local partial likelihood of the

Cox’s proportional model, which have a much more complex form and thus brings

challenge in establishing the theoretic results.

It could be time consuming to search over all possible values of h to get the optimal

one for all predictors.Therefore, as suggest in Feng et al. (2018)[34], we evaluate the

ICk(h) at two candidate values h = h∗ = ( logp
n

)
1/5

and h =∞ for all predictors. Then

the estimated index set is defined as Ŝ = {k|ICk(h
∗) < ICk(∞)}. The theoretical



23

property will be studied in Section 3.

Note that the super parameter τ in ICk(h) needs to be set properly and it is

challenging in practice. Motivated by this, we propose the non-linearity measure NL

for each predictor Xk,

NL(k) =
L(ψ̂k,h∗(Xik))− L(ψ̃k(Xik))

1
n

∑n
i=1 δi

[
1
h∗
rik(Xik) + log

{
1−

∑n
j=1 Yj(Zi)e

ψ̂k(Xjk)rik(Xjk)

h∗
∑n
j=1 Yj(Zi)e

ψ̂k(Xjk)

}]
(nlogp

h
)
1
2

, (2.27)

where ψ̂k,h∗(·) is the corresponding local partial likelihood estimator estimated at the

bandwidth h = c( logd
n

)
1
5 , where c is a constant. The numerator measures the differ-

ence of global partial likelihood between two choices of bandwidth. The denominator

is designed to adjust the numerator by taking into account of the degrees of free-

dom. This non-linearity measure can be used to rank the non-linearity impact of the

predictor. The larger the NL(k), the more non-linearity impact the predictor has.

2.5 Two-step Screening

With the definition of non-linearity measure, we now propose a two-step screening

method to perform screening for Cox’s proportional model with nonlinear risk effect.

The two-step screening procedure is implemented is described as follows.

1. For each predictor, compute non-linearity measure NL(k). Rank the predictors

by the value of NL(k) from the largest to the smallest. Keep the top ranked

predictors using the threshold bn/log(n)c as suggested by Fan and Lv (2008).

These predictors are regarded as the important variables with nonlinear impact;

2. For the variables not selected in step 1, fit marginal parametric Cox model for

each predictor to get parameter estimate β̃ and variance estimate I(β̃)−1. Then

we compute the absolute z value for each predictor as I(β̃)1/2|β̃| and rank the

covariates by the absolute z values from the largest to the smallest. Keep the

bn/log(n)c top ranked covariates. These predictors are regarded as important
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variables with linear impact.

2.6 Influence Function of Nonparametric Cox’s Proportional Model

Influence function is a useful tool in identifying the influence of the observations.

It can be used to quantify the effect of removing an observation of a statistic without

recalculating it. N. Reid and H. Crepeau (1985)[35] presented the influence function

for Cox’s proportional model with linear from of risk effect. In this section, we present

the influence function for nonparametric Cox’s proportional model. It is useful for

calibrating the influence of each observation to estimating the nonparametric Cox

model. Further, it can be used to approximate the rik defined in 2.22 and thus

tremendously improve the computation efficiency of computing the proposed non-

linearity measure NL.

The flow of the derivation is first to rewrite the local partial likelihood as a function

of the empirical cumulative distribution function and then get the gateaux derivative

of the function. The detailed works are presented in Appendix C.

The empirical influence function of nonparametric Cox model at the observation

(ti, Xik, δi) at the point x0 is obtained by solving the following equation,

A∗(β̂∗k) ˆIF ik = δiKh(Xik−x0)
[
X̃∗ik−

∑n
j=1 Yj(Zi)Kh(Xjk − x0)exp(X̃∗Tjk β̂

∗
k)X̃

∗
jk∑n

j=1 Yj(Zi)Kh(Xjk − x0)exp(X̃∗Tjk β̂
∗
k)

]
+C∗i (β̂∗k),

(2.28)

where

A∗(β̂∗k) =
1

n

n∑
i=1

δiKh(Xik − x0)
[∑n

j=1 Yj(Zi)Kh(Xjk − x0)exp(X̃∗Tjk β̂
∗
k)X̃

∗
jkX̃

∗T
jk∑n

j=1 Yj(Zi)Kh(Xjk − x0)exp(X̃∗Tjk β̂
∗
k)

− (

∑n
j=1 Yj(Zi)Kh(Xjk − x0)exp(X̃∗Tjk β̂

∗
k)X̃

∗
jk∑n

j=1 Yj(Zi)Kh(Xjk − x0)exp(X̃∗Tjk β̂
∗
k)

)

⊗
2]
,
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and

C∗i (β̂∗k) = Kh(Xik − x0)exp(X̃∗Tik β̂
∗
k)
[
− X̃∗ik

∑
zj≤zi

δjKh(Xjk − x0)∑n
l=1 Yl(Zj)Kh(Xlk − x0)exp(X̃∗Tlk β̂

∗
k)

)

+
∑
zj≤zi

δjKh(Xjk − x0)
∑n

l=1 Yl(Zj)Kh(Xlk − x0)exp(X̃∗Tlk β̂
∗
k)X̃

∗
lk

{
∑n

l=1 Yl(Zj)Kh(Xlk − x0)exp(X̃∗Tlk β̂
∗
k)}2

]
.

For parametric Cox model, N. Reid and H. Crepeau (1985)[35] stated the con-

nection among influence function, full parameter β̂ and leave-xi-out estimate β̂−i as

ˆIF−i ≈ (n − 1)(β̂ − β̂−i). But the detailed verification were not provided in their

work. We show that the similar conclusion holds for local likelihood estimator of

nonparametric Cox’s model, that is,

ˆIF ik ≈ (n− 1)(β̂∗k − β̂∗k,−i), (2.29)

where β̂∗k,−i is the estimate of β∗k obtained when eliminating the ith observation.

The details are included in Appendix C. And the computational cost of computing

influence function is much less than that of β̂∗k,−i.

Based on 2.29, when p = 1, we get

ψ̂k(x)− ψ̂k,−i ≈
1

n− 1

∫ x

0

ˆIF ik(t)dt.

Together with 2.23, we have

rik(x) ≈ h

n− 1

∫ x

0

ˆIF ik(t)dt. (2.30)

For predictor Xk, in order to compute rik(Xjk) for i = 1, . . . , n and j = 1, . . . , n, we

first form the order statistic (X(1)k, . . . , X(n)k). Then we apply the following equation
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to speed up the computation

rik(X(j)k) = rik(X(j−1)k) +

∫ X(j)k

X(j−1)k

ˆIF ik(t)dt. (2.31)

Now we study the computation efficiency between ?? and 2.22. Using 2.30, for

each predictor Xk, we need to obtain the matrix

ˆIF k =


ˆIF 1(X1k) . . . ˆIF 1(Xnk)

...
...

ˆIF n(X1k) . . . ˆIF n(Xnk).


This matrix can be computed column by column since for each column, the local like-

lihood estimator β̂k is the same and a whole column of Ci can be attained with one

computation. However, with 2.22, rik need to be computed element-wise. As a result,

the computational complexity is reduced from n2 to n. Next we compare the compu-

tational cost between 2.31 and 2.30. Since the integral is approximated by the Trape-

zoidal rule, for each given Xik, the observations {Xjk : j = 1, . . . , n and Xjk ≤

Xik} are taken as the grid points. With 2.30, we need to solve the local likelihood

estimator β̂ totally n(n + 1)/2 times for each predictor. However, we only need n

such computations with 2.31 and this further improves the computation efficiency.

Together, computing rik(x) with 2.31 is much faster than using 2.22 and thus can

significantly improve the computing efficiency of the non-linearity measure NL(k)



CHAPTER 3: ASYMPTOTIC PROPERTIES

In Chapter 2, we introduce the non-linearity measure NL(k) to quantify the nonlin-

ear impact of predictor Xk and propose the two-step screening method. In this chap-

ter, we illustrate the sure independent screening property for the proposed method.

Chapter 3 are organized as follows. In Section 1, we define related notations. Section

2 presents all theorems that we establish concerning the asymptotic properties of our

estimator.

3.1 Notations

• Define Ni(u) = I{Zi ≤ u, δi = 1} and Yi(u) = I{Zi ≥ u}.

• Put P (u|x) = P{Z ≥ u|X = x}, Λ(t, x) =
∫ t

0
P (u|x)λ0(u)du, and Λk(τ, x) =∫ τ

0
P (Z ≥ z|X = xk)λ0(u)du.

• Let µ1 =
∫
uK(u)du and v1 =

∫
u2K(u)du− µ1

2.

• Denote

Σk(τ, x) = fk(x)Ψk(x)Λk(τ, x)

∫
K2(u)du

and

Σ̃k(τ, x) = v1fk(x)Ψk(x)Λk(x).

• Let the filtration Fik be the statistical information accruing during the time

[0, τ ], that is,

Fik = σ{Xik, Ni(u), Yi(u), i = 1, . . . , n, 0 ≤ u ≤ τ}.
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• Under the independent censoring scheme,

Mik(u) = Ni(u)−
∫ τ

0

Yi(u)exp{ψk(Xik)}λ0(u)du

is an orthogonal local square integrable martingale with respect to Fik.

• Let

S
(0)
nk (αk, u) =

1

n

n∑
i=1

Yi(u)exp(X̃∗Tik β
0
k + UT

ikαk)Kh(Xik − x),

S
(1)
nk (αk, u) =

1

n

n∑
i=1

Yi(u)exp(X̃∗Tik β
0
k + UT

ikαk)Kh(Xik − x)Uik,

S
(2)
nk (αk, u) =

1

n

n∑
i=1

Yi(u)exp(X̃∗Tik β
0
k + UT

ikαk)Kh(Xik − x)UikU
T
ik.

• Define

Enk(αk, u) =
S

(1)
nk (αk, u)

S
(0)
nk (αk, u)

,

Vnk(αk, u) =
S

(2)
nk (αk, u)

S
(0)
nk (αk, u)

− Enk(αk, u)⊗2.

• Let ξk(x) =
∑n

i=1

∫ τ
o
Kh(Xik − x){Uik − Enk(0, u)}dMik(u).

• Put

gnk(Zi, Xik) =
1

n− 1

n∑
j=1,j 6=i

Yj(Zi)exp(ψk(Xjk)

∫ (Xik−Xjk)/h

0

(µ1 − u)K(u)du,

and

dnk(Zi) =
1

n− 1

n∑
j=1,j 6=i

Yj(Zi)exp(ψk(Xjk).

• Let Dik = E{dnk(Zi)|Zi} and Gik = E{gnk(Zi, Xik)|Zi}. Define

Ωk = E{ 1

n

n∑
i=1

δiΣ̃k(τ,Xik)
−1
Gik/Dik}.
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3.2 Asymptotic Properties

In this section, we establish the asymptotic properties for the proposed screening

procedure. We prove that the screening step to identify the nonlinear impact predic-

tors possesses the model selection consistency. We impose some technical conditions

for asymptotic properties and the conditions are presented in Appendix A. The proofs

for lemmas, propositions and theorems are presented in the Appendix B.

Since the nonlinear impact predictors are captured based on the value of IC. The

main challenges arise in how to develop the uniform deviation results of IC over all k

predictors for ultrahigh dimensional data. We first present a Bahadur representation

of the local likelihood estimator for nonparametric Cox model in Theorem 1. And then

introduce a uniform exponential inequality for the martingale in the representation

in Theorem 2. After this, we investigate the uniform deviation results of the local

partial likelihood estimator ψ̂k(·) as in Theorem 3 based on the results of Theorem 1

and Theorem 2. Then we derive the uniform property of the second term in IC as in

Theorem 4. Finally we show the model selection consistency property in Theorem 5.

For p = 1, we have

ψ̂k(x)− ψk(x) =

∫ x

0

1

h
α̂k(t)dt.

To work on the uniform result of ψ̂k towards its limit, we first express the α̂k(x) as

the sum of a martingales summation and a bias term based on the asymptotic results

of α̂k(x) proved by Fan and Gijbels (1997)[14]. And the result is summarized in the

following Theorem 1.

Theorem 1. Assume the Conditions 1-5 hold. Then for p = 1, we have

α̂k =
1

n
Σ̃k(τ, x)

−1
ξk(x) +B2k(τ, x),
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where

ξk(x) =
n∑
i=1

∫ τ

0

Kh(Xik − x){Uik − Enk(0, u)}dMik(u),

B2k(τ, x) = fk(x)Ψk(x)
ψ

(2)
k (x)

2
Λk(τ, x)

∫
K2(u)(u− µ1)u2duh2 + op(h

2),

and Σ̃k(τ, x) = v1fk(x)Ψk(x)Λk(x).

In Theorem 1, the first term in α̂k is the variance term and the second term repre-

sents the bias. Note that Σ̃k(τ, x) is a constant. In the following, we work on deriving

the uniform deviation of ξk over k predictors. The result is presented in Theorem

2. For multivariate data case, Bradic, Fan and Jiang (2011)[19] proved the uniform

deviation of the score vector of the penalized log partial likelihood function. Inspired

by their approach, we prove the following theorem.

Theorem 2. Assume conditions 1 to 7 in Appendix A hold. For any given positive

sequence un bounded away from 0, we have

P (|ξk(τ, x)| > n
1
2h−

1
2un) ≤ c0exp{−c1un}

uniformly over k for given x, where c0 and c1 are positive constants. Further more,

sup
k=1,...,d

|ξk| = Op(an),

where an = (nlogp
n

)
1
2 .

We have established a uniform exponential inequality for martingales in Theorem

2. This result plays a crucial role in establishing the model selection consistency for

ultrahigh dimensional data. Next we form the uniform deviation result of the local
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log partial likelihood estimator ψ̂k over all predictors and the domain of x.

Theorem 3. Under the conditions of Theorem 2, we have

sup
x∈[0,1]

sup
k=1,...,d

|ψ̂k(x)− ψk(x)| = Op(a
∗
n),

where a∗n = ( logp
nh3

)
1
2 + h.

Theorem 4 characterizes the uniform order of the Pk over k predictors, which

contributes in building the uniform deviation property of the penalty term in IC.

Theorem 4. Assume Conditions 1 to 8 in Appendix A are satisfied. To simply the

notations, we define

Pk =
1

n

n∑
i=1

δi

[1

h
rik(Xik) + log

{
1−

∑n
j=1 Yj(Zi)e

ψ̂k(Xjk)rik(Xjk)

h
∑n

j=1 Yje
ψ̂k(Xjk)

}]

then ICk(h) in (2.24) can be written as

ICk(h) = −L(ψ̂k) + Pkτ(
nlogp

h
)

1
2

.

Then we have the following result,

sup
k=1,...,d

|Pk −
Ωk

nh
| P−→ 0,

where Ωk = E{ 1
n

∑n
i=1 Σk(τ,Xik)

−1Gik/Dik} with Gik and Dik as defined in Section

3.1.

Now we present the selection consistency result in Theorem 5.
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Theorem 5. Assume Conditions 1 to 9 in Appendix A are satisfied. Let Ŝ = {k :

ICk(h
∗) < ICk(∞)}. Let S ⊂ {1, . . . , d} be the index set of predictors with nonlinear

impact. Then,

P (Ŝ = S)→ 1 as n→∞.

From Theorem 5, we conclude that the non-linearity screening step possesses the

sure screening property. More specifically, by sure screening we mean a property that

all the important variables survive after variable screening with probability tending

to one. It is desired for a screening method. The proofs are attached in the Appendix.



CHAPTER 4: SIMULATIONS

In this section, we conduct numerical simulations to evaluate the performance of

proposed independent screening method for nonparametric addititive Cox’s propor-

tional model. The event time T is generated from the following transformed regression

model (Fan, Gijbels and King, 1997[14]):

log Λ0(T ) = −ψ(X) + ε

where ε has standard exponential distribution. It is easy to generate data for Cox

model using above model. We use the Weibull baseline hazard function of the form

λ0(t) = 3λt2 with λ = 1
3
.

In the simulation, X is taken to be marginally uniform distributed over [0, 1]. The

correlation among the d covariates are designed following the autoregressive struc-

ture. More specifically, we first generate multivariate normally distributed variables

(Z̃1, . . . , Z̃d)
T
with mean (0, . . . , 0)T and correlation structure as Σij = ρ|i−j| .Then

the cumulative distribution function of the variables Z̃k with k = 1, . . . , d follows

uniform distribution [0, 1].

We denote

ψ1(x) = 5sin(2πx− π

2
) + 5,

ψ2(x) =
5sin(4πx)

1.1− sin(4πx)
+ 8(x− 0.5)2 − 2 and ψ3(x) =

1

2
x.

The censoring time C is simulated from an exponential distribution with mean

U ∗exp(ψ(x)), where U is randomly generated from uniform distribution on [1, c] and

the constant c is chosen such that the total censoring rate is about 20% - 30%. The



34

Gaussian kernel is used for all simulations. We consider two correlation cases with

ρ = 0.25 and ρ = 0.5. We fix d = 100 and run 100 simulations with sample size

n = 100 for each example. Example 1-4 are designed to evaluate the performance of

screening variables with nonlinear-impact with the proposed non-linearity measure.

Example 5 and 6 are designed to evaluate the total performance of the proposed

two-step screening procedure.

Example 1. Generate data from the following model:

ψ(x) = ψ1(X1)

with ρ = 0.25.

Example 2. The setting is the same as Example 1 but with ρ = 0.5.

Example 3. Generate data from the following model:

ψ(x) = ψ2(X1)

with ρ = 0.25.

Example 4. The setting is the same as Example 3 but with ρ = 0.5.

Example 5. Generate data from the following model:

ψ(x) = 2ψ1(X1) + 1.2ψ2(X2) + 3ψ3(X3)

with ρ = 0.25.

Example 6. The setting is the same as Example 5 but with ρ = 0.5.
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Table 4.1: Simulation results of Examples 1-4: Accuracy of proposed two-step screen-
ing in including the true model {X1}.

Example n d ρ Probability

Ex 1 100 100 0.25 1.00

Ex 2 100 100 0.5 0.93

Ex 3 100 100 0.25 1.00

Ex 4 100 100 0.5 1.00

For Example 1-4, the only effect variable in the model has a nonlinear impact. Thus

we only perform step 1 in the proposed two-step screening procedure. We compute the

nonlinearity measure NL for each covariate in each model. Then we rank the values

of NL from smallest to the largest and select the top bn/log(n)c = 21 covariate. We

evaluate the performance of the method by computing the accuracy in including the

true model {X1} and the results are summarized in Table 4.1. It shows that our

method performs very well in capturing the important variables. More pertinently,

the proposed non-linearity measure NL identifies the nonlinear impact variable with

high probability. Apart from the table, we also present the distribution of the smallest

model size required to include the true model {X1} in Figure 4.1 and Figure 4.2. It

is clear that reducing the dimensionality to bn/log(n)c covariates can still retain the

information in the model. For instance, for example 1, we can reduce the the model

with 100 covariates to only 4 covariates to include the true model with probability

1. And for example 2, reducing the model size to bn/log(n)c contains the true model

with high probability.
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(a) Frequency vs. Smallest model size to cover the true model: Example 1

(b) Frequency vs. Smallest model size required to cover the true model: Example

2

Figure 4.1: Distribution of the smallest model size required to cover the true model
{X1}: Example 1 & 2.
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(a) Frequency vs. Smallest model size to cover the true model: Example 3

(b) Frequency vs. Smallest model size to cover the true model: Example 4

Figure 4.2: Distribution of the Smallest model size required to cover the true model
{X1}: Example 3 & 4.

Next, we discuss the simulation results of example 5 and 6. The true model in

these examples consists of two nonlinear impact covariates {X1, X2} and one linear-

impact covariate X3. The performance of the screening procedure is evaluated by the

following two terms:
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1. PI : the proportion that the individual important covariate is selected among

the 100 simulations.

2. PA: the proportion that all the important covariates are selected among the 100

simulations.

Table 4.2 indicates that the proposed screening procedure captures the important

covariates with high probability. The correlation among the correlation impact the

accuracy of screening. Specially, we observe a decrease in the screening accuracy as

the correlation increases.

Table 4.2: Simulation results of Example 5 and 6.

Example n d ρ
PI PA

X1 X2 X3 all

Ex 5 100 100 0.25 0.94 0.96 0.90 0.88

Ex 6 100 100 0.5 0.89 0.90 0.88 0.85



CHAPTER 5: REAL EXAMPLE

In this section, we use a real data to demonstrate the performance of the proposed

method. We adopt the Neuroblastoma data set in Oberthuer et al (2006)[36]. Neu-

roblastoma counts for up to 6% of all children cancer in the United States and it is

the third most common type of cancer in children. Each year, there are about 800

new diagnostics of neuroblastoma in the United States. The average age of children

when they are diagnosed is between 1 and 2 years. The data set was obtained from

the MicroArray Quality Control phase-II (MAQC-II) project.

This data set contains 130 patients and the gene expression at 10,167 probe sites.

The minimum age of all the patients is 3 days and the maximum age is 8983 days. The

median of the age among all patients is 487 days. The clinical information including

event free survival and overall survival is also available. In our study, we focus on the

overall survival. Among the 130 patients, 87 of them are censored, which makes the

censoring rate as high as about 67%.

The scale each predictor to make the value be between 0 and 1. Then we apply the

proposed two-step screening method to the scaled data. To identify the covariate with

nonlinear impact, we perform step 1 and keep the bn/log(n)c = 26 top variables. The

selected genes with probe site names are summarized in Table 5.1. Then we perform

the second step to screen the covariates with linear impact and the selected genes

with probe site names are displayed in Table 5.2.
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Table 5.1: Probe site names of genes selected by step 1 screening.

AF275813 RNASEP1 NDUFA1 AL133022

FLJ20516 I_960852 AB075859 LOC93081

MRPL3 LOC134492 SPINK2 WDR12

I_959809 AF060511 Hs94090.1 EEF1E1

Hs406351 PRDX4 MGC5528 MMP7

ARL2 GMNN UBL1 QRSL1

GAJ E2F3

Table 5.2: Probe site names of genes selected by step 2 screening.

NNG1_exon5 NUDT5 SLC25A5 AHCY

STK6 MCTS1 C14orf166 NM_017669

AF117235 AL133641 ENST00000317847 SSRP1

Nup37 HSPC163 NOLA1 PAICS

BC006406 SNRPE SNRPG Hs155462.1

Hs108854.8 AHCY.1 SSR4 PX19

PPAT.1 AK057899

We apply LASSO method for Cox’s proportional model (Tibshirani, 1997) with

the covariates selected in the two-step screening. Table 5.3 reports the 8 genes with

probe site names that are kept in the final model.

Table 5.3: Probe site names of genes kept in the final model.

SLC25A5 NUDT5 NM_017669 AF117235

FLJ20516 LOC93081 MRPL3 Hs94090.1
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To obtain the confidence intervals of parameters, we take 1000 bootstrap sam-

ples from the empirical cumulative distribution of the sample (Burr, 1994)[37] The

consistency of this approach was proved by Jiang (2011)[38]. That is, each time we

randomly select n indexes with replacement from {1, . . . , n}, denoted by B∗, and form

the corresponding bootstrap sample {Tl, δl, Xlk}l∈B∗ based on the index. For the co-

variates with linear impacts, we calculate the standard deviations of the estimators

of the coefficients and construct the confidence intervals as shown in Table 5.4. For

the covariates with nonlinear impacts, we construct the 95% CIs for the estimation of

the risk function ψ(·). The estimated risk effect along with the 95% point-wise con-

fidence interval for each selected gene is plotted in Figure 5.1. We can tell that the

hazard does not present a linear combination of the covariates. These plots indicate

that the nonparametric estimate and the standard error estimates achieve satisfactory

performance.

Table 5.4: Estimated parameters of selected covariates with linear impact. LCI and
UCI are the lower and upper bounds of the 95% confidence interval, respectively.

Probe ID Estimated

coefficient

Standard error LCI UCI

SLC25A5 4.1958 0.3782 3.4546 4.9371

NUDT5 2.4012 0.3452 1.7246 3.0778

NM_017669 2.9499 0.2764 2.4082 3.4916

AF117235 -0.1726 0.2926 -0.7461 0.4009
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(a) Gene site name: FLJ20516 (b) Gene site name: LOC93081

(c) Gene site name: MRPL3 (d) Gene site name: Hs94090.1

Figure 5.1: Estimated risk effect of selected nonlinear impact covariates. Black solid
lines are the estimates and blue dashed lines are 95% confidence intervals.

Next, we try to provide more insight into the importance of the eight selected genes.

The log partial likelihood of Cox’s proportional model fitted with the eight genes is

-130.4526. We remove one gene at each time, refit the Cox’s proportional model, and

compute the log partial likelihood of the refit model. The results together with the

corresponding likelihood ratio test are summarized in Table 5.5. All the likelihood
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ratio test values are significantly greater than the critical value 3.841, the χ2 square

value with degree of freedom 1 and 5% significance level and we conclude that the

selected 8 genes are very important.

Table 5.5: Partial likelihood and likelihood ratio test of removing selected gene.

Probe ID of removed gene Log partial

likelihood

Likelihood

ratio test

SLC25A5 -135.6423 10.379298

NUDT5 -137.2219 13.538451

NM_017669 -136.0623 11.219315

AF117235 -133.9759 7.046618

FLJ20516 -135.9180 10.930835

LOC93081 -138.4352 15.965157

MRPL3 -134.7404 8.575468

Hs94090.1 -134.7404 7.046010



CHAPTER 6: DISCUSSIONS

In this research, we propose a non-linearity measure to quantify the nonlinear im-

pact of the covariates for Cox’s proportional model with nonparametric additive risk

effect. Then we introduce a two-step screening procedure to quickly reduce the di-

mensionality for ultra high dimensional data. We further establish the theoretical

property that the nonlinear step screening possesses the sure independent screening

property. Moreover, we derive the influence function for nonparametric Cox’s pro-

portional model and it can speed up the screening process dramatically. Simulation

studies are carried out to assess the performance of the proposed screening proce-

dure. We also use the Neuroblastoma data to shed more light on the application of

the proposed screening method on real data.

Our future research work includes but not limited to the following two aspects.

First, we can develop an IC for the 2nd step screening and compare it with the current

one. Further, we can establish the theoretical result of the whole two-step screening.

Second, it is interesting to investigate the post-selection statistical inference of the

selected model. Some key works about this topic are Fithian et al. (2015)[39] and

Tibshirani et al. (2016)[40].
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APPENDIX A: CONDITIONS

The following regularity conditions are needed for our asymptotic results. Note

that conditions 1 to 5 are similar to those in Fan and Gijbels (1997)[14]. Conditions

6 and 7 are imposed to facilitate the development of the uniform deviation results of

ξk, which is summarized in Theorem 2. Specifically, condition 7 is the consequence

of martingale representation of the score function for the Cox model. Condition 8 is

needed to establish the uniform deviation result of the penalty term in IC. Condition

9 assures that the signals of the covariates with nonlinear impact and those of the

covariates with linear impact are separable.

Condition 1. The kernel function K(·) ≥ 0 is a bounded density function with

compact support. Let µ1 =
∫
uK(u)du and v1 =

∫
u2k(u)du− µ1

2.

Condition 2. The function ψ(·) has a continuous second-order derivative around

the point x.

Condition 3. The density function f(·) of X is continuous as at the point x and

f(x) > 0.

Condition 4. The conditional probability P (u|·) is equi-continuous at point x.

Condition 5. Bandwidth h satisfies nh→∞ and nh5 is bounded.

Condition 6. There exists a compact neighborhood B of 0 that satisfies each of

the conditions.

1) On B × [0, τ ] × [0, 1], there exists scalar, vector and matrix function s
(l)
k such

that,

sup
0≤u≤τ

sup
α∈B1

∥∥∥S(l)
nk(αk, u)− s(l)

k (αk, u)
∥∥∥→ 0

as n→∞ for αk ∈ B1, B1 ∈ B, l = 0, 1, 2.

2) Suppose that Cnk = sup0≤u≤τ |Enk(0, u)− µ1|, then there exits constant c such

that supk Cnk < c almost surely.
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Condition 7. Define εik =
∫ τ

0
Kh(Xik−x)(Uik−µ1)dMik(u). Suppose εik satisfies

the Cramer condition, that is,

E|εik|m ≤ m!Mm−2σ2
k/2

for all k, where m ≥ 2, M is a positive constant and σ2
k = var(εik) <∞.

Condition 8. Let P ∗ik = δiΣ̃k(τ,Xik)
−1
Gik/Dik−Ωk. Assume E|P ∗ik|

m < m!Mm−2vi/2

for every m ≥ 2 and all i and some constants M and vi.

Condition 9. There exists sequences C̃n and D̃n such that C̃n � ( logp
n

)
1
5 ≥ D̃n.

For all k ∈ S, E{δ[ψk(xk)− log(s0k(z))]}−E{δ[xkβ̃k − log(s∗0k(z))]} > C̃n and for all

k /∈ S, E{δ[ψk(xk)− log(s0k(z))]} − E{δ[xkβ̃k − log(s∗0k(z))]} < D̃n.
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APPENDIX B: PROOFS OF THEOREMS

To facilitate our arguments for proofs, we first introduce some lemmas and propo-

sitions.

Lemma 1. (Besrstein’s inequality, Lemma 2.2.11, Van Der Vaar and Wellner

(1996)[41]). Let Y1, . . . , Yn be independent random variables with zero mean such

that E|Yi|m ≤ m!Mm−2vi/2, for every m ≥ 2 (and all i) and some constants M and

vi. Then

P (|Y1 + . . . Yn| > x) ≤ 2exp{−x2/(2(v +Mx))},

for v ≥ v1 + . . .+ vn.

Lemma 2. (Lemma 1, Fan and Gijbels (1997)[14]). Suppose that function K is

bounded and compactly supported. If g(·) is continuous at the point x and P (t|·) is

equi-contious at the point x and h→ 0 in such a way that nh/log(n)→∞, then

sup
0≤t≤τ

|cn(t)− c(t)| P−→ 0,

where cn(t) = 1
n

∑n
i=1 Yi(t)g(Xi)Kh(Xi − x), and c(t) = f(x)g(x)P (t|x)

∫
K(u)du

with Yi(t) = I(Zi ≥ t).

Lemma 3. (Martingale Inequality, Van de Geer (1995)[42]). Let {Mt}t≥0 be

a locally square integrable martingale with respect to the filtration {Ft}t≥0. Denote

the jump of {Mt} by ∆Mt = Mt−Mt− and the predictable variation by Vt = < Mt >.

Suppose that |∆Mt| ≤ m for all t > 0 and some 0 ≤ m < ∞. Then for each a > 0,

b > 0,

P (Mt ≥ a and V 2
t ≤ b2 for some t) ≤ exp

{ −a2

2(am+ b2)

}
.



51

Next we study the uniform property of L(ψ̂k) defined in (2.12), where L(·) denotes

the global partial likelihood.

Proposition 1. Assume Conditions 1-7 holds. We define ψ̂k(x) as the estimator

of local partial likelihood of Cox’s proportional model estimated at point x. And for

k = 1, · · · , d, we define

L(ψ̂k) =
1

n

n∑
i=1

δi[ψ̂k(Xik)− log{
n∑
j=1

Yj(Zi)exp(ψ̂k(Xjk))}],

L(ψk) =
1

n

n∑
i=1

δi[ψk(Xik)− log{
n∑
j=1

Yj(Zi)exp(ψk(Xjk))}],

where ψk = (ψk(X1k), · · · , ψk(Xnk))
T is the true risk function. There exists a set A1

with P (A1)→ 1 and a constant A1 > 0 such that on set A1, for k = 1, . . . , d,

|L(ψ̂k)− L(ψk)| ≤ A1a
∗
n,

where a∗n =
√

logp
nh3

+ h.

Proof. It follows from Theorem 3 that there exists a set A1 with P (A1) → 1 such

that on set A1, for k = 1, . . . , d and any i = 1, . . . , n,

|ψ̂k(Xik)− ψk(Xik)| ≤ a∗n.

Define

L̂ik = δi
[
ψ̂k(Xik)− log{

n∑
j=1

Yj(Zi)exp(ψ̂k(Xjk))}
]

and

Lik = δi
[
ψk(Xik)− log{

n∑
j=1

Yj(Zi)exp(ψk(Xjk))}
]
.
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Then

|L(ψ̂k)− L(ψk)| ≤
1

n

n∑
i=1

∣∣L̂ik − Lik∣∣.
We observe that

∣∣L̂ik − Lik∣∣ ≤ ∣∣δi[ψ̂k(Xik)− ψk(Xik)− log{
n∑
j=1

Yj(Zi)exp(ψ̂k(Xjk))}

+ log{
n∑
j=1

Yj(Zi)exp(ψk(Xjk))}]
∣∣

≤
∣∣[ψ̂k(Xik)− ψk(Xik)]

∣∣+
∣∣log{∑n

j=1 Yj(Zi)exp(ψk(Xjk))∑n
j=1 Yj(Zi)exp(ψ̂k(Xjk))

}
∣∣.

Since

log
{∑n

j=1 Yj(Zi)exp(ψk(Xjk))∑n
j=1 Yj(Zi)exp(ψ̂k(Xjk))

}
= log

{ n∑
j=1

Yj(Zi)exp[ψk(Xjk)− ψ̂k(Xjk)]exp(ψ̂k(Xjk))
}

− log
{ n∑
j=1

Yj(Zi)exp(ψ̂k(Xjk))
}

≤ log
{
exp(a∗n)

∑n
j=1 Yj(Zi)exp(ψ̂k(Xjk))∑n
j=1 Yj(Zi)exp(ψ̂k(Xjk))

}
= a∗n.

Then, we get

∣∣L̂ik − Lik∣∣ ≤ ∣∣[ψ̂k(Xik)− ψk(Xik)]
∣∣+ a∗n

≤ 2a∗n.

As a result, on set A1, there exist a constant A1 > 0 such that |ψ̂k(Xik)−ψk(Xik)| ≤

A1a
∗
n for k = 1, . . . , d.

Proposition 2. We now define

S0k(Zi) =
1

n

n∑
j=1

Yj(Zi)exp(ψk(Xjk)) and s0k(z) = E{Y (z)exp(ψk(xk))}.
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Then

L(ψk) = −log(n)Eδ(1 + op(1)) + E{δ[ψk(xk)− log(s0k(z))]},

where L(·) denotes the global partial likelihood.

Proof. Based on the definition of L(·) in 2.12, we have

L(ψk) =
1

n

n∑
i=1

δi
[
ψk(Xik)− log{

n∑
j=1

Yj(Zi)exp(ψk(Xjk))}
]

=
1

n

n∑
i=1

δi
[
ψk(Xik)− log{

1

n

n∑
j=1

Yj(Zi)exp(ψk(Xjk))} − log(n)
]

= −log(n)Eδ(1 + op(1)) +
1

n

n∑
i=1

δi
[
ψk(Xik)− log(s0k(z)) + log

s0k(z)

S0k(Zi)

]
.

Since s0k(z)/S0k(Zi)
P−→ 1, then we prove that

L(ψk) = −log(n)Eδ(1 + op(1)) + E{δ[ψk(xk)− log(s0k(z))]}.

Next we study the property of the global partial likelihood estimated at h = ∞.

Recall that maximizing the local partial likelihood when p = 1 is equivalent to max-

imize the global partial likelihood of Cox model with parametric risk effect, thus the

estimate of coefficient is a constant. We denote the estimated coefficient by β̃k and

the corresponding estimated risk function by ψ̃k, then we have ψ̃k(x) = β̃kx.

Proposition 3. Let ψ̃k denote the estimated risk function for the case h = ∞,

that is ψ̃k = (ψ̃k(X1k), . . . , ψ̃k(Xnk))
T

and ψ̃k(Xik) = Xikβ̃k for i = 1, . . . , n. We

further define

S∗0k(Zi) =
1

n

n∑
j=1

Yj(Zi)exp(Xjkβ̃k) and s∗0k(z) = E[Y (z)exp(xkβ̃k)].
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Then we get

L(ψ̃k) = −log(n)Eδ(1 + op(1)) + E{δ[xkβ̃k − log(s∗0k(z))]}

Proof. Proposition 3 can be proved following the similar arguments as in Proposition

2.

Remark. Based on the results of Proposition 2 and Proposition 3, we can reach

the following conclusions:

L(ψk)− L(ψ̃k) = E{δ[ψk(xk)− log(s0k(z))]} − E{δ[xkβ̃k − log(s∗0k(z))]}.

1. If the true risk function ψk(·) is linear, then L(ψk)− L(ψ̃k) = op(1).

2. If the true risk function ψk(·) is not linear, then L(ψk)− L(ψ̃k) 6= 0.
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Theorem 1

Proof. of Theorem 1. Recall that α̂k is the maximizer of

Lx(αk, τ) =
1

n

∫ τ

o

n∑
i=1

Kh(Xik − x)
[
X̃∗ikβ

0
k + UT

ikαk−

log
{ n∑
j=1

Yj(Zi)exp(X̃
∗T
ik + UT

ikαk)Kh(Xjk − x)
}]
dNi(u).

with respect to αk with τ = ∞, where τ denotes the observation ending time. We

consider the local linear estimator, that is, p = 1, then α̂k is a scalar in this case.

Fan (1997) provides the consistency for α̂k as

α̂k
P−→ 0.

By Taylor Expansion round 0,

0 = L′x(α̂k, τ) = L′x(0, τ) + L′′x(α̂∗k, τ)(α̂k − 0),

where α̂∗k is between 0 and α̂k. Thus,

α̂k = −L′′x(α̂∗k, τ)
−1L′x(0, τ). (B.1)

It is easy to see that α̂∗k
P−→ 0. Under the continuity assumption, we have L′′x(α̂∗k, τ) =

L′′x(0, τ) + op(1). Recall that,

L′′x(αk, τ) = −
∫ τ

0

S
(2)
nk (αk, τ)S

(0)
nk (αk, τ)− S(1)

nk (αk, τ)
2

S
(0)
nk (αk, τ)

2

1

n

n∑
i=1

Kh(Xik − x)dNi(u).
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By Lemma 2, we have

sup
0≤u≤τ

|S
(2)
nk (αk, τ)S

(0)
nk (αk, τ)− S(1)

nk (αk, τ)
2

S
(0)
nk (αk, τ)

2 − v1| = op(1),

where v1 =
∫
u2k(u)du − µ1

2. Then according to the result in Fan and Gijbels

(1997)[14], we have

L′′x(0, τ) = −v1fk(x)Ψk(x)Λk(τ, x) + op(1) ≡ −Σ̃k(τ, x) + op(1). (B.2)

Now we work on L′x(0, τ). We see that

L′x(0, τ) =
1

n

n∑
i=1

∫ τ

0

Kh(Xik − x){Uik − Enk(0, u)}dNi(u). (B.3)

Since Mik(u) = Ni(u)−
∫ τ

0
Yi(u)exp{ψk(Xik)}λ0(u)du is a martingale with respect to

Fik. Then we can rewrite (B.3) as

L′x(0, τ) =
1

n

n∑
i=1

∫ τ

0

Kh(Xik − x){Uik − Enk(0, u)}dMik(u)

+
1

n

n∑
i=1

∫ τ

0

Kh(Xik − x){Uik − Enk(0, u)}Yi(u)exp{ψk(Xik)}λ0(u)du.

Denote the first term by B1k(τ, x) and the second term by B2k(τ, x). By Lemma 2,

sup
0≤u≤τ

|Enk(0, u)− µ1|
P−→ 0,

where µ1 =
∫
uK(u)du. Based on the results in Fan and Gijbels (1997)[14], we get

B2k(τ, x) = fk(x)Ψk(x)
ψ

(2)
k (x)

2
Λk(τ, x)

∫
K2(u)(u− µ1)u2duh2 + op(h

2) = Op(h
2).

(B.4)



57

Then (B.3) can be written as

L′x(0, τ) =
1

n

n∑
i=1

∫ τ

0

Kh(Xik − x){Uik − Enk(0, u)}dMik(u) +Op(h
2). (B.5)

Combine (B.1), (B.2) and (B.5), we get

α̂k = Σ̃k(τ, x)
−1 1

n

n∑
i=1

∫ τ

0

Kh(Xik − x){Uik − Enk(0, u)}dMik(u) +Op(h
2).

Recall ξk(x) ≡
∑n

i=1

∫ τ
o
Kh(Xik − x){Uik − Enk(0, u)}dMik(u). As a result,

α̂k =
1

n
Σ̃k(τ, x)

−1
ξk(x) +B2k(τ, x) =

1

n
Σ̃k(τ, x)

−1
ξk(x) +Op(h

2). (B.6)
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Theorem 2

Proof. of Theorem 2. Recall ξk(x) =
∑n

i=1

∫ τ
o
Kh(Xik−x){Uik−Enk(0, u)}dMik(u).

Then ξk(x) can be written as,

ξk(x) =
n∑
i=1

∫ τ

0

Kh(Xik − x){Uik − µ1}dMik(u)

−
n∑
i=1

∫ τ

0

Kh(Xik − x){Enk(0, u)− µ1}dMik(u)

≡ ξk1(τ, x)− ξk2(τ, x).

To establish the exponential inequality for ξk(x), we work on establishing the expo-

nential inequalities for ξk1(τ, x) and ξk2(τ, x) in the following.

Note that ξk1(τ, x) =
∑n

i=1 εik, where {εik}
n
i=1 is a sequence of i.i.d. random vari-

ables with mean 0. Then by Condition 7, we have the Berstein’s exponential inequal-

ity,

P (|ξk1(x)| > a) ≤ 2exp{−a2/2(nσ2
k +Ma)}. (B.7)

Now consider the counting process Ni(t). For covariate Xk, the intensity process

is defined as λik(t) = Yi(t)exp{ψk(Xik)}λ0(t). The continuous compensator for mar-

tingale Mi(t) is defined as Λik(t) =
∫ t
o
λik(u)du. We denote Λ̄k(t) =

∑n
i=1 Λik(t) and

by the continuity of compensator, we have |∆Λ̄k(t)| = 0.

Let N̄(t) =
∑n

i=1Ni(t), then ∆N̄(t) =
∑n

i=1 ∆Ni(t), where ∆Ni(t) = Ni(t)−Ni(t
−)

indicates the number of events that occurs at time t. Since no two counting process

jump at the same time, we have |∆N̄(t)| ≤ 1. Note that M̄(t) = N̄(t) − Λ̄(t), then,

we get

|∆(h
1
2n−

1
2 ξk2(u, x))| ≤ h

1
2n−

1
2 max
i=1,...,n

|Kh(Xik − x)| sup
0≤u≤τ

|Enk(0, u)− µ1|

≡ h
1
2n−

1
2 max
i=1,...,n

|Kh(Xik − x)|Cnk.
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By Condition 6 (2), this is bounded almost surely.

We denote the quadratic variation of martingale of Mi(t) by < Mi(t) >. Then the

predictable quadratic variation of h
1
2n−

1
2 ξk2(t, x) is

< h
1
2n−

1
2 ξk2(u, x) > = hn−1

n∑
i=1

∫ u

0

K2
h(Xik − x){Enk(0, t)− µ1}2d < Mi(t) >

= hn−1

n∑
i=1

∫ u

0

K2
h(Xik − x){Enk(0, t)− µ1}2Yi(t)

exp{ψk(Xik)}λ0(t)dt

≡ b2
nk(u).

It is clear that

b2
nk(u) ≤ b2

nk(τ) ≤ C2
nkhn

−1

n∑
i=1

∫ τ

0

K2
h(Xik − x)Yi(u)exp{ψk(Xik)}λ0(u)du.

By Lemma 2,

hn−1

n∑
i=1

∫ τ

0

K2
h(Xik − x)Yi(u)exp{ψk(Xik)}λ0(u)du

= fk(x)Ψk(x)Λk(τ, x)

∫
K2(u)du+ op(1) ≡ Σk(τ, x) + op(1),

where Λk(τ, x) =
∫ τ

0
P (Z ≥ z|X = xk)λ0(u)du.

Assume fk(x) and Ψk(x) are bounded for any k. Therefore, there exits positive

contants 0 ≤ b <∞ and 0 < d <∞ such that

|∆(h
1
2n−

1
2 ξk2(u, x))| < b and < h

1
2n−

1
2 ξk2(u, x) >≤ d2.

As a result, we apply the exponential inequality for martingales as in Lemma 3,
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for un > 0,

P (|ξk2(τ, x)| > n
1
2h−

1
2un) = P (h−

1
2n

1
2 ξk2(τ, x)) ≤ 2exp

{
− u2

n

2(bun + d2)

}
.

Therefore, by Condition 7, then there exists constant c > 0 such that

P (|ξk2(τ, x)| > n
1
2h−

1
2un) ≤ 2exp{−cun} (B.8)

uniformly over k. Note that

P (|ξk(τ, x)| > n
1
2h−

1
2un) ≤ P (|ξk1(τ, x)| > 0.5n

1
2h−

1
2un)

+ P (|ξk2(τ, x)| > 0.5n
1
2h−

1
2un).

Then by (B.7) and (B.8), we have

P (|ξk(τ, x)| > n
1
2h−

1
2un) ≤ 2exp

{
− un

4h(2σ2
kun

−1 +Mn−
1
2h−

1
2 )

}
+ 2exp{−cun}.

(B.9)

Then there exists positive constants c0 and c1 such that

P (|ξk(τ, x)| > n
1
2h−

1
2un) ≤ c0exp{−c1un} (B.10)

uniformly over k for given x.

Taking appropriate un, we get

sup
k=1,...,d

|ξk(τ, x)| = Op(n
1
2h−

1
2un).

Let un = c
√
logp. Consider the ultrahigh-dimensional framework, that is, the dimen-
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sionality grows exponentially with the sample size. Then, we get

P (|ξk(τ, x)| > c
√
nlogp/h)→ 0

uniformly in k for given x. That is P (|ξk(τ, x)
√
h/nlogp| > c)→ 0. Then we have,

sup
k=1,...,d

|ξk(τ, x)
√
h/nlogp| = Op(1).

Thus,

sup
k=1,...,d

|ξk(τ, x)| = Op(
√
nlogp/h).

Let an =
√
nlogp/h, then we get

sup
k=1,...,d

|ξk(τ, x)| = Op(an).
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Theorem 3

Theorem 3 shows the uniform consistency results for local partial likelihood esti-

mate over k predictors and the domain of x.

Proof. of Theorem 3. Recall that when p = 1,

ψ̂′k(x)− ψ′k(x) = β̂∗k(x)− β0
k(x) =

1

h
α̂k(x)

and

α̂k =
1

n
Σ̃k(τ, x)

−1
ξk(x) +Op(h

2).

Then

ψ̂′k(x)− ψ′k(x) =
1

nh
Σ̃k(τ, x)

−1
ξk(x) +Op(h).

Suppose there exists positive constant c′ such that Σ̃k(τ, x) ≤ c′ <∞ uniformly in k.

Then by Theorem 2,

sup
k=1,...,d

|ψ̂′k(x)− ψ′k(x)| = Op(

√
logp

nh3
) +Op(h). (B.11)

As a result, for a∗n =
√

logp
nh3

+ h, we have

sup
k=1,...,d

|ψ̂′k(x)− ψ′k(x)| = Op(a
∗
n)

for given x ∈ [0, 1].

Now partition [0, 1] into M intervals by selecting points {x0, . . . , xM} with x0 = 0

and xM = 1 such that |xs − xs−1| < ε for some positive ε for s in 1, . . . ,M . Then,

max
1≤s≤M

sup
k=1,...,d

|ψ̂′k(x)− ψ′k(x)| = Op(a
∗
n). (B.12)
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Note that

sup
x∈[0,1]

sup
k=1,...,d

|ψ̂′k(x)− ψ′k(x)| ≤ max
1≤s≤M

sup
k=1,...,d

|ψ̂′k(xs)− ψ′k(xs)|

+ max
1≤s≤M

sup
x∈[0,1]

sup
k=1,...,d

∣∣ψ̂′k(x)− ψ′k(x)− (ψ̂′k(xs)− ψ′k(xs))
∣∣

= Op(a
∗
n) + max

1≤s≤M
sup
x∈[0,1]

sup
k=1,...,d

∣∣ 1

nh
Σ̃k(τ, x)

−1
ξk(x)− 1

nh
Σ̃k(τ, xs)

−1
ξk(xs)

∣∣.
(B.13)

Now we work on the second term on the right-hand side of (B.13). We have

max
1≤s≤M

sup
x∈[0,1]

sup
k=1,...,d

∣∣ 1

nh
Σ̃k(τ, x)

−1
ξk(x)− 1

nh
Σ̃k(τ, xs)

−1
ξk(xs)

∣∣
= max

1≤s≤M
sup
x∈[0,1]

sup
k=1,...,d

∣∣ 1

nh
(Σ̃k(τ, x)

−1
− Σ̃k(τ, xs)

−1
)ξk(xs)

+
1

nh
Σ̃k(τ, x)

−1
(ξk(x)− ξk(xs))

∣∣
≤ max

1≤s≤M
sup
x∈[0,1]

sup
k=1,...,d

∣∣ 1

nh
(Σ̃k(τ, x)

−1
− Σ̃k(τ, xs)

−1
)ξk(xs)

∣∣
+ max

1≤s≤M
sup
x∈[0,1]

sup
k=1,...,d

∣∣ 1

nh
(Σ̃k(τ, x)

−1
− Σ̃k(τ, xs)

−1
)ξk(xs)

∣∣,
which tends to zero as ε→ 0 by the continuity of Σ̃k(τ, x)

−1
and ξk(x).

Thus we have

sup
x∈[0,1]

sup
k=1,...,d

|ψ̂′k(x)− ψ′k(x)| = Op(a
∗
n). (B.14)

Since

|ψ̂k(x)− ψk(x)| ≤
∫ x

0

|ψ̂′k(t)− ψ′k(t)|dt ≤ sup
x∈[0,1]

|ψ̂′k(x)− ψ′k(x)|

for any k. As a result, we prove the result

|ψ̂k(x)− ψk(x)| = Op(a
∗
n).

This result shows the uniform consistency of local linear estimator of local partial
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likelihood for Cox’s proportional model over dimension k and domain of x.
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Theorem 4

Proof. of Theorem 4. Recall that

Pk =
1

n

n∑
i=1

δi

[1

h
rik(Xik) + log

{
1−

∑n
j=1 Yj(Zi)e

ψ̂k(Xjk)rik(Xjk)

h
∑n

j=1 Yj(Zi)e
ψ̂k(Xjk)

}]
,

where

rik(x) =

∫ x

0

Hk(t, τ)−1Qik(t, τ)dt,

Hk(x, τ) = −L′′x(αk, τ)|αk=α̂k

and

Qik(x, τ) =
∂

∂αk

[
Lx(αk, τ)− Lx,−i(αk, τ)

]
|αk=α̂k

=
1

n
δiKh(Xik − x)Uik −

1

n

∫ τ

0

n∑
l=1

Kh(Xlk − x)
[S(1)

nk (αk, τ)

S
(0)
nk (αk, τ)

]
dNl(u)

+
1

n

∫ τ

0

n∑
l=1,l 6=i

Kh(Xlk − x)
[S(1)

nk,−i(αk, τ)

S
(0)
nk,−i(αk, τ)

]
dNl(u).

In our case τ =∞. Consider the case p = 1, since α̂k
P−→ 0, we now define

H∗k(x) = −L′′x(0,∞),

Q∗ik(x) =
∂

∂αk

[
Lx(αk,∞)− Lx,−i(αk,∞)

]
|αk=0

=
1

n
δiKh(Xik − x)Uik −

1

n

∫ ∞
0

n∑
l=1

Kh(Xlk − x)
[S(1)

nk (0,∞)

S
(0)
nk (0,∞)

]
dNl(u)

+
1

n

∫ ∞
0

n∑
l=1,l 6=i

Kh(Xlk − x)
[S(1)

nk,−i(0,∞)

S
(0)
nk,−i(0,∞)

]
dNl(u).

and

r∗ik(x) ≡ r∗ik(x,∞) =

∫ x

0

H∗k(t)−1Q∗ik(t)dt.
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Then Pk can be written as

Pk =
1

n

n∑
i=1

δi

[1

h
r∗ik(Xik) + log

{
1−

∑n
j=1 Yj(Zi)e

ψ̂k(Xjk)r∗ik(Xjk)

h
∑n

j=1 Yj(Zi)e
ψ̂k(Xjk)

}]
(1 + op(1))

≡ P ∗k (1 + op(1)).

In the following, we work on P ∗k . By Lemma 2, we get

sup
0≤u≤τ

∣∣S(1)
nk (0, u)

S
(0)
nk (0, u)

− µ1

∣∣ P−→ 0,

where µ1 =
∫
uK(u)du. Then

Q∗ik(x) =
1

n
δiKh(Xik − x)Uik −

1

n

∫ τ

0

n∑
l=1

Kh(Xlk − x)µ1dNl(u)

+
1

n

∫ τ

0

n∑
l=1,l 6=i

Kh(Xlk − x)µ1dNl(u) + op(1)

=
1

nh
δiKh(Xik − x)(Xik − x)− 1

n
δiKh(Xik − x)µ1 + op(1).

Define K(1)
h (x) = Kh(x/h)(x/h). Then Q∗ik(x) can be represented as

Q∗ik(x) =
1

n
δiK

(1)
h (Xik − x)− 1

n
δiKh(Xik − x)µ1. (B.15)

Recall that

L′′x(0, τ) = −Σ̃k(τ, x) + op(1),
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where Σ̃k(τ, x) = v1fk(x)Ψk(x)Λk(τ, x). Thus,

r∗ik(x) =

∫ x

0

H∗k(t)−1Q∗ik(t)dt

=

∫ x

0

(Σ̃k(τ, t)
−1

+ op(1))[
1

n
δiK

(1)
h (Xik − t)−

1

n
δiKh(Xik − t)µ1]dt

=

∫ x

0

Σ̃k(τ, t)
−1

[
1

n
δiK

(1)
h (Xik − t)−

1

n
δiKh(Xik − t)µ1]dt

+ op(1)
1

n
δi

∫ x

0

[K
(1)
h (Xik − t)−Kh(Xik − t)µ1]dt.

Let u ≡ (Xik − t)/h, then t = Xik − uh and (Xik − x)/h ≤ u ≤ Xik/h. Thus

r∗ik =

∫ Xik/h

(Xik−x)/h

−Σ̃k(τ,Xik − uh)
−1[ 1

n
δiK(u)u− 1

n
δiµ1K(u)

]
du+ op(

1

n
)

=
1

n
δi

∫ Xik/h

(Xik−x)/h

Σ̃k(τ,Xik − uh)
−1
K(u)(µ1 − u)du+ op(

1

n
).

Since h→ 0, by Taylor expansion, we have

Σ̃k(τ,Xik − uh)
−1

= Σ̃k(τ,Xik)
−1

+Op(uh).

As a result, we obtain

r∗ik =
1

n
δiΣ̃k(τ,Xik)

−1
∫ Xik/h

(Xik−x)/h

(µ1 − u)K(u)du+ op(
1

n
). (B.16)

Plug the result (B.15) and (B.16) back into the definition of P ∗k and by Taylor
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expansion of log(1− x),

P ∗k =
1

n

n∑
i=1

δi
[ 1

nh
δiΣ̃k(τ,Xik)

−1
∫ Xik/h

0

(µ1 − u)K(u)du

−
1
n

∑n
j=1 Yj(Zi)exp(ψk(Xjk))δiΣ̃k(τ,Xik)

−1 ∫ Xik/h
(Xik−Xjk)/h

(µ1 − u)K(u)du

h
∑n

j=1 Yj(Zi)exp(ψk(Xjk))

]
+ op(

1

nh
)

=
1

n2h

n∑
i=1

δiΣ̃k(τ,Xik)
−1[ ∫ Xik/h

0

(µ1 − u)K(u)du

−
∑n

j=1 Yj(Zi)exp(ψk(Xjk))
∫ Xik/h

(Xik−Xjk)/h
(µ1 − u)K(u)du∑n

j=1 Yj(Zi)exp(ψk(Xjk))

]
+ op(

1

nh
).

Note that

∫ Xik/h

(Xik−Xjk)/h

(µ1 − u)K(u)du =

∫ Xik/h

0

(µ1 − u)K(u)du

−
∫ (Xik−Xjk)/h

0

(µ1 − u)K(u)du.

Then

∫ Xik/h

0

(µ1 − u)K(u)du−
∑n

j=1 Yj(Zi)exp(ψk(Xjk))
∫ Xik/h

(Xik−Xjk)/h
(µ1 − u)K(u)du∑

j∈Ri exp(ψk(Xjk))

=

∑n
j=1 Yj(Zi)exp(ψk(Xjk))

∫ (Xik−Xjk)/h

0
(µ1 − u)K(u)du∑n

j=1 Yj(Zi)exp(ψk(Xjk))
.

As a result,

P ∗k =
1

n

n∑
i=1

δi
[ 1

nh
δiΣ̃k(τ,Xik)

−1

∑n
j=1 Yj(Zi)exp(ψk(Xjk))

∫ (Xik−Xjk)/h

0
(µ1 − u)K(u)du∑n

j=1 Yj(Zi)exp(ψk(Xjk))

]
+ op(

1

nh
).

(B.17)

Now we define

gnk(Zi, Xik) =
1

n− 1

n∑
j=1,j 6=i

Yj(Zi)exp(ψk(Xjk))

∫ (Xik−Xjk)/h

0

(µ1 − u)K(u)du
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and

dnk(Zi) =
1

n− 1

n∑
j=1,j 6=i

Yj(Zi)exp(ψk(Xjk)).

Then

P ∗k =
1

nh2

n∑
i=1

δiΣ̃k(τ,Xik)
−1
[
E{gnk(Zi, Xik)|Zi}
E{dnk(Zi)|Zi}

+
(gnk(Zi, Xik)

dnk(Zi)

− E{gnk(Zi, Xik)|Zi}
E{dnk(Zi)|Zi}

)]
+ op(

1

nh
)

=
1

nh2
δiΣ̃k(τ,Xik)

−1E{gnk(Zi, Xik)|Zi}
E{dnk(Zi, )|Zi}

+ op(
1

nh
).

Note that

E{dnk(Zi)|Zi} = E{I(Zj ≥ Zi)exp(ψk(Xjk))|Zi}

= E{E{I(Zj ≥ Zi|Xjk}exp(ψk(Xjk))}

= E{P (Zj ≥ Zi|Xjk)exp(ψk(Xjk)}

=

∫ ∫ ∞
Zi

f̃k(z|x)exp(ψk(x))fk(x)dzdx

≡ Dik,

where f̃k(z|x) is the conditional density of z given x for predictor Xk.

Similarly,

E{gnk(Zi, Xik)|Zi} = E{P (Zj ≥ Zi|Xjk)exp(ψk(Xjk)

∫ (Xik−Xjk)
h

0

(µ1 − u)K(u)du}

=

∫ ∫ ∞
Zi

∫ (Xik−x)
h

0

f̃k(z|x)exp(ψk(x))(µ1 − u)K(u)fk(x)dudzdx

≡ Gik.
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As a result,

P ∗k =
1

nh2

n∑
i=1

δiΣ̃k(τ,Xik)
−1
Gik/Dik + op(

1

nh
)

=
1

nh
(
1

n

n∑
i=1

δiΣ̃k(τ,Xik)
−1
Gik/Dik + op(1)).

Put

Ωk = E{ 1

n

n∑
i=1

δiΣ̃k(τ,Xik)
−1
Gik/Dik}

and

P ∗ik = δiΣ̃k(τ,Xik)
−1
Gik/Dik − Ωk,

then

P ∗ik −
1

nh
Ωk =

1

nh
(
1

n

n∑
i=1

P ∗ik + op(1)).

It is clear that

E{P ∗ik} = E{E(P ∗ik|X)} = 0.

Then assume Condition 8 holdes and we apply the Berstien exponential inequality ,

we have for k = 1, . . . , d

P (|
n∑
i=1

P ∗ik| > x) ≤ 2exp(− x2

2[E(P ∗2ik +Mx]
).

Choose x = n2hc, then

P (
1

nh2
|

n∑
i=1

P ∗ik| > c) ≤ 2exp(− n3h2c2

2[E(P ∗2ik + nhMc]
),

That is, for k = 1, . . . , d

P (|P ∗k −
1

nh
Ωk| > c) ≤ 2exp(− n3h2c2

2[E(P ∗2ik + nhMc]
).
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Then we can prove that

sup
k=1,...,d

|Pk −
Ωk

nh
| P−→ 0.
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Theorem 5

Proof. of Theorem 5. We decompose Ŝ = S into d terms,

P (Ŝ = S) = P (∩k∈S[ICk(h
∗) < ICk(∞)] ∩k/∈S [ICk(h

∗) > ICk(∞)]

≥ 1−
∑
k∈S

P (ICk(h
∗) > ICk(∞))−

∑
k/∈S

P (ICk(h
∗) < ICk(∞))

≥ 1−
d∑

k=1

P (Fk),

where Fk = {ICk(h∗) > ICk(∞)} if k ∈ S and Fk = {ICk(h∗) < ICk(∞)} if k /∈ S.

Then it suffices to prove for k ∈ S,ICk(h∗) < ICk(∞) with high probability and for

k /∈ S, ICk(h∗) > ICk(∞) with high probability.

Recall the definition of IC as in (2.25). When h =∞,

ICk(∞) = −L(ψ̃k) = − 1

n

n∑
i=1

δi

[
ψ̃k(Xik)− log

{ n∑
j=1

Yj(Zi)exp(ψ̃k(Xjk))
}]
.

When h = h∗ = ( logp
n

)
1
5 , we have

ICk(h) = −L(ψ̂k) +
1

n

n∑
i=1

δi

[1

h
rik(Xik)+

log
{

1−
∑n

j=1 Yj(Zi)e
ψ̂k(Xjk)rik(Xjk)

h
∑n

j=1 Yj(Zi)e
ψ̂k(Xjk)

}]
τ(
nlogp

h
)

1
2

= −L(ψ̂k) + Pkτ(
nlogp

h
)

1
2

.

We have the uniform deviation of L(ψ̂k) and L(ψ̃k) from Proposition 1 that there

exists a set B1 with P (B1)→ 1 and a universal constant B1 > 0 such that on set B1,

we have

|L(ψ̂k)− L(ψk)| ≤ B1a
∗
n, (B.18)

for all k = 1, . . . , d.
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From Lemma 4, for any given B2 > 0, there exists a set B2 with P (B2) → 1 as

n→∞ such that on the set B2, we have

|Pk −
Ωk

nh
| ≤ B2, (B.19)

for all k = 1, . . . , d.

Then for all k = 1, . . . , d on set B = B1 ∩ B2,

−L(ψk) +
τΩkan
nh

−B1a
∗
n < ICk(h) < −L(ψk) +

τΩkan
nh

+B1a
∗
n, (B.20)

where an = (nlogp
h

)
1
2 .

Now for each variable, we compare the IC for the two different bandwidth h = h∗

and h =∞. Assume h→ 0 and nh→∞, then for k ∈ S, we have

ICk(h)− ICk(∞) < L(ψ̃k)− L(ψk) +
τΩkan
nh

+B1a
∗
n.

With h = ( logp
n

)
1
5 and for large n, we have

ICk(h)− ICk(∞) < L(ψ̃k)− L(ψk) + τΩk(
logp

n
)

1
5

+B1(
logp

n
)

1
5

. (B.21)

From Proposition 2 and Proposition 3, we get

L(ψ̃k)− L(ψk) = E{δ[xTk β̃k − logS∗0k(z)]} − E{δ[ψk(xk)− logS0k(z)]}.

Using Condition 9 on the signal level, ICk(h)− ICk(∞) < 0 for all k ∈ S with high

probability. This proves that for the variables with nonlinear impact, the favored

bandwidth is h = h∗. Next, we consider k /∈ S. Similarly, for k /∈ S,

ICk(h)− ICk(∞) > L(ψ̃k)− L(ψk) +
τΩkan
nh

−B1a
∗
n.
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With h = ( logp
n

)
1
5 and for large n, we have

ICk(h)− ICk(∞) > L(ψ̃k)− L(ψk) + (τΩk −B1)(
logp

n
)

1
5

. (B.22)

For k /∈ S, on set B if τΩk > B1, using Condition 9 for k /∈ S, we get ICk(h) −

ICk(∞) > 0 with high probability. This shows that for variables with linear impact,

the favored bandwidth is h = ∞. Together, we prove that the proposed method

achieves the selection consistency in the scenario that that the dimensionality grows

at an exponential rate of sample size, i.e., p = o(exp(nα)) with 0 < α < 1.
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APPENDIX C: DERIVATION OF THE INFLUENCE FUNCTION

We extend the idea in N. Reid and H. Crepeau (1985)[35] to derive the influence

function for Cox’s proportional model with nonparametric risk effect. We apply

the method of random covariates used in regression models (Krasker and Welsch,

1982[43]) to nonparametric proportional hazard model.

To simplify the notations, we consider the case for a general X. Denote H(z, x, δ)

as the joint cumulative distribution function for (Z,X, δ), where Z is the survival

time, X is the covariate and δ is the censoring indicator. Denote Hn(z, x, δ) as the

corresponding empirical distribution function. Similarly, Denote H(z, x) as the joint

marginal distribution function of (Z,X) and Hn(z, x) as the corresponding distribu-

tion function.

Then at a local point x0, the local partial likelihood estimator β∗ satisfies

n∑
i=1

δiKh(Xi − x0)
[
X̃∗i −

∑n
j=1 Yj(Zi)Kh(Xj − x0)exp(X̃∗Tj β∗)X̃∗j∑n
j=1 Yj(Zi)Kh(Xj − x0)exp(X̃∗Tj β∗)

]
= 0. (C.1)

To simply the notation, we rewrite

X̃∗i = {Xi − x0, . . . , (Xi − x0)p}T ≡ Xi(x0).

Since

Hn(z, x, δ) =
1

n

n∑
i=1

δ(Zi,Xi,δi)(z, x, δ) and Hn(z̃, x̃) =
1

n

n∑
i=1

δ(Zi,Xi)(z, x),

where

δ(Zi,Xi,δi)(z, x, δ) =

 1 if z = Zi, x = Xi, δ = δi

0 otherwise
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and

δ(Zi,Xi)(z, x) =

 1 if z = Zi, x = Xi

0 otherwise.

Then (C.1) becomes

∫
δKh(x− x0)

[
x(x0)−

∫
Kh(x̃− x0)exp(x̃(x0)Tβ∗)x̃(x0)I(z̃ ≥ z)dHn(z̃, x̃)∫
Kh(x̃− x0)exp(x̃(x0)Tβ∗)I(z̃ ≥ z)dHn(z̃, x̃)

]
dHn(z, x, δ) = 0.

(C.2)

Replace the empirical distribution function in (C.2) by the population distribution

function, we get the infinite sample version as:

∫
δKh(x− x0)

[
x(x0)−

∫
z̃≥zKh(x̃− x0)exp(x̃(x0)Tβ∗(H))x̃(x0)dH(z̃, x̃)∫

z̃≥zKh(x̃− x0)exp(x̃(x0)Tβ∗(H))dH(z̃, x̃)

]
dH(z, x, δ) = 0.

(C.3)

The above equation defines β∗ as a functional β∗(H).

The definition of influence function of T at F is (Hample, 1974[44]):

ˆIF (Xi) = lim
ε→0
{T [(1− ε)F + εδx]− T (F )}/ε

at the point x, where δx is a point mass at x.

Replace H in (C.3) by (1− ε)H + εδ(Zi,Xi,δi), then β∗[(1− ε)H + εδ(Zi,Xi,δi)] satisfies

∫
δKh(x− x0)

[
x(x0)−

∫
z̃≥z

Kh(x̃− x0)exp(x̃(x0)Tβ∗[(1− ε)H + εδ(Zi,Xi,δi)])x̃(x0)[(1− ε)

dH(x̃, z̃) + εdδZi,Xi,δi(x̃, z̃)]
/∫

z̃≥z
Kh(x̃− x0)exp(x̃(x0)Tβ∗[(1− ε)H + εδ(Zi,Xi,δi)])

[(1− ε)dH(x̃, z̃) + εdδ(Zi,Xi,δi)(x̃, z̃)]

][
(1− ε)dH(z, x, δ) + εdδ(Zi,Xi,δi)(z, x, δ)

]
= 0
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To simply the notations, we now write

β∗(ε) ≡ β∗[(1− ε)H + εδ(Zi,Xi,δi)],

α0(z, β∗(ε), x0) ≡
∫
z̃≥z

Kh(x̃− x0)exp(x̃(x0)Tβ∗(ε)dH(z̃, x̃),

α1(z, β∗(ε), x0) ≡ ∂

∂β∗
α0(z, β∗(ε), x0) and α2(z, β∗(ε), x0) ≡ ∂

∂β∗
α1(z, β∗(ε), x0).

Then we have∫
δKh(x− x0)

[
x(x0)−

{
(1− ε)α1(z, β∗(ε), x0) + εKh(Xi − x0)exp(X̃∗Ti β∗)I(zi ≥ z)X̃∗i

}
/{

(1− ε)α0(z, β∗(ε), x0) + εKh(Xi − x0)exp(X̃∗Ti β∗)I(zi ≥ z)
}]

[
dH(z, x, δ)(1− ε) + εdδ(Zi,Xi,δi)

]
= 0.

Further, we get

(1− ε)
∫
δKh(x− x0)

[
x(x0)−

{
(1− ε)α1(z, β∗(ε), x0) + εKh(Xi − x0)exp(X̃∗Ti β∗)

I(zi ≥ z)X̃∗i
}/{

(1− ε)α0(z, β∗(ε), x0) + εKh(Xi − x0)exp(X̃∗Ti β∗)I(zi ≥ z)
}]

dH(z, x, δ) + εδiKh(Xi − x0)
[
X̃∗i −

{
(1− ε)α1(z, β∗(ε), x0) + εKh(Xi − x0)

exp(X̃∗Ti β∗)X̃∗i
}/{

(1− ε)α0(z, β∗(ε), x0) + εKh(Xi − x0)exp(X̃∗Ti β∗)
}]

= 0.

(C.4)

Denote the first term in (C.4) as K1(β∗, ε, x0) and the second term as K2(β∗, ε, x0).

Then take derivative with respect to ε on both sides of (C.4) and evaluate at ε = 0,

we have

[(∂K1(β∗, ε, x0)

∂β∗T
+
∂K2(β∗, ε, x0)

∂β∗T
)∂β∗
∂ε

+
∂K1(β∗, ε, x0)

∂ε
+
∂K1(β∗, ε, x0)

∂ε

]∣∣∣∣
ε=0

= 0.

(C.5)
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Since

∂K1(β∗, ε, x0)

∂ε

∣∣∣∣
ε=0

= −
∫
δKh(Xi − x0)

[
x(x0)− α1(z, β∗(H), x0)

α0(z, β∗(H), x0)

]
dH(z, x, δ)

−
∫
δKh(Xi − x0)

{[
α1(z, β∗(H), x0) +Kh(Xi − x0)exp(X̃∗Ti β∗)

I(zi ≥ z)X̃∗i
]
α0(z, β∗(H), x0)− α1(z, β∗(H), x0)

[
− α0(z, β∗(H), x0)

+Kh(Xi − x0)exp(X̃∗Ti β∗)I(zi ≥ z)
}
/α2

0(z, β∗(H), x0)dH(z, x, δ)

= −
∫

δKh(x− x0)

α0(z, β∗(H), x0)

[
Kh(Xi − x0)exp(X̃∗Ti β∗)I(zi ≥ z)X̃∗i−

α1(z, β∗(H), x0)

α0(z, β∗(H), x0)
Kh(Xi − x0)exp(X̃∗Ti β∗)I(zi ≥ z)

]
dH(z, x, δ),

∂K2(β∗, ε, x0)

∂ε

∣∣∣∣
ε=0

= δiKh(Xi − x0)
[
X̃∗i −

α1(z, β∗(H), x0)

α0(z, β∗(H), x0)

]
,

and

∂K1(β∗, ε, x0)

∂β∗T

∣∣∣
ε=0

= −
∫
δKh(Xi − x0)

[α2(z, β∗(H), x0)

α0(z, β∗(H), x0)
− α1(z, β∗(H), x0)

α0(z, β∗(H), x0)

(
α1(z, β∗(H), x0)

α0(z, β∗(H), x0)
)
T]
dH(z, x, δ)

≡ A∗.

Plug these into (C.5) produces

A∗
∂β∗[(1− ε)H + εδ(Zi,Xi,δi)]

∂ε

∣∣∣∣
ε=0

= δiKh(Xi − x0)
[
X̃∗i −

α1(z, β∗(H), x0)

α0(z, β∗(H), x0)

]
−∫ [

Kh(Xi − x0)exp(X̃∗Ti β∗)I(zi ≥ z)X̃∗i −
α1(z, β∗(H), x0)

α0(z, β∗(H), x0)
Kh(Xi − x0)

exp(X̃∗Ti β∗)I(zi ≥ z)
] δKh(Xi − x0)

α0(z, β∗(H), x0)
dH(z, x, δ) = 0.

(C.6)

Replace H(z, x, δ) by Hn(z, x, δ) in (C.6), then we get the finite sample version of ˆIF
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as

A∗(β̂∗) ˆIF i = δiKh(Xi−x0)
[
X̃∗i −

∑n
j=1 Yj(Zi)Kh(Xj − x0)exp(X̃∗Tj β̂∗)X̃∗j∑n
j=1 Yj(Zi)Kh(Xj − x0)exp(X̃∗Tj β̂∗)

]
+C∗i (β̂∗),

(C.7)

where

A∗(β̂∗) =
1

n

n∑
i=1

δiKh(Xi − x0)
[∑n

j=1 Yj(Zi)Kh(Xj − x0)exp(X̃∗Tj β̂∗)X̃∗j X̃
∗T
j∑n

j=1 Yj(Zi)Kh(Xj − x0)exp(X̃∗Tj β̂∗)

− (

∑n
j=1 Yj(Zi)Kh(Xj − x0)exp(X̃∗Tj β̂∗)X̃∗j∑n
j=1 Yj(Zi)Kh(Xj − x0)exp(X̃∗Tj β̂∗)

)

⊗
2]
,

and

C∗i (β̂∗) = Kh(Xi − x0)exp(X̃∗Ti β̂∗)
[
− X̃∗i

∑
zj≤zi

δjKh(Xj − x0)∑n
l=1 Yl(Zj)Kh(Xl − x0)exp(X̃∗Tl β̂∗)

)

+
∑
zj≤zi

δjKh(Xj − x0)
∑n

l=1 Yl(Zj)Kh(Xl − x0)exp(X̃∗Tj β̂∗)X̃∗l

{
∑n

l=1 Yl(Zj)Kh(Xl − x0)exp(X̃∗Tl β̂∗)}2

]
.

Remark. Since β̂∗ = β∗(Hn), then by the definition of influence function,

ˆIF i = lim
ε→0

β∗[(1− ε)Hn + εδ(Zi,Xi,δi)]− β∗(Hn)

ε
.

When n is large enough, 1
n−1
→ 0. As a result, letting ε = − 1

n−1
, we have

(1− ε)Hn + εδZi,Xi,δi = (1 +
1

n− 1
)

∑n
h=1 δ(Zj, Xj, δj)

n
− 1

n− 1
δ(Zi,Xi,δi)

=
1

n− 1

n∑
j=1,j 6=i

δ(Zj ,Xj ,δj) ≡ Hn,−i.

Therefore, when n is large enough, we have

ˆIF i ≈ −(n− 1)[β∗(Hn,−i)− β∗(Hn)]

= (n− 1)(β̂∗ − β̂−i).


