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ABSTRACT

YETONG ZHOU. Local Spatial Quantile Estimation of Multivariate
Functional-coefficient Regression Models. (Under the direction of DR. JIANCHENG

JIANG)

Quantile regression has been widely studied in statistics and econometrics. But for

nonlinear vector time series, there is not much work devoted to QR. In this disserta-

tion we propose a local spatial quantile regression method to estimate the functional

coefficient matrices of multivariate time series. First, a "local spatial quantile regres-

sion" estimator (LSQR) is proposed by running spatial quantile regression and local

smoothing. Then we propose a "weighted composite LSQR" estimator (WCLSQR)

using the idea of weighted composite quantile regression for better performance. We

establish the asymptotic normality of the proposed estimators, based on which we

also consider the procedures to select the optimal bandwidth and the optimal weights

for the estimation. Furthermore, to achieve computational efficiency, we propose a

"smoothed spatial QR" which simplifies and accelerates the minimization problem

in the spatial quantile regression. Based on the smoothed spatial QR, we propose

the smoothed LSQR and WCLSQR estimators using the same technique as LSQR

and WCLSQR. By establishing the asymptotic normality of the proposed estimators,

we show that the estimators using the smoothed spatial QR can achieve comparable

performance with a proper choice of the smoothing parameter while consuming less

computing resources. Simulation study of the proposed estimators demonstrates good

finite sample performance and computational efficiency. We also demonstrate a real

example to show the application of our method.



iv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest appreciation to my advisor Dr.

Jiancheng Jiang, who has offered patient guidance and support consistently through

my graduate life. The completion of my dissertation would not have been possible

without his constant help. It was a great fortune to learn from his extensive knowledge

and tireless commitment to research, which inspired and motivated me a lot during

my research and will benefit me in my future career.

I would also like to extend my gratitude to to the rest of my committee members,

Dr. Eliana Christou, Dr. Weihua Zhou, and Dr. Hwan Lin, for their insightful

comments and valuable advice on my research work.

Thanks also to Dr. Shaozhong Deng and Dr. Mohammad A. Kazemi for their

guidance and help as graduate coordinators.

Last but not least, I’m deeply grateful to my parents, Xilin Du and Liya Zhou

for making me who I am and for their selfless love and support. Special thanks to

Debbie, who brought me great joy and accompanied me throughout this journey.



v

TABLE OF CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: LOCAL SPATIAL QUANTILE REGRESSION (LSQR) 4

2.1. Review of Spatial QR 4

2.2. Local Spatial QR 6

2.3. Weighted Composite Local Spatial QR 7

2.4. Sampling Properties 8

CHAPTER 3: LSQR WITH SMOOTHED LOSS FUNCTIONS 13

3.1. Smooth Loss Functions for Spatial Quantiles 13

3.2. Local Spatial Estimators with Smoothed Loss Functions 18

3.3. Sampling Properties 19

CHAPTER 4: SIMULATIONS 23

CHAPTER 5: REAL EXAMPLE 30

CHAPTER 6: DISCUSSION 34

REFERENCES 35

APPENDIX A: CONDITIONS 38

APPENDIX B: PROOFS of THEOREMS IN CHAPTER 2 39

APPENDIX C: PROOFS of THEOREMS IN CHAPTER 3 50



vi

LIST OF TABLES

TABLE 4.1: Bias and standard deviation of least square, LSQR,
WCLSQR estimators on data (i).

24

TABLE 4.2: Bias and standard deviation of least square, LSQR,
WCLSQR estimators on data (ii).

25

TABLE 4.3: Bias and standard deviation of least square, LSQR,
WCLSQR estimators on data (iii).

25

TABLE 4.4: Bias and standard deviation of smoothed LSQR estimators. 26

TABLE 4.5: Bias and standard deviation of LSQR estimators. 26

TABLE 4.6: Comparison of smoothed LSQR and LSQR estimators. 26

TABLE 4.7: Bias and standard deviation of smoothed WCLSQR
estimators.

27

TABLE 4.8: Bias and standard deviation of WCLSQR estimators. 28

TABLE 4.9: Comparison of smoothed WCLSQR and WCLSQR
estimators.

29



vii

LIST OF FIGURES

FIGURE 3.1: Plots of 1-D smoothed spatial quantile loss function, the
first and second derivatives.

15

FIGURE 3.2: Plots of 2-D smoothed spatial quantile loss function, the
first component functions of its gradient and hessian matrix.

17

FIGURE 5.1: Time plots of actual values and median estimates of daily
river flow series from the Jökulsá Eystri River and Vatnsdalsá River
from 1972 to 1974.

31

FIGURE 5.2: LSQR estimates of the coefficients for exogenous variables. 33

FIGURE 5.3: LSQR estimates of the coefficients for exogenous variables. 33



CHAPTER 1: INTRODUCTION

Quantile regression (QR), since introduced by Koenker and Bassett (1978), has be-

come an important statistical tool for estimation and inference. Comparing to mean

regression, QR (i) portrays the stochastic relationship between random variables bet-

ter and with more accuracy than mean regression (Chaudhuri, Doksum, Samariv,

1997; Koenker, 2005); (ii) provides more robust and consequently more efficient es-

timates than mean regression when the error is non-normal (Koenker and Bassett,

1978; Koenker and Zhao, 1996). These advantages have stimulated a tremendous

amount of works on QR in statistics and econometrics.

There exists a rich literature on QR in the analysis of time series, examples include

but not limit to Koul and Saleh (1995), Davis and Dunsmuir (1997), Jiang, Zhao and

Hui (2001), Peng and Yao (2003), etc. However, most of these works were devoted to

univariate cases. For nonlinear vector time series, although the maximum likelihood

or least squares estimation have been extensively studied, see for example Bollerslev

(1990), Engle and Kroner (1995), Chen and Tsay (1993), Pan and Yao (2008), and

references therein, there is little literature on QR.

First major difficulty in the analysis of vector time series with QR is defining a mul-

tivariate quantile. Based on the L1-norm, Chaudhuri (1996) and Koltchinskii (1997)

proposed a compelling form of multivariate quantiles, namely the spatial quantiles, as

a certain form of generalization of the univariate case. The spatial quantile provides

an appealing multivariate extension of univariate quantiles and generates a useful

volume functional based on spatial central regions of increasing size. As stressed in

Serfling (2004), it has some appealing features: the equivariance and outlyingness

with respect to shift, orthogonal and homogeneous scale transformations. This gave
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us a tool and motivates us to work on the spatial QR for vector time series data.

For vector time series data, one should generally use multivariate models. Although

univariate models for each time series may be employed, they are not able to capture

the relationship among different time series and may not be efficient. Since non linear

features widely exist in each time series (Tong and Lim, 1980; Tong, 1983; Chen and

Tsay, 1993; Yao and Tong, 1995; Tsay, 1998; Fan and Yao, 2003), it is important to

model the nonlinear features using non-parametric vector time series models, which

requires little prior information on the model structure and may provide an insight

into further parametric fitting. However, a full non-parametric method suffers from

the "curse of dimensionality" in multivariate cases when the dimension is high. In this

dissertation, we consider the following multivariate functional-coefficient model (1.1)

proposed by Jiang (2014) for modeling nonlinear vector time series data, which allows

us to apply non-parametric techniques to explore the nonlinear effect and avoids the

"curse of dimensionality".

yt = c(zt−d) +

p∑
i=1

φi(zt−d)yt−i +

q∑
j=1

βj(zt−d)xt−j + εt (1.1)

where yt = (y1t, · · · , ykt)′ is a k-dimensional time series, xt = (x1t, · · · , xvt)′ is v-

dimensional exogenous variable, zt is the threshold variable, c(·) is k × 1 functional

vector, φi(·)’s are k×k functional matrices, and βi(·)’s are k×v functional matrices.

The innovations satisfy εt = Σ1/2at, where Σ1/2 are symmetric positive definite ma-

trices and at is a sequence of serially uncorrelated random vectors with mean 0 and

identity covariance matrix I. The threshold variable zt is assumed to be stationary

and has a continuous distribution.

Model (1.1) is a generalization of the threshold model in Tsay (1998) and functional

coefficient models in Chen and Tsay (1993), Hastie and Tibshirani (1993), Zhang and

Fan (1999), Cai, Fan and Yao (2000), Huang and Shen (2004). Without specifying

the error distribution, model (1.1) can be estimated by local least square method, see
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Jiang (2014). In this dissertation we focus on quantile estimation of the model, which

is robust and efficient. In particular, when there is no exogenous variable (q = 0),

we allow for infinite variance of the innovation at. The proposed local spatial QR

estimators admit no close form, so it is challenging to establish asymptotic properties

for the proposed methodology. Besides, due to the non-differentiability of the spatial

quantile loss function and the complexity of our model, minimization in the spatial

QR is expensive and difficult. We further propose a ”smoothed spatial QR” which

simplifies and accelerates the computation. Determined efforts have been made solve

the associated difficulties.

The remainder of this dissertation is organized as follows. In Chapter 2, we intro-

duce the proposed "local spatial QR" (LSQR) and its weighted composite version.

Then we establish the asymptotic normality of the proposed estimators, where op-

timal weights and bandwidth selection are considered based on theoretical results.

In Chapter 3, we propose the ”smoothed spatial QR”. By establishing the sampling

properties of the proposed method, we show that the estimators using the smoothed

spatial QR can achieve comparable performance. The choice of optimal parameters

are also discussed. In Chapter 4, we conduct simulations to evaluate the performance

of the proposed methodology. In Chapter 5, a real example is demonstrated to illus-

trate the application of our proposed estimation procedure. Concluding remarks are

presented in Chapter 6. Proofs of the main results are given in the appendix.



CHAPTER 2: LOCAL SPATIAL QUANTILE REGRESSION (LSQR)

In this chapter we introduce the local spatial quantile estimation for model (1.1).

To this end, we first review the spatial quantile and then extend it using the idea of

local linear smoothing.

2.1 Review of Spatial QR

Since the seminal work of Koenker and Bassett (1978), the univariate QR has

been a very useful tool in statistics and econometrics. For multivariate models, a

variety of ad hoc notions of multivariate quantiles have been formulated, but there

is no definitive multivariate generalizations. Here we focus on the spatial quantiles,

introduced by Chaudhuri (1996) and Koltchinskii (1997) due to its several appealing

features aforementioned.

According to Chaudhuri (1996) and and Koltchinskii (1997), given a sample {zi}ni=1

of a random vector z in Rk, the u-th spatial quantiles are defined as

α̂(u) = arg min
α∈Rk

n∑
i=1

{||zi −α||+ uT (zi −α)}, (2.1)

where u ∈ Bk = {u| ||u|| < 1,u ∈ Rk} and || · || is the Euclidean norm. For k = 1,

the solution to (2.1) reduces to the sample τ -th quantile (τ = (1 + u)/2) based on

the real-valued observations zi’s. Let Qu(t) = ||t||+ < u, t >, where < · > is the

Euclidean inner product. Then equation (2.1) can be rewritten as

α̂(u) = arg min
α∈Rk

n∑
i=1

Qu(zi −α).
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Define the u-th quantile of the distribution of z as

α(u) = arg min
α∈Rk

E[Qu(z−α)−Qu(z)].

Chaudhuri (1996) has showed that
√
n(α̂(u)− α(u)) is asymptotically normal with

mean 0.

Given the estimate α̂(·), one can develop some multivariate descriptive statistics.

For example, we can estimate the multivariate mean of z by the trimmed mean∫
S
α̂(u) µ(du), where µ(·) is an appropriate chosen probability measure on unit ball

Bk and S = {u|u ∈ Rk, ||u|| ≤ r} for r ∈ (0, 1). The multivariate L estimate also

has a similar form but with a different S, see Chaudhuri (1996). The idea can be

extended to multivariate regression settings. Consider the multivariate linear model,

yi = βxi + εi, i = 1, 2, . . . , n, (2.2)

where yi are k×1 vector, β is a k×v matrix of unknown parameters and xi are v×1

vector of covariates without the intercept. It is straightforward to extend the above

spatial quantile notion by defining the u-th spatial regression quantiles as

(β̂(u), ε̂u) = argmin
β,ε

n∑
i=1

Qu(yi − βxi − εu), (2.3)

where εu is the u-th quantile of ε. Then for any u ∈ Bk, β̂ is a consistent estimate

for β. When u = 0, it reduces to the spatial median regression in Bai, Chen, Miao

and Rao (1990). For the univariate response case with k = 1, the above spatial

QR is equivalent to the one introduced by Koenker and Bassett (1978). By using a

transformation retransformation procedure as in Chaudhuri (1996), Chakraborty and

Chaudhuri (1998) and Chakraborty (2003), affine equivariant spatial QR estimation

can be constructed.
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2.2 Local Spatial QR

Let X∗t = vec(yt−1, . . . ,yt−p, xt−1, . . . , xt−q), which is a m × 1 vector with m =

pk + qv, and let Xt = (1,X∗Tt )T , Φ2(z) = (Φ1(z), . . . ,Φp(z),β1(z), . . . ,βq(z)), and

Φ∗(z) = (c(z),Φ2(z)). Then model (1.1) can be written as

yt = Φ∗(zt−d)Xt + εt, (2.4)

where Φ∗(·) is a k × (m + 1) matrix-valued function. Given zt−d, we define u-th

conditional quantile of εt as

qu(zt−d) = arg min
q
E[Qu(εt − q)−Qu(εt)|zt−d].

Denote ψu(y) = ∂Qu(y)/∂y = y/||y||+ u for y 6= 0, then

E[ψu(εt − qu(zt−d))|zt−d] = 0.

As the 1st entry of Xt is 1, model (2.4) is equivalent to

yt = Φ(zt−d; u)(zt−d)Xt + [εt − qu(zt−d)], (2.5)

where Φ(z; u) = Φ∗(z) + (qu(z), 0, . . . , 0). Since the conditional quantile qu(zt−d) is

not specified, the 1st column of Φ∗(z), namely z(z), is not identifiable.

For any zt−d in the neighborhood of z0, using the Taylor expansion, we have

Φ(zt−d; u) ≈ Φ(z0; u) + Φ′(z0; u)(zt−d − z0) ≡ A + B(zt−d − z0),

where Φ′(z; u) = ∂Φ(z; u)/∂z. In view of (2.3), applying the local linear approxima-
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tion and the spatial QR for model (2.5), we minimize

n∑
t=s′+1

Qu(yt − [A + B(zt−d − z0)]Xt)K(
zt−d − z0

h
) (2.6)

over A and B, where s′ = max(p, q). Let the resulting minimizers be (Â, B̂).

(Φ(z0; u),Φ′(z0; u)) is estimated by (Â, B̂), which is also denoted by (Φ̂(z0; u), Φ̂
′
(z0; u))

to emphasize dependence on u and z0.

Let Φ1(z; u) = c(z) + qu(z). Then Φ(z; u) = [Φ1(z; u),Φ2(z; u)]. Partition

Φ̂(z0; u) into [Φ̂1(z0; u), Φ̂2(z0; u)], where Φ̂1(z0; u) is the 1st column of Φ̂(z0; u).

Then [Φ̂1(z0; u), Φ̂2(z0; u)] are the estimators of [Φ1(z0; u),Φ2(z0)] respectively.

2.3 Weighted Composite Local Spatial QR

"Weighted composite quantile regression" (WCQR) was initially studied by Koenker

(1984) for classical linear models, and then it was extended by Zou and Yuan (2008),

Bradic et al.(2011), and Jiang et al.(2012), using the penalized WCQR for model se-

lection in the context of univariate parametric models. Here we extend WCQR using

the idea of local smoothing for our multivariate functional-coefficient model.

Consider J different quantiles, uj ∈ Bk, j = 1, . . . , J . For each uj and any zt−d in

the neighborhood of z0, we have

Φ1(zt−d; uj) ≈ Φ1(z0; uj) + Φ′1(z0; uj)(zt−d − z0) ≡ cuj + duj(zt−d − z0)

Φ2(zt−d) ≈ Φ2(z0) + Φ′2(z0)(zt−d − z0) ≡ A2 + B2(zt−d − z0)

Then by equation (2.5),

εt − quj(zt−d) = yt − φ(zt−d)Xt

≈ yt − [cuj + duj(zt−d − z0)]− [A2 + B2(zt−d − z0)]X∗t
(2.7)
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For simplicity of exposition, we introduce new notations θ = [θ11, . . . ,θ1J ,θ2], where

θ1j = [cuj , hduj ], θ2 = [A2, hB2]. Let W1t,h = [1, h−1(zt−d − z0)]T , W2t,h = W1t,h ⊗

X∗t , where ⊗ denotes the Kronecker product. It follows that

yt − [cuj + duj(zt−d − z0)]− [A2 + B2(zt−d − z0)]X∗t

= yt − θ1jW1t,h − θ2W2t,h

= yt − θ[ej ⊗W1t,h,W2t,h]
T ,

(2.8)

where ej is a J × 1 vector with the jth component as 1 and the rest as 0.

Denote (2.8) as ξjt(θ). Using the idea of WCQR, the "weighted composite local

spatial QR" (WCLSQR) estimator θ̂ can be obtained by minimizing

Ln(θ;ω) ≡
J∑
j=1

ωj

n∑
t=s′+1

Quj(ξ
j
t(θ))K(

zt−d − z0
h

) (2.9)

over θ, where ω = (ω1, · · · , ωJ)T is a vector of positive weights. Denote the resulting

minimizers by θ̂ = [ĉu1 , hd̂u1 , . . . , Â2, hB̂2]. Then [Â2, hB̂2] estimates [Φ2
′(z0),Φ2(z0)].

2.4 Sampling Properties

In this section, we establish asymptotic properties of the proposed estimators. Since

the resulting estimators admit no close form, asymptotic normality is challenging to

obtain. We will establish Bahadur’s representations of the proposed estimators, which

then lead to the asymptotic normality of the estimators.

To facilitate presentations, we relegate conditions, supplementary lemmas and

proofs of theorems to the appendices. To introduce our theorems, the following

notations are needed.

Let γ̂ =
√
nh[Â − Φ(z0; u), h(B̂ − Φ′(z0; u)] and ζ̂2 =

√
nh[Â2 − Φ(z0), h(B̂2 −
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Φ′(z0)]. For i = 0, 1, 2, let µi =
∫
uiK(u) du and νi =

∫
uiK2(u) du. And

s =

µ2

µ3

 ,S =

µ0 µ1

µ1 µ2

 ,V =

ν0 ν1

ν1 ν2

 ,
M(z0) = E[XtX

T
t |zt−d = z0], Nu(z0) = E[ψu(εt − qu(zt−d)){ψu(εt−qu(zt−d))}T |zt−d =

z0], Du(z0) = E[Ψu(εt − qu(zt−d))|zt−d = z0], Wt,h = [1, h−1(zt−d− z0)]T ⊗Xt, where

ψu(y) = ∂Qu(y)/∂y, Ψu(y) = ∂2Qu(y)/∂y∂yT .

Theorem 2.1. Suppose conditions (A1)-(A4) hold. If nh → ∞, h → 0 and nh5 =

O(1) as n→∞, then we have the following Bahadur representation:

vec(γ̂)−
√
nhBn(z0; u) = f−1(z0)(S⊗M(z0)⊗Du(z0))

−1Zn + op(1),

where Bn(z0; u) = 1
2
h2(S−1s)⊗ vec(Φ′′(z0; u)), and Zn = 1√

nh

∑n
t=s′+1[Wt,h ⊗ψ(εt −

qu(zt−d))]K( zt−d−z0
h

)

Theorem 2.1 is also useful for making inference, including hypothesis testing, but

this is out of the scope of our current study. From Theorem 2.1, the following result

is straightforward.

Theorem 2.2. Suppose conditions in Theorem 2.1 hold. Then

√
nh{

 vec(Â−Φ(z0; u))

vec{h(B̂−Φ′(z0; u))}

−Bn(z0; u)} d−→ N (0,Ω(z0)),

where Ω(z0) = f−1(z0)(S
−1VS−1)⊗M−1(z0)⊗ (D−1u (z0)Nu(z0)D

−1
u (z0)).

It is straightforward from Theorem 2.2 that

√
nh[vec(Φ̂(z0; u)− Φ(z0; u))− bn(z0; u)]

d−→ N (0,σ2(z0; u)),
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where bn(z0; u) = 1
2
h2

µ22−µ1µ3
µ0µ2−µ21

vec(Φ′′(z0; u)) and

σ2(z0; u) = f−1(z0)
µ2
2ν0 − 2µ1µ2ν1 + µ2

1ν2
(µ0µ2 − µ2

1)
2

M−1(z0)⊗ [D−1u (z0)Nu(z0)D
−1
u (z0)].

This asymptotic bias bn(z0; u) is the same as that of the least square estimator for

Φ(z0) (see Jiang 2014). This property is also shared by the univariate local M-

estimation in Fan and Jiang (2000).

Remarks. From Theorem 2.2, the asymptotic mean square error is

AMSE(vec(Φ̂(z0; u))) =
1

4
h4(

µ2
2 − µ1µ3

µ0µ2 − µ2
1

)2||vec(Φ′′(z0; u))||2 +
1

nh
tr(σ2(z0; u)),

where tr(·) is the trace function. WhenK(·) is chosen as a symmetrical kernel, µ0 = 1,

µ1 = 0 and ν1 = 0. It follows that

AMSE(vec(Φ̂(z0; u))) =
1

4
h4µ2

2||vec(Φ′′(z0; u))||2

+
1

nh
ν0f

−1(z0)tr(M
−1(z0)⊗ [D−1u (z0)Nu(z0)D

−1
u (z0)]), (2.10)

and the pointwise optimal bandwidth minimizing (2.10) is given by

hopt = n−1/5
{
ν0tr(M

−1(z0)⊗ [D−1u (z0)Nu(z0)D
−1
u (z0)])

µ2
2||vec(Φ′′(z0; u))||2f(z0)

}1/5

.

Using the above formula, we employ a bandwidth selection procedure by multi-fold

cross-validation and the average mean squared error criterion introduced in Jiang

(2014).

• Step 1. Choose two integers, the fold size m and the fold number Q, such that

n > mQ. A common choice is m = [0.1n], Q = 4.

• Step 2. Divide the data {Xt,yt, zt−d}nt=1 into Q + 1 subsets following the time

order. The first subset has n − mQ observations and each of the rest has m
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observations.

• Step 3. For each of the rest Q subsets, compute mean squared error

AMSq(hn) = m−1
∑n−qm+m

t=n−qm+1 ||yt − Φ̂q(zt−d)Xt||2, where Φ̂q is estimated using

the sample {Xt,yt, zt−d}n−qmt=1 with the bandwidth hn{n/(n− qm)}1/5. Choose

hn to minimize AMS(hn) = Q−1
∑Q

q=1AMSq(hn).

Usually boundary points have larger bandwidth than the interior points. Therefore

we allow a variable bandwidth hn(z) depending on zt−d. Let hn depend on the density

of zt−d through hn = c{f̂(z)}−1/5n−1/5 and minimize AMS(hn) over c, where f̂(·) is

the kernel density estimate of fz(·), given as f̂(z) = (nh1)
−1∑n

t=1K((zt − z)/h1).

Here we take K as the Gaussian density kernel and set h1 = 1.06szn
−1/5 by the rule

of thumb, where sz is the sample standard deviation of {zt−d}nt=1.

In the remainder of this section, we establish the Bahadur representation of the

WCLSQR estimator, from which asymptotic normality of the estimator is derived.

Theorem 2.3. Suppose the conditions (A1)-(A4) hold. For positive weights {ωj}Jj=1,

there is a unique minimizer θ̂ of Ln(θ;ω). If nh → ∞, h → 0, and nh5 = O(1) as

n→∞, then we have the following Bahadur representation:

vec(ζ̂2)−
√
nhBn2(z0) = f−1(z0)(S⊗M∗(z0)⊗D(z0;ω))−1Zn(ω) + op(1),

where Bn2(z0) = 1
2
h2(S−1s) ⊗ vec(Φ′′2(z0)), M∗(z0) = var[X∗t |zt−d = z0], D(z0;ω) =∑J

j=1 ωjDuj(z0), Zn(ω) =
∑J

j=1wj[Zn2j − (I2 ⊗ µ∗(z0) ⊗ Ik)Zn1j], with µ∗(z0) =

E(X∗t |zt−d = z0) and Znij = 1√
nh

∑n
t=s′+1[Wit,h ⊗ψuj

(εt − quj(zt−d))]K( zt−d−z0
h

).

Theorem 2.4. Suppose conditions in Theorem 2.3 hold. Then

√
nh{

 vec(Â2 −Φ(z0))

vec{h(B̂2 −Φ′(z0))}

−Bn2(z0)}
d−→ N (0,Ω2(z0;ω))
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where Ω2(z0;ω) = f−1(z0)(S
−1VS−1)⊗M∗−1(z0)⊗ (D−1(z0;ω)N(z0;ω)D−1(z0;ω)),

N(z0;ω) =
∑J

j,l=1wjwlNuj ,ul with Nuj ,ul = E[ψuj
(εt−qu(zt−d)){ψul

(εt−qul(zt−d))}T |zt−d =

z0].

For the WCLSQR estimator, the asymptotic bias does not depend on ω; the asymp-

totic variance depends on ω through Ω2(z0;ω) and it is invariant to the scaling of ω.

By minimizing the asymptotic variance, the optimal ω is given by

ω+ = arg min
ω

det{D−1(z0;ω)N(z0;ω)D−1(z0;ω)}

subject to ωj ≥ 0, ||ω|| = 1. This optimization problem has no closed form solution,

but it can be solved numerically.



CHAPTER 3: LSQR WITH SMOOTHED LOSS FUNCTIONS

3.1 Smooth Loss Functions for Spatial Quantiles

In this section, we introduce the smoothed spatial QR and then combine it with

local linear smoothing to estimate model (1.1). It is a challenging task to run the

spatial QR as it does not have a closed form solution and lacks differentiability at

0. The complexity of multivariate data amounts to this difficulty. By smoothing the

loss function of the spatial quantile, we propose the "smoothed spatial QR" which

simplifies and accelerates the minimization problem in the spatial quantile regression.

We first illustrate the idea with the simplest case. For univariant data {zi}ni=1, u-th

quantile is defined as α(u) = arg min
α

∑n
i=1Qu(zi − α), where u ∈ [0, 1] and

Qu(t) = |t|+ ut.

Noting that |t| is non-differentiable at 0, we replace |t| with a smooth function within

a small neighborhood of 0, denoted as [−δ, δ]. Here "smooth" is defined as C2-

continuous, i.e. this function has continuous second derivatives. If the combined

function is C2-continuous at ±δ, then it is C2-continuous for t ∈ R. With this

way of smoothing, the resulting function, denoted as Qu,δ(·) is only different from

Qu(·) within [−δ, δ], and δ is a controlling parameter. The choice of the function to

substitute is flexible. As we naturally requires the function is symmetric and C2-

continuity is forced at δ, a convenient choice is y(t) = ax4 + bx2 + c, where a, b and
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c are constants. Then the smoothed loss function Qu,δ(·) can be written explicitly as

Qu,δ(t) =


ax4 + bx2 + c+ ut, t ∈ (−δ, δ)

Qu(t), otherwise.

Denote the first derivative of Q(·) as ψ(·) and the second derivative as Ψ(·). Given

the condition that Qu,δ(t) is C2-continuous, a linear system of a, b and c can be

constructed. After calculation, we obtain that a = −1/(8δ3), b = 3/(4δ), c = 3δ/8

respectively. Figure 3.1 shows the graphs of Qu(t), Qu,δ(t) and their first and second

derivatives on the same axes. With δ = 0.2, it is seen that the check of Qu(t) at 0

is smoothed within [−0.2, 0.2]; the jump of ψu(t) and the non-existing point of Ψu(t)

disappear, which make the smoothed loss function Qu,δ(t) C
2-continuous.
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Figure 3.1: The three graphs shows the original and smoothed spatial quantile loss
function, their first derivatives and second derivatives respectively, with the blue
lines representing Qu(t), ψu(t), Ψu(t), and the red lines representing Qu,δ(t), ψu,δ(t),
Ψu,δ(t). Here u = 0.25, δ = 0.2.

We extend this idea to multivariate cases. In the definition of the spatial quantile

proposed by Chaudhuri (1996) and Koltchinskii (1997), the u-th quantile of {zi}ni=1

in Rk is

α̂(u) = arg min
α∈Rk

n∑
i=1

Qu(zi −α),
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where Qu(t) = ||t||+ < u, t > and u ∈ Bk = {u|u ∈ Rk, ||u|| < 1}. With the

same idea from univariate case, for k > 2, we look for a smooth function to replace

||t|| within Bδ(0), where Bδ(0) is a small ball centered at 0 with radius δ. As the

isotropy and C2-continuity are required, borrowing a similar form from the univariate

case, we choose the substitute for ||t|| within Bδ(0) as the function in the form of

z(t) = a(t′t)2 + b(t′t) + c. The C2-continuity of the resulting function is not that

trivial as the univariate case. For the sake of simplicity, We introduce the following

theorem and leave the detailed proof to Appendix C.

Theorem 3.1. Define Qu,δ(t) as

Qu,δ(t) =


a(t′t)2 + b(t′t) + c+ u′t, t ∈ Bδ(0)

Qu(t), otherwise,

where t ∈ Rk, u ∈ Bk = {u|u ∈ Rk, ||u|| < 1}, δ is a constant and Bδ(0) =

{t|t ∈ Rk, ||t|| < δ}. if a = −1/(8δ3), b = 3/(4δ) and c = 3δ/8, then Qu,δ(t) is

C2-continuous for t ∈ Rk.

Denoting the gradient of Q(·) as ψ(·), and the hessian matrix as Ψ(·), Figure 3.2

shows the spatial quantile loss function Qu(t), the first component of its gradient

ψu(t), the first entry of its hessian matrix Ψu(t) and their smoothed versions Qu,δ(t),

ψu,δ(t), Ψu,δ(t) for k = 2, u = [0, 0]′ and δ = 0.25. It is seen that in the right three

graphs, the inverted cone at the bottom of Qu(t) is replaced by a smoothed surface

within the sphere of radius 0.25; the jump along x-axis of ψu(t) and the non-existing

point of Ψu(t) are also smoothed. With the smoothed loss function Qu,δ(·) at hand,

we can derive the smoothed LSQR and WCLSQR estimators for model (2.5).
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Figure 3.2: The left three graphs shows the 2-D loss function Qu(t), the first compo-
nent of its gradient ψu(t) and the first entry of its hessian matrix Ψu(t) respectively,
while the right three graphs shows their smoothed versions with δ = 0.25.
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3.2 Local Spatial Estimators with Smoothed Loss Functions

In this section, we derive the smoothed LSQR and WCLSQR estimators for model

(2.5). Using the same notations from Chapter 2,

Φ(zt−d; u) ≈ Φ(z0; u) + Φ′(z0; u)(zt−d − z0) ≡ A + B(zt−d − z0).

In view of (2.6), with the local linear approximation and running the smoothed QR,

we minimize

n∑
t=s′+1

Qu,δ(yt − [A + B(zt−d − z0)]Xt)K(
zt−d − z0

h
) (3.1)

over A and B. The resulting minimizers, denoted as (Ã, B̃) estimate (Φ(z0; u),Φ′(z0; u)).

(Ã, B̃) is also denoted by (Φ̃(z0; u), Φ̃
′
(z0; u)) to emphasize dependence on u and z0.

Partition Φ̃(z0; u) into [Φ̃1(z0; u), Φ̃2(z0; u)], where Φ̃1(z0; u) is the 1st column of

Φ̃(z0; u). Then [Φ̃1(z0; u), Φ̃2(z0; u)] are the estimators of [Φ1(z0; u),Φ2(z0)] respec-

tively. As will be shown in Theorem 3.3, Φ̃(z0; u) is a biased estimator of Φ(z0; u)

while the bias can be controlled by the smoothing parameter δ.

Similarly, with θ and ξjt(θ) defined as in Chapter 2, the smoothed WCLSQR esti-

mator is defined by minimizing

Ln(θ;ω) ≡
J∑
j=1

ωj

n∑
t=s′+1

Quj ,δ(ξ
j
t(θ))K(

zt−d − z0
h

) (3.2)

over θ, where ω = (ω1, · · · , ωJ)T is a vector of positive weights. Denote the resulting

minimizers by θ̃ = [c̃u1 , hd̃u1 , . . . , Ã2, hB̃2]. Then [Ã2, hB̃2] estimates [Φ2
′(z0),Φ2(z0)].

In next section, we establish the asymptotic normality of the proposed estimators.
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3.3 Sampling Properties

In this section, we will establish the Bahadur’s representations of the proposed

estimators and through which derive the asymptotic normality. Detailed proof of the

following theorems is provided in Appendix C.

Except the notations introduced in Section 2.4, the following notations are needed

throughout the theorems and the proofs.

Let γ̃ =
√
nh[Ã −Φ(z0; u), h(B̃ −Φ′(z0; u)] and ζ̃ =

√
nh[Ã2 −Φ(z0; u), h(B̃2 −

Φ′(z0; u)]. For i = 0, 1, 2, µi =
∫
uiK(u) du and νi =

∫
uiK2(u) du. Denote s0 =

(µ0, µ1)
T . And µ(z0) = E[Xt|zt−d = z0], nu,δ(z0) = E[ψu,δ(εt − qu(zt−d)) − ψu(εt −

qu(zt−d))|zt−d = z0], where ψu,δ(y) = ∂Qu,δ(y)/∂y, Ψu,δ(y) = ∂2Qu,δ(y)/∂y∂yT .

Theorem 3.2. Suppose Condition A holds. If h → 0, δ → 0, nh → ∞, δknh → ∞

and nh5 = O(1), δ2knh = O(1) as n → ∞, then we have the following Bahadur

representation:

vec(γ̃)−
√
nhBn,δ(z0; u) = f−1(z0)(S⊗M(z0)⊗Du(z0))

−1Zn + op(1),

where Bn,δ(z0; u) = S−1s0⊗ [M(z0)
−1µ(z0)⊗Du(z0)

−1nu,δ(z0)](1 + op(1)) + h2

2
S−1s⊗

vec(Φ
′′
(z0; u))(1+op(1)), and Zn(u) = 1√

nh

∑n
t=s′+1[Wt,h⊗ψu(εt−qu(zt−d))]K( zt−d−z0

h
).

The above result is close to the Bahadur representation of the LSQR estimator

in Theorem 2.1 with an additional term for bias caused by the difference between

the smoothed loss function and the original one. From Theorem 3.2, the asymptotic

normality of the estimator is easy to get.

Theorem 3.3. Suppose conditions in Theorem 3.2 hold. Then

√
nh[

 vec(Ã−Φ(z0; u))

vec(h(B̃−Φ′(z0; u)))

−Bn,δ(z0; u)]
d−→ N (0,Ω(z0)),
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where Ω(z0) = f−1(z0)(S
−1VS−1)⊗M−1(z0)⊗ (D−1u (z0)Nu(z0)D

−1
u (z0)).

It is straightforward from Theorem 3.3 that

√
nh[vec(Φ̃(z0; u)−Φ(z0; u))− bn,δ(z0; u)]

d−→ N (0,σ2
2(z0; u)),

where

bn,δ(z0; u) = M(z0)
−1µ(z0)⊗Du(z0)

−1nu,δ(z0) +
1

2
h2
µ2
2 − µ1µ3

µ0µ2 − µ2
1

vec(Φ′′(z0; u))

and

σ2
2(z0; u) = f−1(z0)

µ2
2ν0 − 2µ1µ2ν1 + µ2

1ν2
(µ0µ2 − µ2

1)
2

M−1(z0)⊗ [D−1u (z0)Nu(z0)D
−1
u (z0)].

Remarks. Note that, as ψu,δ(·) is only different from ψu(·) in a small ball centered

at 0 with radius δ,

||nu,δ(z0)||2 = ||E[ψu,δ(εt − qu(zt−d))−ψu(εt − qu(zt−d))|zt−d = z0]||2

≤ cδ2k supx∈Bδ(0)||ψu,δ(x)−ψu(x)||2.

Thus denote sup ||nu,δ(z0)||2 = cδ(z0)δ
2k. From Theorem 3.3, we can calculate the

supremum of the asymptotic mean square error

supAMSE(vec(Ã)) = 2cδ(z0)δ
2k||M(z0)

−1µ(z0)⊗Du,δ(z0)
−1jk||2

+
1

2
h4(

µ2
2 − µ1µ3

µ0µ2 − µ2
1

)2||vec(Φ′′(z0; u))||2 +
1

nh
tr(σ2

2(z0; u)),

where jk is a k × 1 unit vector with the same direction as nu,δ(z0) and tr(·) is the

trace function. If K(·) is a symmetrical kernel, we have µ0 = 1, µ1 = 0 and ν1 = 0.
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Then

supAMSE(vec(Ã)) =2cδ(z0)δ
2k||M(z0)

−1µ(z0)⊗Du,δ(z0)
−1jk||2

+
1

2
h4µ2

2||vec(Φ′′(z0; u))||2

+
1

nh
ν0f

−1(z0)tr(M
−1(z0)⊗ [D−1u,δ(z0)Nu(z0)D

−1
u,δ(z0)]).

(3.3)

To minimize (3.3), the optimal bandwidth is given as

hopt = n−1/5

{
ν0tr(M

−1(z0)⊗ [D−1u,δ(z0)Nu(z0)D
−1
u,δ(z0)])

2µ2
2||vec(Φ′′(z0; u))||2f(z0)

}1/5

.

The obtained optimal bandwidth has a similar form to the one derived in Section 2.4.

Thus the bandwidth selection procedure introduced in Section 2.4 can be extended to

smoothed LSQR easily. With h = cn−1/5, one can choose δ that satisfies δk � n−2/5

to make the first term of (3.3) neglectable to the rest two terms. As δknh → ∞ is

required by Theorem 3.2 and 3.3, δ should also satisfy δk � n−4/5. With such choice

of δ, the LSQR estimator with smoothed loss functions can achieve a comparable

accuracy as LSQR.

Theorem 3.4. Suppose the conditions (A1)-(A4) hold. If h → 0, δ → 0, nh → ∞,

δknh → ∞ and nh5 = O(1), δ2knh = O(1) as n → ∞, then we have the following

Bahadur representation:

vec(ζ̃2)−
√
nhBn2(z0) = f−1(z0)(S⊗M∗(z0)⊗D(z0;ω))−1Zn(ω) + op(1),

where Bn2(z0) = 1
2
h2(S−1s) ⊗ vec(Φ′′2(z0)), M∗(z0) = var[X∗t |zt−d = z0], D(z0;ω) =∑J

j=1 ωjDuj ,δ(z0), Zn(ω) =
∑J

j=1wj[Zn2j − (I2 ⊗ µ∗(z0) ⊗ Ik)Zn1j], with µ∗(z0) =

E(X∗t |zt−d = z0) and Znij = 1√
nh

∑n
t=s′+1[Wit,h ⊗ψuj

(εt − quj(zt−d))]K( zt−d−z0
h

).
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Theorem 3.5. Suppose conditions in Theorem 3.4 hold. Then

√
nh{

 vec(Ã2 −Φ(z0))

vec{h(B̃2 −Φ′(z0))}

−Bn2(z0)}
d−→ N (0,Ω2(z0;ω))

where Ω2(z0;ω) = f−1(z0)(S
−1VS−1)⊗M∗−1(z0)⊗ (D−1(z0;ω)N(z0;ω)D−1(z0;ω)),

N(z0;ω) =
∑J

j,l=1wjwlNuj ,ul with Nuj ,ul = E[ψuj
(εt−qu(zt−d)){ψul

(εt−qul(zt−d))}T |zt−d =

z0].

It is seen that, as model (1.1) assumes the coefficients of {yt−i}, {xt−j} are not

related to quantiles, ζ̃2 has the same asymptotic properties as ζ̂2. And the method to

select optimal weights for WCLSQR can be extended to smoothed WCLSQR without

modifications.



CHAPTER 4: SIMULATIONS

In this section, we conduct numerical simulations to evaluate the performance of the

proposed methodology. We consider the following two-dimensional EXPAR model:

yt = Φ1(zt−1)yt−1 + Φ2(zt−1)yt−2 + εt,

where yt = (yt,1, yt,2)
′, εt = (εt,1, εt,2)

′, zt is a uniform process on [0, 1]. The coefficient

matrices are given by

Φk(z) =

Φk,11(z) Φk,12(z)

Φk,21(z) Φk,22(z)


for k = 1, 2, where

Φk,11(z) = Φk,22(z) = 0.01 + (0.3 + 0.9z) exp(−3.9z2)

and

Φk,12(z) = Φk,21(z) = −0.04 + (−0.7 + 4.3z) exp(−6.9z2).

For εt, We consider the following three types of errors:

(i) εt follows a bivariate normal distribution with mean µ = (0, 0)′ and covariance

matrix Σ =

[
1.0 0.5

0.5 1.0

]
.

(ii) εt follows a bivariate t−distribution with degree of freedom 3 and covariance

matrix Σ =

[
1.0 0.5

0.5 1.0

]
.

(iii) 95% of data points follow a a bivariate normal distribution with mean µ = (0, 0)′
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and covariance matrix Σ =

[
1.0 0.0

0.0 1.0

]
. The rest 5% follow normal distribution

with mean µ = (0, 0)′ and covariance matrix Σ =

25.0 0.0

0.0 25.0


Example 1. For comparison, we test the proposed LSQR estimator, WCLSQR

estimator and the least square local linear smoother (Jiang 2014) on three different

types of innovations. For each type, we run 500 simulations of a sample of size 500.

The other settings for the simulations are as follows. For LSQR, u is set as

(0, 0)′, equivalent to the median for univariate data. For WCLSQR, seven quan-

tiles U = [ui]
7
i=1 are selected along a line as [−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75] ·

[sin(π/3), cos(π/3)]′. Optimal bandwidth h(z) and weights w(z) are selected locally

at z using the procedure introduced in Section 2.4.

Table 4.1-4.3 displays the bias and standard deviation of the estimator for Φk,11(z)

at z = 0.5. As expected, for standard normal error, the least square estimator

still has the smallest standard deviation, while for t-distribution and mixed normal

distribution with outliers, both LSQR and WCLSQR estimators outperform the least

square estimator.

Table 4.1: Bias and standard deviation of least square, LSQR, WCLSQR estimators
on data (i).

bias std

Least Square -1.02E-02 7.38E-02

LSQR -1.29E-02 8.63E-02

WCLSQR -1.14E-02 7.85E-02
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Table 4.2: Bias and standard deviation of least square, LSQR, WCLSQR estimators
on data (ii).

bias std

Least Square -1.37E-03 7.01E-02

LSQR 2.91E-06 5.72E-02

WCLSQR 6.35E-04 5.69E-02

Table 4.3: Bias and standard deviation of least square, LSQR, WCLSQR estimators
on data (iii).

bias std

Least Square -8.97E-03 6.09E-02

LSQR -5.62E-03 5.74E-02

WCLSQR -6.89E-03 5.42E-02

Example 2. We first compare the proposed smoothed LSQR to LSQR with the

fixed bandwidth h and the fixed smooth parameter δ. We run 500 simulations of a

sample of size n = 1000 on data (i). Here u is set as (0, 0)′, h is fixed as n−1/5 = 0.2512

and δ = n−3/10 = 0.1259 for illustration purpose. For z ∈ [0, 1], as boundary points

usually requires larger bandwidth, we only run the test on the interior points from

0.3 to 0.7.

Denote (Φ̂11, Φ̂12) as the LSQR estimators of (Φ11,Φ12), and (Φ̃11, Φ̃12) as the

smoothed LSQR estimators of (Φ11,Φ12). Table 4.4-4.6 displays the bias and stan-

dard deviation of the two estimation method and the difference between them. It is

seen that for k = 2, with δ satisfying n−4/5 � δk � n−2/5, the difference between the

bias of the smoothed LSQR estimator and the LSQR estimator is rather small.
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Table 4.4: Bias and standard deviation of smoothed LSQR estimators with h =
0.2512, δ = 0.1259.

z0 bias of Φ̃11 std of Φ̃11 bias of Φ̃12 std of Φ̃12

0.3 -1.89E-02 5.89E-02 -9.80E-02 5.40E-02

0.4 -1.22E-02 5.87E-02 -6.15E-02 5.43E-02

0.5 -4.50E-03 5.94E-02 -1.44E-02 5.80E-02

0.6 2.81E-03 5.82E-02 1.54E-02 5.84E-02

0.7 6.16E-03 5.52E-02 2.26E-02 5.69E-02

Table 4.5: Bias and standard deviation of LSQR estimators with h = 0.2512.

z0 bias of Φ̂11 std of Φ̂11 bias of Φ̂12 std of Φ̂12

0.3 -1.89E-02 5.90E-02 -9.80E-02 5.43E-02

0.4 -1.22E-02 5.90E-02 -6.15E-02 5.44E-02

0.5 -4.55E-03 5.93E-02 -1.43E-02 5.82E-02

0.6 2.91E-03 5.83E-02 1.57E-02 5.87E-02

0.7 6.20E-03 5.53E-02 2.28E-02 5.71E-02

Table 4.6: Comparison of smoothed LSQR and LSQR estimators.

z0 ∆bias of Φ11 ∆std of Φ11 ∆bias of Φ12 ∆std of Φ12

0.3 -3.50E-05 -1.13E-04 -4.18E-07 -2.86E-04

0.4 5.46E-06 -2.79E-04 -2.10E-05 -6.92E-05

0.5 -4.08E-05 6.90E-05 4.82E-05 -2.11E-04

0.6 -9.72E-05 -1.54E-04 -2.27E-04 -3.42E-04

0.7 -4.11E-05 -1.13E-04 -2.01E-04 -2.10E-04

We also compare the smoothed WCLSQR estimator and the WCLSQR estimator

using the optimal bandwidth and weights selection procedure. Simulation of a sample
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of size n = 1000 on data (i) is replicated 500 times. The spatial quantiles U are the

same as in Example 1. As illustrated in Section 3.3, the choice of δ does not affect

the optimal bandwidth selection. For z0 = 0, 0.1, . . . , 1, after the optimal bandwidth

h(z0) is selected, we set δ = h(z0)n
−1/10. Denote (Φ̂11(ω), Φ̂12(ω)) as the WCLSQR

estimators of (Φ11,Φ12), and (Φ̃11(ω), Φ̃12(ω)) as the smoothed WCLSQR estimators

of (Φ11,Φ12). Table 4.7-4.9 report the simulation results. It is seen that the smoothed

WCLSQR achieves similar performance as the WCLSQR, while for 1000 groups of

simulation, the smoothed WCLSQR consumes 11 hours 50 minutes, much less than

the WCLSQR, which consumes 22 hrs 09 minutes.

Table 4.7: Bias and standard deviation of smoothed WCLSQR estimators with opti-
mal bandwidths and weights.

z0 bias of Φ̃11(ω) std of Φ̃11(ω) bias of Φ̃12(ω) std of Φ̃12(ω)

0 2.59E-02 1.91E-01 3.75E-02 1.84E-01

0.1 -5.15E-03 8.59E-02 -1.22E-02 8.50E-02

0.2 -8.45E-03 8.24E-02 -4.17E-02 8.75E-02

0.3 -4.39E-03 8.58E-02 -4.09E-02 8.51E-02

0.4 -1.52E-03 7.76E-02 -2.73E-02 7.91E-02

0.5 -3.53E-03 7.27E-02 -7.37E-03 7.24E-02

0.6 -2.35E-03 7.10E-02 9.40E-03 7.79E-02

0.7 6.95E-03 7.33E-02 2.32E-02 8.36E-02

0.8 8.64E-03 6.65E-02 1.90E-02 6.80E-02

0.9 2.89E-03 7.83E-02 8.18E-03 7.47E-02

1 -1.41E-02 1.82E-01 -1.35E-02 1.87E-01
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Table 4.8: Bias and standard deviation of WCLSQR estimators with optimal band-
widths and weights.

z0 bias of Φ̃11(ω) std of Φ̃11(ω) bias of Φ̃12(ω) std of Φ̃12(ω)

0 2.29E-02 1.96E-01 3.27E-02 1.89E-01

0.1 -4.64E-03 8.50E-02 -1.23E-02 8.32E-02

0.2 -9.44E-03 8.02E-02 -3.94E-02 8.64E-02

0.3 -5.13E-03 8.18E-02 -4.24E-02 7.86E-02

0.4 -2.01E-03 7.67E-02 -2.58E-02 7.95E-02

0.5 -3.05E-03 7.28E-02 -8.21E-03 7.66E-02

0.6 -2.44E-03 7.04E-02 8.22E-03 7.73E-02

0.7 7.46E-03 7.51E-02 2.05E-02 8.19E-02

0.8 8.83E-03 6.87E-02 1.82E-02 7.02E-02

0.9 4.43E-03 8.04E-02 8.77E-03 7.72E-02

1 -1.62E-02 1.92E-01 -1.50E-02 1.87E-01
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Table 4.9: Comparison of smoothed WCLSQR and WCLSQR estimators.

z0 ∆bias of Φ11 ∆std of Φ11 ∆bias of Φ12 ∆std of Φ12

0 2.97E-03 -5.25E-03 4.78E-03 -4.42E-03

0.1 5.18E-04 8.17E-04 -1.35E-04 1.76E-03

0.2 -9.84E-04 2.22E-03 2.25E-03 1.16E-03

0.3 -7.39E-04 4.00E-03 -1.46E-03 6.50E-03

0.4 -4.97E-04 8.35E-04 1.48E-03 -3.73E-04

0.5 4.77E-04 -1.40E-04 -8.43E-04 -4.17E-03

0.6 -8.62E-05 6.02E-04 1.18E-03 6.54E-04

0.7 -5.08E-04 -1.79E-03 2.64E-03 1.62E-03

0.8 -1.93E-04 -2.22E-03 8.04E-04 -2.17E-03

0.9 -1.54E-03 -2.14E-03 -5.90E-04 -2.54E-03

1 -2.11E-03 -9.19E-03 -1.54E-03 5.06E-04



CHAPTER 5: REAL EXAMPLE

In this section we study the vector time series consisting of two daily river flow series

of Iceland using the proposed methodology. The data was analyzed in Tong (1985)

as two individual time series using the threshold model and Tsay (1998) using the

threshold multivariate model. Modeling the dynamics of the river flows can be quite

complicated as it involves many factors, such as evaporation, transpiration, under-

ground sources and melting snow etc. However, for use of simulation and prediction, it

is worth exploring to build relatively simpler model to catch the relationship between

the river flow and some meteorological variables that are easy to acquire. Following

Tong (1985) and Tsay (1998), we consider the exogenous variables as lagged values

of daily precipitation, measured in millimeters (mm), denoted as {xt−j}qj=1 and the

lagged value of temperature, measure in degrees Celsius (°C), denoted as zt−d. Two

daily river flow series, measured in m3s−1, are from the Jökulsá Eystri River and

Vatnsdalsá River from 1972 to 1974, denoted as yt = (y1t, y2t)
′. The data are down-

loaded from the R package: Time Series Data Library. In Figure 5.1, the time plot of

two river flow series shows strong evidence of nonlinear features, such as sharp rises

and slow declines. Thus it is reasonable to employ a nonlinear model. Tsay (1998)

selected the contemporaneous value of daily temperature zt as the threshold variable.

As an extension to this, we assume that the coefficients of lagged values of the river

flows and exogenous variables depend on zt−d and consider the following model

yt = c(zt−d) +

p∑
i=1

φi(zt−d)yt−i +

q∑
i=1

βi(zt−d)xt−i + εt. (5.1)
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Figure 5.1: The right figure shows the time plot of the daily river flow from the Jökulsá
Eystri River, with the red line representing actual values and blue lines representing
its median estimates. The left figure shows the time plot of the daily river flow from
Vatnsdalsá River.
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By the average prediction error criterion (APE), we select the lagged order p = 5,

q = 3 and d = 4, although the results indicate that model (5.1) is not that sensitive

to the selection of the lagged order. Tsay (1998) also found that the autoregressive

order, ranging from AR(4) to AR(22) is not a significant factor. This is reasonable as

we only have a very limited number of exogenous variables, thus some factors affecting

the river flow may be contained in the past observations. It is seen in Figure 5.1 that

the median estimates well captured the non-linearity of the data, which shows that the

temperature, as an important role affecting the snow melting, can explain much of the

non-linearity. Figure 5.2 - 5.3 show the median estimates of the functional coefficients

of xt−1, xt−2, xt−3, zt−4 with respect to y1t and y2t. By modeling the coefficients as

functions of the temperature, it is evident that the relation between the river flows

and other meteorological variables has patterns that variate with seasonal changes,

which the two regime threshold model fails to reveal. It is also worth pointing out

that, although the residuals have no strong serial correlations, residuals are relatively

larger in the regime where zt−4 > 0, which indicates the possibility of improving the

model by bringing in more meteorological variables.
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Figure 5.2: LSQR estimates of the coefficients of xt−1, xt−2, xt−3, zt−4 with respect to
y1t.

Figure 5.3: LSQR estimates of the coefficients of xt−1, xt−2, xt−3, zt−4 with respect to
y2t.



CHAPTER 6: DISCUSSION

In this dissertation, we propose a local spatial quantile regression method to esti-

mate the functional coefficient matrices of multivariate time series. We first propose

the "local spatial quantile regression" estimator by running spatial quantile regres-

sion and local smoothing. Then we propose a "weighted composite LSQR" estimator

using the idea of weighted composite quantile regression for better performance. The

asymptotic normality of the proposed estimators are established. We also consider

the procedures to select the optimal bandwidth and the optimal weights for the es-

timation. Furthermore, to achieve computational efficiency, we propose a "smoothed

spatial QR" which simplifies and accelerates the minimization problem in the spatial

quantile regression. Based on the smoothed spatial QR, we introduce the smoothed

LSQR and WCLSQR estimators for the multivariate functional-coefficient model. By

establishing the sampling properties of the proposed estimators, we show that the es-

timators using the smoothed spatial QR can achieve comparable performance with a

proper choice of the smoothing parameter while consuming less computing resources.

Simulation study of the proposed estimators demonstrates good finite sample perfor-

mance and computational efficiency. We also analyze the Iceland river flow data to

show the application of our method on the real data.

Our future work may include the hypothesis testing on the significance of coeffi-

cients for LSQR and WCLSQR method. Moreover, a full procedure for model se-

lection may be considered. Both topics have important applications and completes

our method, yet are challenging due to the complexity of the multivariate functional-

coefficient model.
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APPENDIX A: CONDITIONS

(A1) The marginal density f(z) of the stationary process {zt} is bounded away from

0 and is continuous at z = z0.

(A2) The functions c(·), φi(·) and βi(·) have continuous second derivatives at z = z0.

(A3) The kernel function K(t) is continuous with bounded support [−1, 1]. Further,

the functions t3K(t) and t3K ′(t) are bounded and
∫
t4K(t) dt <∞.

(A4) Error term εt has an absolutely continuous distribution g(x) on Rk with k ≥ 2.

(A5) E[XtX
T
t |zt−d = z0] <∞ and E[||Ψu(εt − qu(zt−d)||2|zt−d = z0] <∞.

(A6) Matrix M(z) is continuous and invertible at z = z0.

The above conditions are standard. Condition (A4) ensures that the conditional

quantile function uniquely exists. It is worthwhile to point out that, if there is no AR

part in model 1.1, Condition (A5) is satisfied even when at has infinite variance.



39

APPENDIX B: PROOFS of THEOREMS IN CHAPTER 2

Notations

For convenience, we use the following notations throughout the proofs. Let γ̂ =
√
nh[Â−Φ(z0; u), h(B̂−Φ′(z0; u)] and ζ̂ = (ζ̂11, . . . , ζ̂1J , ζ̂2), where ζ̂1j =

√
nh[ĉuj−

Φ1(z0; uj), h(d̂uj −Φ′1(z0; uj)] and ζ̂2 =
√
nh[Â2 −Φ2(z0; u), h(B̂2 −Φ′2(z0; u)].

Define the remainders of the local linear approximation

R(zt−d; u) = Φ(zt−d; u)−Φ(z0; u)−Φ′(z0; u)(zt−d − z0),

R1(zt−d; uj) = Φ1(zt−d; uj)−Φ1(z0; uj)−Φ′1(z0; uj)(zt−d − z0),

R2(zt−d) = Φ2(zt−d)−Φ2(z0)−Φ′2(z0)(zt−d − z0).

Let ηut = εt − qu(zt−d) + R(zt−d; u)Xt and ηujt = εt − qu(zt−d) + R1(zt−d; uj) +

R2(zt−d)X
∗
t .

Lemma B.1. For any quadratic function g(x) = xTAx+bTx+c, where A is a p×p

positive definite matrix, b is a p× 1 vector and c is a constant, we have

(i) g(x) achieves the minimum value g(x0) = c− 1
4
bTA−1b at x0 = −1

2
A−1b;

(ii) g(x) = (x− x0)
TA(x− x0) + g(x0).

Proof of Lemma B.1. Routine.

Lemma B.2. Let ξn = {vec(γ)}T 1√
nh

∑n
t=s′+1[Wt,h ⊗ ψu(η

u
t )]K( zt−d−z0

h
). Suppose

Condition A holds. Then

ξn = {vec(γ)}TZn(u)+
h2

2

√
nhf(z0){vec(γ)}Tvec{Du(z0)Φ

′′(z0; u)[sT⊗M(z0)]}+op(
√
nh5).
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Proof of Lemma B.2. Rewrite ξn as

ξn =
1√
nh
{vec(γ)}T

n∑
t=s′+1

[Wt,h ⊗ψu(εt − qu(zt−d)]K(
zt−d − z0

h
)

+
1√
nh
{vec(γ)}T

n∑
t=s′+1

[Wt,h ⊗ {ψu(η
u
t )−ψu(εt − qu(zt−d))}]K(

zt−d − z0
h

)

≡ξn1 + ξn2.

(B.1)

By Taylor’s expansion, R(zt−d; u) = 1
2
Φ′′(ξt−d; u)(zt−d − z0)2, where ξt−d is between

zt−d and z0 and independent of u. Then

ξn2 =
1√
nh
{vec(γ)}T

n∑
t=s′+1

[Wt,h ⊗ {Ψu(εt − qu(zt−d))
h2

2
Φ′′(ξt−d; u)Xt}]K(2)(

zt−d − z0
h

)

+
1√
nh
{vec(γ)}T

n∑
t=s′+1

[Wt,h ⊗ {χt,u
h2

2
Φ′′(ξt−d; u)Xt}]K(2)(

zt−d − z0
h

)

≡ξn21 + ξn22,

whereK(j)(x) = xjK(x) and χt,u = ψu(η
u
t )−ψu(εt−qu(zt−d))−Ψu(εt−qu(zt−d))R(zt−d; u)Xt.

Applying the identity, vec(abT ) = b⊗ a for any column vectors a and b, we obtain

that

Wt,h ⊗ {Ψu(εt − qu(zt−d))Φ
′′(ξt−d; u)Xt}

= vec{Ψu(εt − qu(zt−d))Φ
′′(ξt−d; u)XtW

T
t,h}

= vec{Ψu(εt − qu(zt−d))Φ
′′(ξt−d; u)[(1,

zt−d − z0
h

)⊗XtX
T
t ]}.
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Hence, by Condition (A1) and (A2),

E

{
[Wt,h ⊗ {Ψu(εt − qu(zt−d))

h2

2
Φ′′(ξt−d; u)Xt}]K(2)(

zt−d − z0
h

)

}
= E

{
vec{Ψu(εt − qu(zt−d))Φ

′′(ξt−d; u)[(1,
zt−d − z0

h
)⊗XtX

T
t ]}K(2)(

zt−d − z0
h

)

}
= hf(z0)vec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]}(1 + o(1))

and

E(ξn21) =
h2

2

√
nhf(z0){vec(γ)}Tvec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]}(1 + o(1)).

Note that under Condition (A5), var(ξn21) = O(h4). Then ξn21 = Op(
√
nh5). Simi-

larly, we can show that ξn22 = op(
√
nh5). It follows that

ξn2 = ξn21(1+o(1)) =
h2

2

√
nhf(z0){vec(γ)}Tvec{Du(z0)Φ

′′(z0; u)[sT⊗M(z0)]}+op(
√
nh5).

As ξn1 = {vec(γ)}TZn(u), by (B.1), we complete the proof.

Lemma B.3. Suppose Condition A holds. Then Zn(u) = 1√
nh

∑n
t=s′+1[Wt,h⊗ψu(εt−

qu(zt−d))]K( zt−d−z0
h

) has

(i) E[Zn(u)] = 0 and V ar[Zn(u)] = f(z0)(V ⊗M(z0))⊗Nu(z0)(1 + o(1));

(ii) Zn(u) is asymptotically normal with mean 0 and variance of f(z0)(V⊗M(z0))⊗

Nu(z0).

Proof Lemma B.3. Since E[ψu(εt − qu(zt−d))|zt−d] = 0, by taking iterative expecta-

tions, it is easy to obtain E[Zn(u)] = 0.

By (A⊗B)(C⊗D) = (AC)⊗ (BD),

W⊗2
t,h =

 1 h−1(zt−d − z0)

h−1(zt−d − z0) h−2(zt−d − z0)2

⊗ (XtX
T
t ),
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where A⊗2 = AAT . Similarly,

E[Zn(u)] =
1

nh

n∑
t=s′+1

E[W⊗2
t,h ⊗ψu(εt − qu(zt−d))

⊗2K(
zt−d − z0

h
)]

= f(z0)(V ⊗M(z0))⊗Nu(z0)(1 + o(1))

Then by the martingale central limit theorem, Zn(u) is asymptotically normal with

mean 0 and variance of f(z0)(V ⊗M(z0))⊗Nu(z0).

Proof of Theorem 2.1. Since

yt − [Â + B̂(zt−d − z0)]Xt = yt − [A + B(zt−d − z0)]Xt

− [Â−A + (B̂−B)(zt−d − z0)]Xt

= ηut −
1√
nh
γ̂Wt,h,

the objective function (2.6) can be written as

n∑
t=s′+1

Qu(η
u
t −

1√
nh
γWt,h)K(

zt−d − z0
h

).

Therefore, minimizing (2.6) over A, B is equivalent to minimizing

n∑
t=s′+1

[Qu(η
u
t −

1√
nh
γWt,h)−Qu(η

u
t )]K(

zt−d − z0
h

). (B.2)

over γ. In the following part we approximate (B.2) by a quadratic function. To this

end, we define

Vn,t =

{
Qu(η

u
t −

1√
nh
γWt,h)−Qu(η

u
t ) +

1√
nh
{vec(γ)}T [Wt,h ⊗ψu(η

u
t )]

}
K(

zt−d − z0
h

).

Since Qu(η
u
t − λ 1√

nh
γWt,h) − Qu(η

u
t ) is a convex function of λ, the gradient of the

function in λ, − 1√
nh
{vec(γ)}T [Wt,h ⊗ ψu(η

u
t − λ 1√

nh
γWt,h)] is non-decreasing in λ.
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Then simple geometry leads to

0 ≤ Vn,t ≤−
1√
nh
{vec(γ)}T [Wt,h ⊗ψu(η

u
t −

1√
nh
γWt,h)]K(

zt−d − z0
h

)

+
1√
nh
{vec(γ)}T [Wt,h ⊗ψu(η

u
t )]K(

zt−d − z0
h

) ≡ V ∗n,t.

For ||vec(γ)|| ≤M ,

V ∗n,t = − 1√
nh
{vec(γ)}T

{
Wt,h ⊗ [ψu(η

u
t −

1√
nh
γWt,h)−ψu(η

u
t )]

}
K(

zt−d − z0
h

)

converges to zero almost surely as n → ∞. Let ηn ≡
∑n

t=s′+1 V
2
n,t. Since ψu is

bounded,

E(ηn) ≤
n∑

t=s′+1

E[V ∗2n,t ] = O(1)E

[
||Wt,h||2

1

h
K2(

zt−d − z0
h

)

]
<∞

. By the Lebesgue dominated convergence theorem, E(ηn) =
∑n

t=s′+1E[V 2
n,t] → 0.

Then, by the Chebyshev’s inequality,

n∑
t=s′+1

Vn,t = E(
n∑

t=s′+1

Vn,t) +Op({var(
n∑

t=s′+1

Vn,t)}1/2)

= (n− s′)E(Vn,t) + op(1).

(B.3)

By the definition of Vn,t and Taylor’s expansion at γ = 0, we have

E(Vn,t) =

1

2nh
{vec(γ)}TE

{
(Wt,h ⊗ Ik)Ψ(εt − qu(zt−d))(Wt,h ⊗ Ik)

TK(
zt−d − z0

h
)

}
vec(γ)(1+o(1)).

Using the identity for conforming matrices (A⊗B)(C⊗D) = (AC)⊗ (BD), we have

(Wt,h ⊗ Ik)Ψ(εt − qu(zt−d))(Wt,h ⊗ Ik)
T = (Wt,hW

T
t,h)⊗Ψ(εt − qu(zt−d)).
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Then

E(Vn,t) =

1

2nh
{vec(γ)}TE

{
(Wt,hW

T
t,h)⊗Ψ(εt − qu(zt−d))K(

zt−d − z0
h

)

}
vec(γ)(1 + o(1)).

Simple algebra leads to Wt,hW
T
t,h = Sn ⊗XtX

T
t , where

Sn =

 1 h−1(zt−d − z0)

h−1(zt−d − z0) h−2(zt−d − z0)2

 .
Taking iterative expectation, we obtain that

E(Vn,t) =
1

2n
f(z0){vec(γ)}T ((S⊗M(z0))⊗Du(z0))vec(γ)(1 + o(1)).

This, combined with (B.3), yields that

n∑
t=s′+1

Vn,t =
1

2
f(z0){vec(γ)}T ((S⊗M(z0))⊗Du(z0))vec(γ) + op(1). (B.4)

By Lemma B.2 and the definition of Vn,t, we have

n∑
t=s′+1

Vn,t =
n∑

t=s′+1

[Qu(η
u
t −

1√
nh
γWt,h)−Qu(η

u
t )]K(

zt−d − z0
h

)

+
h2

2

√
nhf(z0){vec(γ)}Tvec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]}

+ {vec(γ)}TZn(u) + op(
√
nh5)

(B.5)

Combine (B.4) and (B.5) leads to the following quadratic approximation

n∑
t=s′+1

[Qu(η
u
t −

1√
nh
γWt,h)−Qu(η

u
t )]K(

zt−d − z0
h

) = Gn(γ) + op(1), (B.6)
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where nh5 = O(1) and

Gn(γ) =
1

2
f(z0){vec(γ)}T ((S⊗M(z0))⊗Du(z0))vec(γ)

− h2

2

√
nhf(z0){vec(γ)}Tvec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]} − {vec(γ)}TZn(u)

is a quadratic function of vec(γ). Since the left-hand side of (B.6) is convex, by

Lemma 3 of Niemiro (1992), (B.6) holds uniformly for ||vec(γ)|| ≤ M . That is, for

any ε > 0 and M > 0, when n is large, with probability at least 1− ε, we have

sup
||vec(γ)||≤M

|
n∑

t=s′+1

[Qu(η
u
t −

1√
nh
γWt,h)−Qu(η

u
t )]K(

zt−d − z0
h

)−Gn(γ)| < ε. (B.7)

For function Gn(γ), applying Lemma B.1 with

A =
1

2
f(z0)((S⊗M(z0))⊗Du(z0)),

b = −h
2

2

√
nhf(z0)vec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]} −Zn(u),

and c = 0, we get the minimizer, vec(γ0) = −1
2
A−1b, of Gn(γ). LetK =

√
2λ−1min(A),

where λ−1min(A) is the smallest eigenvalue of A. Since A is positive definite, K <∞.

Consider the ball centered at vec(γ0),

Oγ = {γ : ||vec(γ)− vec(γ0)|| ≤ K
√
ε}.

For any γ on the surface the ball Oγ, by Lemma B.1 (ii), we have

Gn(γ) ≥ (K
√
ε)2λmin(A) +Gn(γ0) = 2ε+Gn(γ0). (B.8)
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By (B.7), it is seen that

n∑
t=s′+1

[Qu(η
u
t −

1√
nh
γWt,h)−Qu(η

u
t )]K(

zt−d − z0
h

) < Gn(γ) + ε.

By (B.7) and (B.8), for any γ on the surface of Oγ,

n∑
t=s′+1

[Qu(η
u
t −

1√
nh
γWt,h)−Qu(η

u
t )]K(

zt−d − z0
h

) > Gn(γ)− ε ≥ Gn(γ0) + ε.

Therefore, the minimum of the convex function (B.2) must be achieved at the interior

of the ball Oγ. This amounts to

||vec(γ̂)− vec(γ0)|| ≤ K
√
ε

or equivalently

vec(γ̂)− f−1(z0)(S⊗M(z0)⊗Du(z0))
−1

×
{
h2

2

√
nhf(z0)vec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]}+ Zn(u)

}
= op(1) (B.9)

By the identity vec(AXB) = (BT ⊗A)vecX, we have

(S⊗M(z0)⊗Du(z0))
−1vec{Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]}

= vec{Φ′′(z0; u)(sTS−1)⊗ Im}

= vec{(S−1sT )⊗Φ′′(z0; u)}

= (S−1sT )⊗ vec(Φ′′(z0; u)).

Then (B.9) is equivalent to

vec(γ̂)−
√
nhBn(z0; u) = f−1(z0)(S⊗M(z0)⊗Du(z0))

−1Zn + op(1),
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which completes the proof of the theorem.

Proof of Theorem 2.2. By Lemma B.3, the variance matrix of f−1(z0)(S ⊗M(z0) ⊗

Du(z0))
−1Zn is

Ω(z0) = f−1(z0)(S⊗M(z0)⊗Du(z0))
−1(V⊗M(z0)⊗Nu(z0))(S⊗M(z0)⊗Du(z0))

−1.

Applying (A⊗B)(C⊗D) = (AC)⊗ (BD), we establish that

Ω(z0) = f−1(z0)(S
−1VS−1)⊗M−1(z0)⊗ (D−1u (z0)Nu(z0)D

−1
u (z0)).

This, together with Theorem 2.1 and Lemma B.3, completes the proof of the theorem.

Proof of Theorem 2.3. Using similar arguments from Theorem 2.1, we can complete

the proof. Here we just sketch the proof for saving space.

With new notations ζ, minimizing (2.9) is equivalent to minimizing

J∑
j=1

ωj

n∑
t=s′+1

[Quj(η
uj
t −

1√
nh
ζ1jW1t,h−

1√
nh
ζ2W2t,h)−Quj(η

uj
t )]K(

zt−d − z0
h

) (B.10)

Define

Vn,t2 =
J∑
j=1

ωj

{
Quj(η

uj
t −

1√
nh
ζ1jW1t,h −

1√
nh
ζ2W2t,h)−Quj(η

uj
t )

+
1√
nh

(
vec(ζ1j)

vec(ζ2)

)T[(W1t,h

W2t,h

)
⊗ψuj

(η
uj
t )
]}
K(

zt−d − z0
h

).
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With the same argument as between (B.2) and (B.4), we obtain that

Vn,t2 =
1

2
f(z0)

J∑
j=1

ωj

[
{vec(ζ1j)}TS⊗Duj(z0)vec(ζ1j)

+ {vec(ζ2)}TS⊗M∗(z0)⊗Duj(z0)vec(ζ2)

+ {vec(ζ2)}TS⊗ µ∗(z0)⊗Duj(z0)vec(ζ2)
]

+ op(1).

(B.11)

Similar to (B.6), if nh5 = O(1), (B.10) can be approximated by the quadratic function

Gn2(ζ) = Gn21 +Gn22 −
J∑
j=1

ωj[{vec(ζ1j)}TZn1j + {vec(ζ2)}TZn2j],

where

Gn21 =
1

2
f(z0)

J∑
j=1

ωj

[
{vec(ζ1j)}TS⊗Duj(z0)vec(ζ1j)

+ {vec(ζ2)}TS⊗M∗(z0)⊗Duj(z0)vec(ζ2)

+ {vec(ζ2)}TS⊗ µ∗(z0)⊗Duj(z0)vec(ζ2)
]
,

and

Gn22 =
h2

2

√
nhf(z0)

J∑
j=1

ωj

{
{vec(ζ1j)}T

[
vec{Duj(z0)Φ

′′
1(z0)s

T}

+ vec{Duj(z0)Φ
′′
2(z0)[s

T ⊗ µ∗(z0)]}
]

+ {vec(ζ2)}T
[
vec{Duj(z0)Φ

′′
1(z0)[s

T ⊗ µ∗(z0)]}

+ vec{Duj(z0)Φ
′′
2(z0)[s

T ⊗M∗(z0)]}
]}
.

By finding the minimizer of Gn2(ζ), it can be shown that

vec(ζ̂2)−
√
nhBn2(z0) = f−1(z0)(S⊗M∗(z0)⊗D(z0;ω))−1Zn(ω) + op(1), (B.12)
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where Bn2(z0) = 1
2
h2(S−1s)⊗ vec(Φ′′2(z0; u)).

Proof of Theorem 2.4. Note that

cov(Znj,Znl) = f(z0)V ⊗M∗(z0)⊗Nuj ,ul(z0) + o(1),

where Nuj ,ul(z0) = E[ψuj
(εt − quj(zt−d))ψ

T
ul

(εt − qul(zt−d))|zt−d = z0]. It follow that

var(Zn) =
J∑

j,l=1

ωjωl cov(Znj,Znl)

= f(z0)V ⊗M∗(z0)⊗
J∑

j,l=1

ωjωlNuj ,ul(z0) + o(1).

(B.13)

Using the Slutsky theorem and (B.12)-(B.13), we obtain the asymptotic variance of

vec(ζ̂2)

Ω2(z0;ω) = f−1(z0)(S
−1VS−1)⊗M∗−1(z0)⊗ (D−1(z0;ω)N(z0;ω)D−1(z0;ω)).
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APPENDIX C: PROOFS of THEOREMS IN CHAPTER 3

Notation

Except the notations from Appendix B, the following notations are needed through-

out the proofs. Let γ̃ =
√
nh[Ã−Φ(z0; u), h(B̃−Φ′(z0; u)] and ζ̃ = (ζ̃11, . . . , ζ̃1J , ζ̃2),

where ζ̃1j =
√
nh[c̃uj−Φ1(z0; uj), h(d̃uj−Φ′1(z0; uj)] and ζ̃2 =

√
nh[Ã2−Φ2(z0), h(B̃2−

Φ′2(z0)]. By the definition (3.1), γ̃ = arg min
γ

Ln(γ), where

Ln(γ) =
n∑

t=s′+1

Qu,δ(η
u
t −

1√
nh
γWt,h)K(

zt−d − z0
h

).

And ζ̃ = arg min
γ

Ln(ζ;ω), as defined in (3.2), where

Ln(ζ;ω) ≡
J∑
j=1

ωj

n∑
t=s′+1

Quj ,δ(η
uj
t −

1√
nh
ζ1jW1t,h −

1√
nh
ζ2W2t,h)K(

zt−d − z0
h

).

Lemma C.1. L′n(0) = −
∑n

t=s′+1
1√
nh

Wt,h ⊗ ψu,δ(η
u
t )K( zt−d−z0

h
). Suppose condition

A holds and δknh→∞, then

L′n(0) = −Zn(u)−
√
nhf(z0)s0 ⊗ µ(z0)⊗ nu,δ(z0)

− h2

2

√
nhf(z0)vec(Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]) +op(δ
k
√
nh) + op(

√
nh5).

Proof of Lemma C.1. L′n(0) can be written as

L′n(0) = −
n∑

t=s′+1

1√
nh

Wt,h ⊗ψu,δ(η
u
t )K(

zt−d − z0
h

)

= − {
n∑

t=s′+1

1√
nh

Wt,h ⊗ψu,δ(εt − qu(zt−d))K(
zt−d − z0

h
)

+
n∑

t=s′+1

1√
nh

Wt,h ⊗ [ψu,δ(η
u
t )−ψu,δ(εt − qu(zt−d))]K(

zt−d − z0
h

)}

= − {ϑ1 + ϑ2}.

(C.1)
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For the first term,

ϑ1 =
n∑

t=s′+1

1√
nh

Wt,h ⊗ψu(εt − qu(zt−d))K(
zt−d − z0

h
)

+
n∑

t=s′+1

1√
nh

Wt,h ⊗ [ψu,δ(εt − qu(zt−d))−ψu(εt − qu(zt−d))]K(
zt−d − z0

h
)

= Zn(u) + ϑ11.

(C.2)

Denote nu,δ(z0) = E[ψu,δ(εt − qu(zt−d)) − ψu(εt − qu(zt−d))|zt−d = z0], µ(z0) =

E[Xt|zt−d = z0], µi =
∫
uiK(u) du, s0 = (1, µ1)

T . By taking iterative expectations,

we have

E(ϑ11) =
√
nhf(z0)s0 ⊗ µ(z0)⊗ nu,δ(z0).

Note that, by the definition of ψu,δ(·),

nu,δ(z0) =

∫
x∈Rk

[ψu,δ(x)−ψu(x)]gz0(x) dx =

∫
x∈Bδ

[ψu,δ(x)−ψu(x)]gz0(x) dx = O(δk),

(C.3)

where Bδ is a k-dimensional ball centered at 0 with radius δ, gz0(·) is the conditional

density function of εt − qu(zt−d) under zt−d = z0. Under conditions (A2) and (A4),

E(ϑ11) = O(δk
√
nh).

Similarly we can obtain that V ar(ϑ11) = O(δk). By Chebyshev’s theorem,

ϑ11 = E(ϑ11) +Op({var(ϑ11)}1/2) = E(ϑ11) +Op(δ
k/2) = E(ϑ11) + op(δ

k
√
nh).
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Hence

ϑ11 =
√
nhf(z0)s0 ⊗ µ(z0)⊗ nu,δ(z0) + op(δ

k
√
nh). (C.4)

For the second term, we have ηut = εt − qu(zt−d) + R(zt−d; u)Xt and R(zt−d; u) =

1
2
Φ′′(z∗; u)(zt−d − z0)2, where z∗ is between zt−d and z0. Let K(j)(x) = xjK(x) and

χt,u,δ = ψu,δ(η
u
t )−ψu,δ(εt − qu(zt−d))−Ψu,δ(εt − qu(zt−d))R(zt−d; u)Xt. Then

ϑ2 =
n∑

t=s′+1

1√
nh

Wt,h ⊗ [ψu,δ(η
u
t )−ψu,δ(εt − qu(zt−d))]K(

zt−d − z0
h

)

=
n∑

t=s′+1

1√
nh

Wt,h ⊗ [Ψu,δ(εt − qu(zt−d))
1

2
Φ′′(z∗; u)(zt−d − z0)2Xt]K(

zt−d − z0
h

)

+
n∑

t=s′+1

1√
nh

Wt,h ⊗ [χt,u,δ
1

2
Φ′′(z∗; u)(zt−d − z0)2Xt]K(

zt−d − z0
h

)

=
n∑

t=s′+1

1√
nh

Wt,h ⊗ [Ψu,δ(εt − qu(zt−d))
h2

2
Φ′′(z∗; u)Xt]K

(2)(
zt−d − z0

h
)

+
n∑

t=s′+1

1√
nh

Wt,h ⊗ [χt,u,δ
h2

2
Φ′′(z∗; u)Xt]K

(2)(
zt−d − z0

h
)

= ϑ21 + ϑ22.

By vec(ABT ) = B⊗A,

ϑ21 =
n∑

t=s′+1

1√
nh
vec(Ψu,δ(εt − qu(zt−d))

h2

2
Φ′′(z∗; u)XtW

T
t,h)K

(2)(
zt−d − z0

h
)

=
n∑

t=s′+1

1√
nh
vec(Ψu,δ(εt − qu(zt−d))

h2

2
Φ′′(z∗; u)[(1,

zt−d − z0
h

)⊗XtX
T
t ])K(2)(

zt−d − z0
h

).

By similar arguments for (C.3), it can be obtained that

E[Ψu,δ(εt−qu(zt−d))|zt−d = z0] = E[Ψu(εt−qu(zt−d))|zt−d = z0](1+o(1)) = Du(z0)(1+o(1)).

Denoting s = (µ2, µ3)
T and M(z0) = E[XtX

T
t |zt−d = z0], along with conditions
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(A1)-(A2), we have

E(vec(Ψu,δ(εt − qu(zt−d))
h2

2
Φ′′(z∗; u)[(1,

zt−d − z0
h

)⊗XtX
T
t ])K(2)(

zt−d − z0
h

))

= hf(z0)vec(Du(z0)Φ
′′(z0; u)[sT ⊗M(z0)])(1 + o(1)).

Hence,

E(ϑ21) =
h2

2

√
nhf(z0)vec(Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)])(1 + o(1)).

And under condition (A5), var(ϑ21) = O(h4). Hence ϑ21 = Op(
√
nh5). Since

E[χt,u,δ|zt−d = z0] = o(h2), similarly we have E(ϑ22) = o(
√
nh5) and var(ϑ22) =

o(h4). Then ϑ22 = op(
√
nh5) and

ϑ2 = ϑ21(1 + op(1)) =
h2

2

√
nhf(z0)vec(Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)]) + op(
√
nh5).

By above we complete the proof the lemma.

Lemma C.2. L′′n(0) =
∑n

t=s′+1 ξ
′ T
t Ψu,δ(η

u
t )ξ
′
tK( zt−d−z0

h
). Suppose condition A hold,

then

L′′n(0) = f(z0)S⊗M(z0)⊗Du(z0)(1 + op(1)).

Proof of Lemma C.2. Plug in ξ′t = − 1√
nh

WT
t,h ⊗ Ik,

L′′n(0) =
1

nh

n∑
t=s′+1

Wt,h ⊗ IkΨu,δ(η
u
t )W

T
t,h ⊗ IkK(

zt−d − z0
h

).
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By (A⊗B)(C⊗D) = (AC)⊗ (BD),

L′′n(0) =
1

nh

n∑
t=s′+1

Wt,hW
T
t,h ⊗Ψu,δ(η

u
t )K(

zt−d − z0
h

)

=
1

nh

n∑
t=s′+1

Sn ⊗ (XtX
T
t )⊗Ψu,δ(η

u
t )K(

zt−d − z0
h

),

where

Sn =

 1 h−1(zt−d − z0)

h−1(zt−d − z0) h−2(zt−d − z0)2

 .
With similar techniques in the proof of Lemma C.1, L′′n(0) can be rewritten as

L′′n(0) =
1

nh

n∑
t=s′+1

Sn ⊗ (XtX
T
t )⊗Ψu(εt − qu(zt−d))K(

zt−d − z0
h

)

+
1

nh

n∑
t=s′+1

Sn ⊗ (XtX
T
t )⊗ [Ψu,δ(εt − qu(zt−d))−Ψu(εt − qu(zt−d))]K(

zt−d − z0
h

)

+
1

nh

n∑
t=s′+1

Sn ⊗ (XtX
T
t )⊗ [Ψu,δ(η

u
t )−Ψu,δ(εt − qu(zt−d))]K(

zt−d − z0
h

)

≡ τ1 + τ2 + τ3.

Taking iterative expectations, we have

E[τ1] = f(z0)S⊗M(z0)⊗Du(z0).

And since V ar[τ1] = O((nh)−1), by Chebyshev’s theorem,

τ1 = f(z0)S⊗M(z0)⊗Du(z0)(1 + op(1)).

For the second term, using similar arguments for (C.3), we have τ2 = Op(δ
k) = op(τ1).

As ηut −(εt−qu(zt−d)) = 1
2
Φ′′(z∗; u)(zt−d−z0)2Xt = O(h2), thus τ3 = Op(h

2) = op(τ1).
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Combining above,

L′′n(0) = f(z0)S⊗M(z0)⊗Du(z0)(1 + op(1)).

Proof of Theorem 3.2. Let ξt = ηut − 1√
nh
γWt,h. By vec(AXB) = (BT ⊗A)vec(X),

we have

vec(ξt) = vec(ηut )−
1√
nh

(WT
t,h ⊗ Ik)vec(γ)

and

ξ′t =
∂ξt

∂vec(γ)
= − 1√

nh
WT

t,h ⊗ Ik.

Then,

L′n(γ) =
∂Ln(γ)

∂vec(γ)
=

n∑
t=s′+1

ξ′Tt ψu,δ(η
u
t −

1√
nh
γWt,h)K(

zt−d − z0
h

),

and

L′′n(γ) =
∂2Ln(γ)

∂vec(γ)∂{vec(γ)}T
=

n∑
t=s′+1

ξ′ Tt Ψu,δ(η
u
t −

1√
nh
γWt,h)ξ

′
tK(

zt−d − z0
h

).

By Taylor expansion at 0,

L′n(γ̂) = L′n(0) + L′′n(0)(vec(γ̂)− 0) + o(γ̂).

Noting that by definition L′n(γ̂) = 0, with Lemma C.1 and Lemma C.2, we obtain

vec(γ̂) = −L
′
n(0)

L′′n(0)
(1 + o(1))

= f−1(z0)(S⊗M(z0)⊗Du(z0))
−1Zn(u) +

√
nhBn,δ + op(1),
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where

Bn,δ = f−1(z0)(S⊗M(z0)⊗Du(z0))
−1{f(z0)s0 ⊗ µ(z0)⊗ nu,δ(z0)

+
h2

2
f(z0)vec(Du(z0)Φ

′′(z0; u)[sT ⊗M(z0)])}

= κ1 + κ2.

For the first term,

κ1 = (S⊗M(z0)⊗Du(z0))
−1s0 ⊗ µ(z0)⊗ nu,δ(z0)

= S−1 ⊗M(z0)
−1 ⊗Du(z0)

−1s0 ⊗ µ(z0)⊗ nu,δ(z0)

= S−1s0 ⊗ [(M(z0)
−1µ(z0))⊗ (Du(z0)

−1nu,δ(z0))].

For the second term, by vec(AXB) = BT ⊗A vec(X),

κ2 = f−1(z0)(S⊗M(z0)⊗Du(z0))
−1h

2

2
f(z0)

vec(Du(z0)Φ
′′(z0; u)[sT ⊗M(z0)])

=
h2

2
S−1 ⊗M−1(z0)⊗D−1u (z0)s⊗M(z0)⊗D−1u (z0)vec(Φ

′′(z0; u))

=
h2

2
S−1s⊗ [M−1(z0)⊗D−1u (z0)M(z0)⊗D−1u (z0)]vec(Φ

′′(z0; u))

=
h2

2
S−1s⊗ vec(Φ′′(z0; u)).

This complete the proof of Theorem 3.2.

Proof of Theorem 3.3. Using Theorem 3.2 and Lemma B.3, it follows from matrices

algebra that

Ω(z0) = f−1(z0)(S⊗M(z0)⊗Du(z0))
−1(V ⊗M(z0)⊗Nu(z0))(S⊗M(z0)⊗Du(z0))

−1

= f−1(z0)(S
−1VS−1)⊗M−1(z0)⊗D−1u (z0)Nu(z0)D

−1
u (z0).
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This, combined with Theorem 3.2 and Lemma B.3, completes the proof the theorem.

Proof of Theorem 3.4. Let ξt(ζ1j, ζ2) = η
uj
t − 1√

nh
ζ1jW1t,h− 1√

nh
ζ2W2t,h. Define the

first order derivative with respective to vec(ζ) of Ln(ζ;ω) as L′n(ζ;ω) and the second

order derivative as L′′n(ζ;ω). Then,

L′n(ζ;ω) =
J∑
j=1

ωj

n∑
t=s′+1

{ξ′t(ζ1j, ζ2)}Tψuj ,δ
(ξt(ζ1j, ζ2))K(

zt−d − z0
h

),

and

L′′n(ζ;ω) =
J∑
j=1

ωj

n∑
t=s′+1

{ξ′t(ζ1j, ζ2)}TΨuj ,δ(ξt(ζ1j, ζ2))ξ
′
t(ζ1j, ζ2)K(

zt−d − z0
h

),

where

ξ′t(ζ1j, ζ2) =
∂ξt(ζ1j, ζ2)

∂vec(ζ)
= − 1√

nh
(eTj ⊗WT

1t,h,W
T
2t,h)⊗ Ik,

ej is a J × 1 vector with the j-th component being 1 and the remaining components

being 0, Ik is a k × k identity matrix. As ξ′t(ζ1j, ζ2) does not depend on ζ, it can be

written as ξ′tj.

For L′′n(0;ω), we have

L′′n(0;ω) =
J∑
j=1

ωj

n∑
t=s′+1

{ξ′tj}TΨuj ,δ(η
uj
t )ξ′tjK(

zt−d − z0
h

)

=
J∑
j=1

ωj

n∑
t=s′+1

{ξ′tj}TΨuj ,δ(εt − quj(zt−d))ξ
′
tjK(

zt−d − z0
h

)

+
J∑
j=1

ωj

n∑
t=s′+1

{ξ′tj}T
[
Ψuj ,δ(η

uj
t )−Ψuj ,δ(εt − quj(zt−d))

]
ξ′tjK(

zt−d − z0
h

)

≡ L′′n1 + L′′n2.
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With similar arguments in the proof of Lemma C.2, it can be shown that

L′′n(0;ω) = f(z0)
J∑
j=1

ωjTj ⊗Duj(z0)(1 + op(1)),

where

Tj =

 e⊗2j ⊗ S ej ⊗ S⊗ {µ∗}T

eTj ⊗ S⊗ µ∗ S⊗ E[X∗tX
∗T
t |zt−d = z0]

 .
Denote W =

∑J
j=1 ωjTj ⊗Duj(z0), we have

(L′′n(0;ω))−1 = f−1(z0)W
−1(1 + op(1)),

where W−1 =

[
W11 W12

W21 W22

]
is the inverse of W, with W21 = −

∑J
j=1 eTj ⊗ S−1 ⊗

{(M∗(z0))
−1µ∗} ⊗ {D(z0;ω)}−1 and W22 = {S ⊗M∗(z0) ⊗ D(z0;ω)}−1. Tedious

calculations are skipped here to save space.

Similar to (C.1) and (C.2), L′n(0;ω) can be decomposed to

L′n(0;ω) = L′n1 + L′n2 + L′n3,

where

L′n1 =
J∑
j=1

ωj

n∑
t=s′+1

{ξ′tj}Tψuj
(εt − quj(zt−d))K(

zt−d − z0
h

),

L′n2 =
J∑
j=1

ωj

n∑
t=s′+1

{ξ′tj}T [ψuj ,δ
(εt − quj(zt−d))−ψuj

(εt − quj(zt−d))]K(
zt−d − z0

h
),

L′n3 =
J∑
j=1

ωj

n∑
t=s′+1

{ξ′tj}T [ψuj ,δ
(η
uj

t )−ψuj ,δ
(εt − quj(zt−d))]K(

zt−d − z0
h

).

Using an arugument similar to that for Lemma C.1, we obtain that L′n1 = [L11,L12]T (1+
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op(1)), where

L11 = − 1√
nh

J∑
j=1

ωj

n∑
t=s′+1

ej ⊗W1t,h ⊗ψuj
(εt − quj(zt−d))K(

zt−d − z0
h

),

L12 = − 1√
nh

J∑
j=1

ωj

n∑
t=s′+1

W2t,h ⊗ψuj
(εt − quj(zt−d))K(

zt−d − z0
h

),

and L′n2 = [L21,L22]T (1 + op(1)), where

L21 = −
√
nhf(z0)

J∑
j=1

ωjej ⊗ s0 ⊗ nuj ,δ(z0),

L22 = −
√
nhf(z0)

J∑
j=1

ωjs0 ⊗ µ∗ ⊗ nuj ,δ(z0),

and L′n3 = [L31,L32]T (1 + op(1)), where

L31 = −h
2

2

√
nhf(z0)

J∑
j=1

ωjej⊗
[
vec(Duj(z0)(z0)Φ

′′
1(z0)s

T )+vec{Duj(z0)(z0)Φ
′′
2(z0)(s

T⊗µ∗)}
]
,

L32 = − h2

2

√
nhf(z0)

J∑
j=1

ωj
[
vec(Duj(z0)(z0)Φ

′′
1(z0)(s

T ⊗ µ∗T ))

+ vec{Duj(z0)(z0)Φ
′′
2(z0)(s

T ⊗ E[X∗tX
∗T
t |zt−d = z0])}

]
.

Then the (J + 1)th block component of (L′′n(0;ω))−1L′n(0;ω) is

3∑
l=1

(W21Ll1 + W22Ll2) = {−f−1(z0)(S⊗M∗(z0)⊗D(z0;ω))−1Zn(ω)

− 1

2
h2
√
nh(S−1s)⊗ vec(Φ′′2(z0)}(1 + op(1)),

where Zn(ω) =
∑J

j=1wj[Zn2j−(I2⊗µ∗(z0)⊗Ik)Zn1j] and Znij = 1√
nh

∑n
t=s′+1[Wit,h⊗
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ψuj
(εt − quj(zt−d))]K( zt−d−z0

h
). This completes the proof of the theorem.

Proof of Theorem 3.5. Using the same notations from the proof of Theorem 3.4 and

by taking iterative iterative expectations, we have E(L′n1 = 0 and

var(L′n1) = E
{ J∑
j=1

ωj

n∑
t=s′+1

{ξ′tj}Tψuj
(εt − quj(zt−d))K(

zt−d − z0
h

)

·
J∑
l=1

ωl

n∑
s=s′+1

[ψul
(εs − qul(zs−d))]

Tξ′slK(
zs−d − z0

h
)
}

= E
{ J∑
j,l=1

ωjωl

n∑
t=s′+1

{ξ′tj}Tψuj
(εt − quj(zt−d))[ψul

(εt − qul(zt−d))]
Tξ′tlK

2(
zt−d − z0

h
)
}
.

With the similar arguments in the proof of Lemma C.2, we obtain that

var(L′n1) = f(z0)W
∗(1 + op(1)),

where

W∗ =
J∑

j,l=1

ωjωl

[
eje

T
l ⊗V ej ⊗V ⊗ µ∗T

eTl ⊗V ⊗ µ∗ V ⊗ E[X∗X∗T |zt−d = z0]

]
⊗Nuj ,ul ,

and Nuj ,ul = E[ψuj
(εt − qu(zt−d)){ψul

(εt − qul(zt−d))}T |zt−d = z0]. Then by the

martingale central limit theorem, L′n1 is asymptotically normal with mean 0 and co-

variance matrix f(z0)W
∗. Hence, by the Slutsky theorem, (L′′n(0;ω))−1L′n1 is asymp-

totically normal with mean 0 and covariance matrix f−1(z0)W−1W∗(W−1)T . This,

combined with Theorem 3.4 completes the proof.

Proof of Theorem 3.1. As a(t′t)2+b(t′t)+c+u′t and Qu(t) are C2-continuous respec-

tively in Bδ(0) and Rk/Bδ(0), denoting a(t′t)2 + b(t′t) + c+ u′t as zu(t) it suffices to

show that zu(t) = Qu(t), ∂zu(t)/∂t = ∂Qu(t)/∂t and ∂2zu(t)/∂ttT = ∂2Qu(t)/∂ttT

for all t with ||t|| = δ. With simple algebra, the above three equations can be written
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as 
a(t′t)2 + b(t′t) + c =

√
t′t,

4a(t′t)t + 2bt = t√
t′t
,

[4a(t′t) + 2b]Ik + 8a(tt′) = 1√
t′t

Ik − 1
(t′t)3/2

(tt′).

Note t′t = δ2, to match the coefficients of the left and right sides, we have


aδ4 + bδ2 + c = δ

4aδ2 + 2b = 1
δ

8a = − 1
δ3
.

Solving the above linear system completes the proof of the theorem.


