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Abstract. This paper revisits the notion of a spanning hypertree of a hypermap
introduced by one of its authors and shows that it allows to shed new light on a very
diverse set of recent results.

The tour of a map along one of its spanning trees used by Bernardi may be gen-
eralized to hypermaps and we show that it is equivalent to a dual tour described by
Cori [5] and Mach̀ı [22]. We give a bijection between the spanning hypertrees of the
reciprocal of the plane graph with 2 vertices and n parallel edges and the meanders of
order n and a bijection of the same kind between semimeanders of order n and span-
ning hypertrees of the reciprocal of a plane graph with a single vertex and n/2 nested
edges. We introduce hyperdeletions and hypercontractions in a hypermap which allow
to count the spanning hypertrees of a hypermap recursively, and create a link with
the computation of the Tutte polynomial of a graph. Having a particular interest in
hypermaps which are reciprocals of maps, we generalize the reduction map introduced
by Franz and Earnshaw to enumerate meanders to a reduction map that allows the
enumeration of the spanning hypertrees of such hypermaps.

Introduction

This paper is about hypermaps, a notion that has interested several researchers in
combinatorics. This notion generalizes that of a combinatorial map (sometimes also
called a ribbon graph), which represents the embedding of a graph into an orientable
surface with a pair of a permutation and of a fixed point free involution. The same
way hypergraphs generalize graphs by introducing hyperedges incident to more than two
vertices, hypermaps generalize maps by replacing the involution with a permutation that
has cycles of arbitrary length. Hence one may interpret a hypermap as an embedding
of a hypergraph into an orientable surface. The main goal of this paper is to return
to the notion of a spanning hypertree of a hypermap introduced by Cori, Penaud [5, 7]
and Mach̀ı [22] with the purpose of showing that several recent results on various
combinatorial objects may be enlightened by interpreting them in terms of spanning
hypertrees of certain families of hypermaps. These results concern apparently very
distant areas such as the tour of a graph with the purpose of computing its Tutte
polynomial [1] or the determination of the number of meanders and semimeanders.
The main results of this paper are the following:

• Theorem 3.12 and its Corollary 3.14 which generalizes the “motion function”
used by Bernardi [1] to hypermaps and provides a simple treatment in this more
general setting.
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• Theorems 4.7 and 4.9 characterizing the process of deletions and contractions in
a hypermap which allow to obtain all spanning hypertrees of a hypermap. These
use a result of Goulden and Young [14, Theorem 2.2] on a minimal decomposition
of a permutation into a product of transpositions.
• Theorem 5.4 which gives a formula counting the number of spanning hyper-

trees of a hypermap in terms of the spanning hypertrees of a set of hypermaps
obtained by deletions of contractions from the original hypermap.
• Theorems 6.2 and 6.4 which provide bijections between the spanning hypertrees

of the reciprocal hypermaps of a plane graph with 2 vertices and n edges and
meanders of order n, respectively bijections of the same type between semime-
anders and and plane maps with one vertex and n/2 parallel loops.
• Theorem 7.5 and its Corollary 7.6 which generalize a result of Franz on meanders

to hypermaps that are reciprocals of maps.

Our paper is divided into seven sections, discussing the above mentioned questions.
In the preliminary Section 1 we remind the reader of the definition of a hypermap as

a pair of permutations, one representing the vertices the other one the hyperedges, the
faces may then be expressed by a composition of these permutations and one may de-
fine the genus by counting cycles. We also define some simple transforms of hypermaps,
such as the reciprocal (obtained by exchanging the vertices and the hyperedges) and
the dual (exchange the vertices and the hyperedges). The central notion of a spanning
hypertree is then introduced, it relies on an order on the permutations based on their
cycle decompositions. Section 2 reminds of a result obtained by Mach̀ı [22], generaliz-
ing the result of Cori [5] and Cori and Penaud [7] showing the connection between the
spanning hypertrees and various other parameters of the pairs of permutations. In Sec-
tion 3 we introduce the hyperdeletion and hypercontraction operations for hypermaps,
each of these multiply the constituting permutations by a single transposition. These
operations generalize the well-known deletion and contraction operations on graphs and
combinatorial maps. Finding a spanning hypertree amounts to a sequence of operations
based on writing permutations as products of transpositions. Using a dual description
of face tours and vertex tours, we show that every hypermap has a two-disk diagram
where vertices form a noncrossing partition inside a vertex tour, faces form another
noncrossing partition inside the face tour. Drawing a diagram of a hypermap thus cor-
responds to drawing a bipole (a hypermap with two vertices) on a surface of the same
genus as that of a hypermap, and then adding some detail in a noncrossing fashion in-
side the two vertices, representing the face tour and the vertex tour, respectively. The
sequence of operations introduced in Section 3 is described in detail in Section 4 which
opens a pathway to the construction of a Tutte polynomial. Based on the results in
Section 4 there would be several ways to define a Tutte polynomial. We did not commit
to any specific choice, because any such definition would depend on the ordering of the
hyperedges, unfortunately, just like in the case of the hypergraph Tutte polynomials
studied by Bernardi, Kálmán and Postnikov [3] (see also the earlier, less general con-
structions in [16] and [17]). An important difference between the two approaches is
that ours is based on a deletion-contraction process whereas the the hypergraph Tutte
polynomials rely on labeling bases in a (poly)matroid. Section 5 provides a recursive
formula for the number of spanning hypertrees in terms of certain hypermaps obtained
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by hyperdeletions and hypercontractions. Our formula uses the same decomposition of
the noncrossing partition lattice as the one used by Simion and Ullman [25, Theorem 2]
as an aid to recursively construct a symmetric chain decomposition of the noncrossing
partition lattice. Section 6 is dedicated to semimeanders and meanders, whose enumer-
ation is the interest of many authors, among whom Rosenstiehl was a first [24]. We
show that their enumeration may be reduced to counting the spanning hypertrees of
particular hypermaps: reciprocals of monopolar, respectively bipolar maps with non-
crossing parallel edges. This study, together with the observation that besides duality
taking the reciprocal of a hypermap is part of the hypermap analogue of Tutte’s trinity,
makes one think that reciprocals of maps must have special properties. This leads to
Section 7 where we generalize the work of Franz [11, 12], and we develop a labeled tree
representation of the spanning hypertrees of the reciprocal of a map. In particular,
we show that the set of these spanning hypertrees is bijectively equivalent to all trees
that can be obtained from the map by a sequence of topological vertex splittings. This
observation allows us to generalize the idea of Franz and Earnshaw [13] of a construc-
tive enumeration of meanders to an idea of a constructive enumeration of all spanning
hypertrees of the reciprocal of a map.

1. Preliminaries

1.1. Hypermaps and hypertrees. Informally, a hypermap is a hypergraph, topo-
logically embedded in a surface. Formally, it is a pair of permutations (σ, α) acting
on the same finite set of labels, generating a transitive permutation group. Fig. 1
represents the planar hypermap (σ, α) for σ = (1, 2, 3)(4, 5, 6)(7, 8, 9, 10)(11, 12) and
α = (1, 6)(2, 11, 9, 5)(3, 7)(4, 10)(8, 12). The cycles of σ are the vertices of the hyper-
map, the cycles of α are its hyperedges. A hypermap is a map if the length of each cycle
in α is at most 2.
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Figure 1. The hypermap (σ, α)

For planar hypermaps it is convenient to choose some drawing conventions. In Fig. 1
we follow the following rules: the cycles of σ list the exits in counterclockwise order, and
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we place the labels on the left hand side of each exit (seen from the vertex). Following
these conventions, the cycles of α−1σ = (1, 5)(2, 7, 12)(3, 6, 10)(4, 9)(8, 11) label the
regions in the plane, created by the vertices and hyperedges, and we call the cycles of
the permutation α−1σ the faces of the hypermap. Note that we multiply permutations
from the right to the left, in other words we compose them as functions. One of our
main sources, Mach̀ı [22], multiplies permutations from the left to the right, and when
he defines the faces as the cycles of α−1σ, these are the cycles of σα−1 in our notation.
When following Mach̀ı’s convention, it is more convenient to place the labels on the
right of each exit, thus the cycles of σα−1 label the regions created by the vertices and
hyperedges.

There is a well-known formula, due to Jacques [15] determining the smallest genus
g(σ, α) of a surface on which a hypermap (σ, α) may be drawn. This number is given
by the equation

n+ 2− 2g(σ, α) = z(σ) + z(α) + z(α−1σ), (1.1)

where z(π) denotes the number of cycles of the permutation π. The number g(σ, α) is
always an integer and it is called the genus of the hypermap (σ, α). In our example,
n = 12, z(σ) = 4, z(α) = 5, z(α−1σ) = 5 and Equation (1.1) gives g(σ, α) = 0, that is,
we have a planar hypermap.

A key notion of this paper is the spanning hypertree of a hypermap, first introduced
for planar hypermaps in [5] and generalized to hypermaps of arbitrary genus in [22]. A
hypermap (σ, α) is a unicellular hypermap if it has only one face. We call a unicellular
map a hypertree if its genus is zero. Note that Mach̀ı [22] uses the term hypertree
even for unicellular hypermaps of a higher genus. At this point our terminology is in
line with the widely used term unicellular map which is a map with only one face. A
permutation θ is a refinement of a permutation γ, if there exists a pair of decompositions
γ = γ1 · · · γt and θ = θ1 · · · θt such that the γis are the cycles of γ, the θis are products
of disjoint cycles of θ, and for each i the permutations γi and θi act on the same set of
elements, and they satisfy g(θi, γi) = 0. The following is an immediate consequence of
the definition of a refinement.

Corollary 1.1. Let γ and θ be permutations of the same set. Then θ is a refinement
of γ if and only if θ−1 is a refinement of γ−1.

Furthermore, refinements can be characterized as follows.

Proposition 1.2. Let θ and γ be permutations of an n-element set. The permutation
θ is a refinement of γ if and only if the two following conditions are satisfied:

(1) For any i, the two elements i and θ(i) are in the same cycle of γ.
(2) z(θ−1γ) + z(θ) = n+ z(γ) holds.

Proof. The first condition is equivalent to stating that each for each cycle of γ there is
a product of cycles of θ acting on the same set. Introducing ni as the cycle length of
γi, the condition g(θi, γi) = 0 is equivalent to

0 = ni + 2− z(γi)− z(θi)− z(γ−1i θi).

The second condition may be obtained by adding all equations of the above form, keep-
ing in mind that the number of equations to be added is z(γ). Conversely, the second
condition implies that all g(θi, γi) = 0 as the genus of any hypermap is nonnegative. �
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Corollary 1.3. If γ and θ are permutations of the same n-element set then θ is a
refinement of γ if and only if the same holds for θ−1γ.

Notice that since the pairs γi, θi define monopoles (that is, hypermaps with a single
vertex) of genus 0, for a given γi the number of θi which are a refinements of γi is the
Catalan number Cni

, where ni is the number of elements of the cycle γi. Thus we obtain
the following.

Proposition 1.4. Let γ be a permutation whose cycles are of length n1, n2, . . . , nk,
respectively. Then the number of refinements of γ is

∏k
i=1Cni

.

A hypermap (σ, α′) spans the hypermap (σ, α) if α′ is a refinement of α. Note that
not all refinements α′ of α have the property that (σ, α′) is a hypermap. The complexity
of a hypermap of genus g is the number of unicellular hypermaps of genus g spanning
it.

Using Proposition 1.2 we may establish a bijection between the spanning genus k uni-
cellular hypermaps of a hypermap (σ, α) and the spanning genus (g(σ, α)−k) unicellular
hypermaps of its dual (α−1σ, α−1) for k = 0, 1, . . . , g(σ, α) as follows.

Theorem 1.5. Let (σ, α) be a hypermap and let θ be a permutation of the same
set of points. Then (σ, θ) is a spanning unicellular hypermap of (σ, α) if and only
if (α−1σ, α−1θ) is a spanning unicellular hypermap of the dual hypermap (α−1σ, α−1).
Furthermore, if the above are satisfied we have

g(σ, θ) + g(α−1σ, α−1θ) = g(σ, α).

Proof. By Corollary 1.3, θ is a refinement of α if and only if θ−1α is a refinement of α.
By Corollary 1.1, θ−1α is a refinement of α if and only if α−1θ is a refinement of α−1.
Observe furthermore that the face permutation of (α−1σ, α−1θ) is

(α−1θ)−1α−1σ = θ−1αα−1σ = θ−1σ.

Combining the above observations we obtain that (σ, θ) is a spanning unicellular hy-
permap of (σ, α) if and only if (α−1σ, α−1θ) is a spanning unicellular hypermap of
(α−1σ, α−1).

Finally, the stated equation connecting the genuses holds because of (1.1) and the
second statement in Proposition 1.2. Indeed, (1.1) yields

g(σ, θ) =
1

2
·
(
n+ 2− z(σ)− z(θ)− z(θ−1σ)

)
g(α−1σ, α−1θ) =

1

2
·
(
n+ 2− z(α−1σ)− z(α−1θ)− z(θ−1σ)

)
and

−g(σ, α) =
1

2
·
(
−n− 2 + z(σ) + z(α) + z(α−1σ)

)
.

Using z(θ−1σ) = 1 we obtain

g(σ, θ) + g(σα−1, θα−1)− g(σ, α) =
1

2
·
(
n− z(θ)− z(α−1θ) + z(α)

)
.

We may replace z(α−1θ) with z((α−1θ)−1) = z(θ−1α) on the right hand side of the last
equation, which is then is zero by the second statement in Proposition 1.2. �
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It has been shown in [4, Theorem 1] that for a circular permutation σ (that is, a
permutation with a single cycle) and an arbitrary permutation α, acting on the same
set of elements, the condition g(σ, α) = 0 is equivalent to requiring that the cycles of α
list the elements of a noncrossing partition according to the circular order determined
by σ. Note furthermore that the drawing conventions stated for planar hypermaps
above may be easily generalized to hypermaps drawn on an oriented surface of a fixed
genus. In such a setting, the definition of a refinement θ of γ requires to replace each
cycle γi of γ by a noncrossing partition in which the parts respect the cyclic order
of γi. Furthermore, a permutation θ′ refines the permutation θ further exactly when
each cycle of θ′ is contained in a cycle γi of γ, and the restriction of θ′ onto the set
of elements permuted by γi is a noncrossing partition, which is a refinement of the
noncrossing partition associated to the action of θ on the elements permuted by γi. For
noncrossing partitions we use the term refinement in the same sense as Kreweras [18],
who has shown that noncrossing partitions form a lattice under refinement.

The key result we use depends on the notion of the hyperdual of a hypermap, intro-
duced in [7]. The dual of the hypermap (σ, α) is the hypermap (α−1σ, α−1), this notion
of duality generalizes the usual duality of planar graphs, exchanging vertices and faces.
The reciprocal of the hypermap (σ, α) is the hypermap (α, σ). Taking the reciprocal
generalizes taking the line graph of a graph. Repeated use of taking the dual and the
reciprocal yields the following commutative diagram, which itself is a generalization of
Tutte’s “trinity” [27] from graphs to hypermaps:

(α, σ) (σ−1α, σ−1)

(σ, α) (σ−1, σ−1α)

(α−1σ, α−1) (α−1, α−1σ)

d

rr

d

r

d

All hypermaps in the hexagonal diagram above have the same genus. Diagonally
opposite to (σ, α) we find the hyperdual of (σ, α), defined as (σ−1, σ−1α). Note that
taking the hyperdual is also an involution. Besides the hypermaps shown in the above
hexagonal diagram, sometimes we will also consider the mirrored hypermap (σ−1, α−1)
and the Kreweras dual (σ, α−1σ) of the hypermap (σ, α). The proof of the fact that the
mirrored hypermap (σ−1, α−1) has the same genus as (σ, α) is left to the reader. The
Kreweras dual of a noncrossing partition (that is, a genus zero monopole) was intro-
duced in [18]. The Kreweras dual of a hypermap (σ, α) is obtained from its hyperdual
(σ−1, σ−1α), by taking its mirrored hypermap.

1.2. Meanders, semimeanders, and stamp folding. Meanders and semimeanders
have a vast literature, here we use the terminology introduced in [10]. A meander
of order n is a closed, self-avoiding loop, crossing a straight line at 2n points. We
can visualize a meander as a closed, self-avoiding walk in the plane crossing a river
at 2n bridges. If we number the crossings on the straight line left to right, and then
list the crossings in the order in which the meander encounters them, we obtain a
meandric permutation. As pointed out by M. LaCroix [19], before the modern theory
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of enumerating meanders was developed, Rosenstiehl has studied these permutations
under the name of planar permutations [24].

A semimeander is a closed, self-avoiding walk that crosses a half-line at n points. As
it is stated in [10], the number of semimeanders of order n is the same as the number of
foldings n− 1 stamps [21, 26]. We will use the following equivalent definition of stamp
foldings.

Definition 1.6. A folding of n−1 stamps is a permutation π = (π(1), . . . , π(n)) of the
set {1, 2, . . . , n}, written as an ordered list, satisfying the following conditions.

(1) π(1) = 1.
(2) The list π does not contain any sublist of the form (2i, 2j, 2i+ 1, 2j + 1).
(3) The list π does not contain any sublist of the form (2i− 1, 2j − 1, 2i, 2j).

Arch diagrams representing stamp foldings are shown in the right half of Figures 9
and 10 in Section 6. In both diagrams we see an ordered list beginning with 1. Each
even label 2i is connected to the label 2i + 1 by an upright arch (if 2i + 1 exists as a
label), and each odd label 2i− 1 is connected to the label 2i by an upside-down arch (if
2i exists as a label). Conditions (2) and (3) are equivalent to stating that the resulting
set of arcs does not cross.

2. A consequence of Mach̀ı’s result and its interpretation

The starting point of our present investigation is the following result of Mach̀ı [22],
generalizing a result of Cori [5, 7].

Theorem 2.1. Given a hypermap (σ, α), there is a bijection between the genus g uni-
cellular hypermaps θ spanning its hyperdual (σ−1, σ−1α), and the set Cσ(σ, α), defined
as the set of circular permutations ζ satisfying g(σ, ζ) = g(σ, α) and g(α, ζ) = 0. The
bijection is given by the rule θ 7→ ζ = σθ.

Proof. Although the above statement appears to be identical to Mach̀ı’s result, we need
to check it is still valid, even though we multiply permutations right to left, whereas he
multiplies them left to right.

We begin with translating Mach̀ı’s result into right to left multiplication form: given
a hypermap (σ, α), there is a bijection between the spanning genus g unicellular hyper-
maps θ′ of the hypermap (σ−1, ασ−1), and the set Cσ(σ, α), defined as the set of circular
permutations ζ satisfying g(σ, ζ) = g(σ, α) and g(α, ζ) = 0. The bijection is given by
the rule θ′ 7→ ζ = θ′σ. Note that the definition of Cσ(σ, α) remains unchanged, as the
definition of the genus depends only on counting cycles in a way that is independent of
the direction of the multiplication, as a consequence of the identity

z(αβ) = z(βα) (2.1)

which is a direct consequence of the fact that αβ = β−1(βα)β is a conjugate of βα.
The hypermap (σ−1, ασ−1) is not the hyperdual of (σ, α) in or terminology, but it is
isomorphic to it: ασ−1 = σ(σ−1α)σ−1 is a conjugate of σ−1α and sending each i into σ(i)
induces map from (σ−1, σ−1α) to (σ−1, ασ−1) that is an isomorphism of hypermaps. As
a consequence, sending each spanning unicellular hypermap θ of (σ−1, σ−1α) into θ′ =
σθσ−1 we obtain a bijection between the spanning unicellular hypermaps of (σ−1, σ−1α)
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and the spanning unicellular hypermaps of (σ−1, ασ−1). Composing the map θ 7→ θ′ =
σθσ−1 with the map θ′ 7→ ζ = θ′σ we obtain the desired bijection θ 7→ ζ = σθσ−1σ =
σθ. �

By replacing the hypermap (σ, α) by its Kreweras dual (σ, α−1σ) in Theorem 2.1 we
obtain the following consequence.

Corollary 2.2. There is a bijection between the spanning genus g unicellular hypermaps
θ of a hypermap (σ, α) of genus g and the set

Cσ(σ, α−1σ) = {ζ : z(ζ) = 1, g(σ, ζ) = g(σ, α−1σ), g(α−1σ, ζ) = 0},
taking each spanning unicellular hypermap θ into ζ = θ−1σ.

Note that ζ = θ−1σ is the permutation whose only cycle is the only face of the
hypermap (σ, θ). The hypermap (σ, θ−1σ) is the dual of (σ, θ), requiring g(σ, ζ) =
g(σ, α−1σ) is equivalent to requiring that the spanning unicellular hypermap (σ, θ) must
have the same genus as (σ, α). Less immediate is the following consequence: visiting
the labels in the order of ζ amounts to traversing the only face of (σ, θ) according to
its orientation. During this traversal we visit the faces of (σ, α) in their cyclic order in
α−1σ. Least obvious is the fact that the above criteria on the genuses and the number
of cycles characterize the only faces of spanning unicellular hypermaps.
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Figure 2. A spanning hypertree of the hypermap shown in Fig.1

Example 2.3. Consider the hypermap (σ, α) shown in Fig. 1. The permutation θ =
(1)(2, 9)(3)(4, 10)(5)(6)(7)(8, 12)(11) is a refinement of α, and the hypermap (σ, θ) is a
spanning hypertree of the hypermap (σ, α). This spanning hypertree, together with its
only face θ−1σ = (1, 9, 4, 5, 6, 10, 7, 12, 11, 8, 2, 3) is shown in Fig. 2.

We may use the cyclic order of θ−1σ to obtain a special representation of the spanning
hypertree of a genus zero hypermap, which we call the one-line diagram D(σ, α, θ). We
list the labels in the order they appear in θ−1σ, starting with 1, in the left-to right
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order, below a horizontal line. Above the horizontal line we connect the elements that
are adjacent in a cycle of α−1σ, below the horizontal line we connect the labels that
are adjacent in a cycle of σ, and we shade the regions representing the cycles of these
permutations, as shown in Fig. 3. We make sure that the labels are recorded on the
left hand side of the points corresponding to them on the horizontal line.

The following statement is an obvious consequence of the definition of Cσ(σ, α−1σ).

Proposition 2.4. Let (σ, α) be a genus zero hypermap on the set {1, 2, . . . , n}. The
circular permutation of {1, 2, . . . , n} is the only face of a spanning hypertree of (σ, α) if
and only if its one-line diagram satisfies the following.

(1) The arcs above the horizontal line represent the parts of a noncrossing partition
whose parts are the cycles of α−1σ, that is, the faces.

(2) The arcs below the horizontal line represent the parts of a noncrossing partition
whose parts are the cycles of σ, that is, the vertices.

For hypermaps of higher genus a similar characterization may be formulated, which
we will present in Section 3. It is worth noting that the regions between the shaded

9 10 376 12 11 8 251 4

Figure 3. One-line representation of the spanning hypertree shown in Fig.2

areas allow us to read off the hyperedges of (σ, α) and (σ, θ) respectively.

Theorem 2.5. Let (σ, α) be a hypermap of genus zero and (σ, θ) a spanning hypertree
of (σ, α). Disregarding the horizontal line, the unshaded regions between and around
the regions representing the cycles of σ and σ−1α in D(σ, θ, α) contain the labels of the
hyperedges of (σ, α). The parts of these regions below the horizontal line are labeled with
the hyperedges of (σ, θ).

Proof. (Sketch.) The first statement is a direct consequence of the definition. To prove
the second statement, observe that going around the spanning hypertree, on one side
we have the vertices and the hyperedges of (σ, θ) and the vertices and on the other side
we have the faces and parts of the hyperedges of (σ, α) which connect the cycles of θ
into cycles of α �

3. Hyperdeletions, hypercontractions and compatible pairs of tours

Recall that a transposition τ = (i, j) connects a permutation π if i and j belong to
different cycles of π, otherwise we say that it disconnects π. The reason behind this



10 ROBERT CORI AND GÁBOR HETYEI

terminology is Serret’s lemma, according to which for a transposition τ connecting π
we have z(τπ) = z(πτ) = z(π) − 1 and for a transposition τ disconnecting π we have
z(τπ) = z(πτ) = z(π)+1. For example, when τ disconnects π, the cycles of πτ and the
cycles of τπ are obtained from the cycles of π by breaking the single cycle containing
both i and j into two cycles. Keeping this in mind, we make the following definition.

Definition 3.1. A hyperdeletion is the operation of replacing a hypermap (σ, α) with
the hypermap (σ, αδ) where δ = (i, j) is a transposition disconnecting α. We call the
hyperdeletion topological if δ also connects α−1σ, that is, z(δα−1σ) = z(α−1σ)− 1. In
short, we will say that δ is a hyperdeletion for (σ, α) if the operation (σ, α) 7→ (σ, αδ)
is a hyperdeletion.

It is part of the definition of a hyperdeletion that (σ, αδ) must still be a hypermap.
We are simply not allowed to replace α with αδ if σ and αδ do not generate a transitive
group. In that case we will say that δ is an isthmus. Note that this definition coincides
with the usual definition if (σ, α) is a map in which each cycle of α has at most two
elements, equivalently, α = α−1 holds. In that case, disconnecting a cycle of α, while
keeping σ unchanged, corresponds to deleting an edge. For topological deletions, the
fact that z(δα−1σ) = z(α−1σ) − 1 automatically guarantees that (σ, αδ) is also a hy-
permap, this was already noted in [6] and [22]. Note that, for all hyperdeletions, the
the faces of (σ, αδ) are the cycles of δα−1σ. By Serret’s lemma, for topological hyper-
deletions we have z(αδ) = z(α) + 1 and z(α−1σ) = z(δα−1σ)− 1, hence the hypermap
(σ, αδ) has the same genus as (σ, α). If the hyperdeletion is not topological then we
have z(αδ) = z(α)+1 and z(α−1σ) = z(δα−1σ)+1, and we have g(σ, αδ) = g(σ, α)−1.
As a consequence, non-topological hyperdeletions exist only for hypermaps of positive
genus, and they decrease the genus of the hypermap by one.

Dually, we define hypercontractions as follows.

Definition 3.2. A hypercontraction is the operation of replacing a hypermap (σ, α)
with the hypermap (γσ, γα) where γ = (i, j) is a transposition disconnecting α. We call
a hypercontraction topological if it also connects σ, that is, we have z(γσ) = z(σ)− 1.
In short, we will say that γ is a hypercontraction for (σ, α) if the operation (σ, α) 7→
(γσ, γα) is a hypercontraction.

Once again, we require (γσ, γα) to be a hypermap, and we do not allow the operation
(σ, α) 7→ (γσ, γα) if γσ and γα generate a non-transitive subgroup.

The description of non-topological hypercontractions is intuitively less obvious, even
for maps. Clearly γ = (i, j) is a topological hypercontraction if an only if i and j belong
to different cycles of σ. If i and j belong to the same cycle of σ in a map (σ, α) then
(i, j) is a loop and (γσ, γα) is obtained by deleting this loop and splitting the vertex
incident to this loop into two vertices.

Definition 3.3. Given an undirected multigraph G, we define a vertex splitting as an
operation that replaces a vertex v of G with two vertices v1 and v2, and it replaces each
edge e connecting some vertex u with v as follows: if u 6= v then e is replaced with an
edge connecting u with v1 or v2, if u = v then the loop edge incident to v is replaced with
a loop edge incident to v1 or v2 or by an edge connecting v1 with v2. If the graph H is
obtained from G by vertex splitting, we say that G is obtained from H by vertex merging.
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For a hypermap (σ, α) a topological vertex splitting is a map (σ, α) 7→ ((i, j)σ, (i, j)α)
where i and j belong to the same cycle of σ.

Remark 3.4. Various definitions of a vertex splitting exist in the literature of graph
theory, and the one given in Definition 3.3 above does not seem to be the most frequently
used one. That said, this definition of a vertex splitting is used for example in [8].

Note that we allow the use of a non-topological contraction only if the resulting
graph is not disconnected. For example for γ = (1, 2) and the monopole (σ, α) =
((1, 2, 3, 4), (1, 2)(3, 4)) the pair of permutations (γσ, γα) = ((1)(2, 3, 4), (1)(2)(3, 4)) is
not a map: it has two isolated vertices, one of them is incident to the loop (3, 4). On the
other hand, for γ = (1, 3) and the monopole (σ, α) = ((1, 2, 3, 4), (1, 3)(2, 4)) the pair
of permutations (γσ, γα) = ((1, 2)(3, 4), (1)(2, 4)(3) is a map: we obtain two vertices
connected by the edge (2, 4).

A topological hypercontraction does not change the genus, whereas a non-topological
hypercontraction decreases the genus by one. Hyperdeletions and hypercontractions
are dual to each other in the following sense.

Lemma 3.5. Given a hypermap (σ, α) and a transposition τ disconnecting α, the op-
eration (σ, α) 7→ (σ, ατ) is a hyperdeletion if and only if the operation (α−1σ, α−1) 7→
(τα−1σ, τα−1) is a hypercontraction. If one of these operations is topological then so is
the other one.

The straightforward verification is left to the reader. It is worth memorizing that
hyperdeletions keep the vertices unchanged and change the number of faces, whereas
hypercontractions keep faces unchanged and change the number of vertices. In analogy
to [22, Lemma 3] we may note the following.

Lemma 3.6. If δ is a deletion (γ is a contraction) for the hypermap (σ, α) then the
permutation αδ (the permutation γα) is a refinement of α.

To allow repeated use of hyperdeletions and hypercontractions, we make the following
definition.

Definition 3.7. Given a hypermap (σ, α) we call a sequence of transpositions δ1, . . . , δk
a sequence of hyperdeletions for (σ, α) if δ1 is a hyperdeletion for (σ, α) and for each i
satisfying 1 < i ≤ k the transposition δi is a hyperdeletion for (σ, αδ1 · · · δi−1). Dually,
we call a sequence of transpositions γ1, . . . , γk a sequence of hypercontractions for (σ, α)
if γ1 is a hypercontraction for (σ, α) and for each i satisfying 1 < i ≤ k the transposition
γi is a hypercontraction for (γi−1 · · · γ1σ, γi−1 · · · γ1α).

In analogy to [22, Lemma 1], one may note that we can always find a topological
hyperdeletion δ decreasing the number of faces of a hypermap, as long as (σ, α) is not
unicellular. Indeed, if all transpositions connecting α−1σ also connect α then the cycles
of α are contained in the cycles of α−1σ, the permutations α and α−1σ do not generate
a transitive permutation group, the same holds for α and σ,in contradiction with (σ, α)
being a hypermap. Thus we obtain the following statement.

Lemma 3.8. For any hypermap (σ, α) with more then one face, there is a sequence of
topological hyperdeletions δ1, . . . , δz(α−1σ)−1 of length z(α−1σ)− 1. For any sequence of
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hyperdeletions of such length, the hypermap (σ, αδ1 · · · δz(α−1σ)−1) is a spanning unicel-
lular hypermap of (σ, α) of genus g(σ, α).

The following strengthening of Lemma 3.8 is implicit in the proof of [22, Theorem 1].

Proposition 3.9. Given a hypermap (σ, α) of genus g and a spanning genus g uni-
cellular hypermap (σ, θ) of it, there is a sequence of topological hyperdeletions of length
z(α−1σ) − 1 taking (σ, α) into (σ, θ). Conversely, applying any sequence of topologi-
cal hyperdeletions of length z(α−1σ)− 1 to (σ, α) yields a spanning genus g unicellular
hypermap of (σ, α).

The key idea behind proving Proposition 3.9 is that refining α to θ amounts to re-
placing each cycle of α with a noncrossing partition with respect to its cyclic order, and
noncrossing partitions are intersections of the coatoms in the noncrossing partition lat-
tice. Each coatom had exactly two parts, replacing a single cycle with two noncrossing
cycles amounts to applying a topological hyperdeletion.

Applying Proposition 3.9 to the dual hypermap we obtain the following.

Corollary 3.10. Given a hypermap (σ, α) of genus g, the set of all spanning genus
genus g unicellular hypermaps of its dual hypermap (α−1σ, α−1) are exactly the hyper-
maps obtained by by applying a a sequence of topological hyperdeletions γ1, γ2, · · · , γz(σ)−1
to (α−1σ, α−1).

By Lemma 3.5, Corollary 3.10 may be rephrased as follows.

Corollary 3.11. Given a hypermap (σ, α) of genus g, the spanning genus g unicellular
hypermaps of its dual (α−1σ, α−1) are exactly the duals of all hypermonopoles of the
form (γσ, γα) where γ = γz(σ)−1γz(σ)−2 · · · γ1, and γ1, γ2, · · · , γz(σ)−1 is a sequence of
topological hypercontractions for (σ, α).

Note that the dual of the hypermonopole (γσ, γα) is (α−1σ, α−1γ−1). By Theo-
rem 1.5, the hypermap (α−1σ, α−1γ−1) is a spanning genus g unicellular hypermap of
(α−1σ, α−1γ−1) if and only if (σ, γ−1) is a spanning hypertree of (σ, α).

To summarize, we obtain the following result.

Theorem 3.12. Given a hypermap (σ, α), a hypermonopole may be obtained from it
by a sequence of topological hypercontractions if and only if it is of the form (γσ, γα)
where (σ, γ−1) is any spanning hypertree of (σ, α).

Applying Corollary 2.2 to the spanning genus g unicellular hypermaps of the dual of
a hypermap of genus g we obtain the following statement.

Proposition 3.13. For a hypermap (σ, α) there is a bijection between the spanning
hypertrees of (σ, α) and the set

Cα−1σ(α−1σ, σ) = {η : z(η) = 1, g(α−1σ, η) = g(σ, α), g(σ, η) = 0},
taking each spanning hypertree (σ, γ−1) of (σ, α) into η = γσ.

Proof. Each spanning hypertree (σ, γ−1) of (σ, α) corresponds to a spanning genus g
unicellular hypermap (α−1σ, α−1γ−1) of the dual hypermap (α−1σ, α−1). The map de-
scribed in Corollary 2.2 sends (α−1σ, α−1γ−1) into η = (α−1γ−1)−1α−1σ = γσ. The
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range of the map (σ, γ−1) 7→ γσ is

Cα−1σ(α−1σ, σ) = {η : z(η) = 1, g(α−1σ, η) = g(α−1σ, σ), g(σ, η) = 0}.

Note finally that g(α−1σ, σ) = g(σ, α) is a direct consequence of (1.1) and z(σ−1α−1σ) =
z(α). �

A particularly important instance of Proposition 3.13 is the case of maps. For these
hyperdeletions and hypercontraction are actual deletions and contractions, as defined
in graph theory. A sequence of deletions or contractions is a list of pairwise disjoint
transpositions, their order does not matter, only the subgraph formed by the deleted,
respectively contracted edges. As a consequence a sequence of contractions γ1, . . . , γk
yields an involution γ = γk · · · γ1 which is its own inverse. We obtain the following
corollary.

Corollary 3.14. For a map (σ, α) there is a bijection between the spanning trees of the
underlying graph of (σ, α) and the set

Cα−1σ(α−1σ, σ) = {η : z(η) = 1, g(α−1σ, η) = g(σ, α), g(σ, η) = 0},

taking each spanning tree (σ, γ) into η = γσ.

We wish to point out that Corollary 3.14 implies Bernardi’s [1, Lemma 4.2] stating
that the tour of a spanning tree of an embedded topological graph is always a cyclic
permutation. For each spanning tree (σ, γ) we may define the inverse of η = γσ as the
vertex tour of the spanning tree. We illustrate this observation with the next example.

Example 3.15. The map (σ, α), given by σ = (1, 4, 2, 12)(8, 11, 9)(5, 7, 3, 6)(10) and
α = (1, 7)(2, 8)(3, 9)(4, 10), (5, 11)(6, 12), and shown in Figure 4, is isomorphic as an
embedded topological graph to an example of Bernardi. (It is drawn as the mirror image
of the embedded topological graph on the left hand side of [1, Figure 1]. Bernardi’s
letters a through f correspond to the numbers 1 through 6, while the letters a′ through
f ′ correspond to the numbers 7 trough 12 in our picture. We took the mirror image
of Bernardi’s figure to match his counterclockwise listing of vertex labels with our
clockwise listing. Bernardi gives an example or a spanning tree [1, Figure 4], which
corresponds to γ = (1, 7)(2, 8)(4, 10), marked in bold on the left hand side of Figure 4.
The order of the transpositions does not matter, contracting these edges results in a
monopole. The permutation

η = γσ = (1, 10, 4, 8, 11, 9, 2, 12, 7, 3, 6, 5) ∈ Cα−1σ(α−1σ, σ)

corresponds to the list (a, d′, d, b′, e′, c′, b, f ′, a′, c, f, e) in Bernardi’s notation which is
the inverse of the tour of the graph (or motion function) defined by Bernardi [1, p.
145].

The map shown in Figure 4 has genus 1, and we may draw it on the torus with no
crossing edges, as shown on the right hand side of the figure. (To obtain a torus, the
reader is supposed to identify pairs of points having the same first or second coordinate
on the boundary of the bounding box.) The spanning tree on the left may be extended
to a spanning genus 1 unicellular hypermap by adding the edges (3, 9) and (6, 12), also
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Figure 4. Bernardi’s example

shown in bold on the right hand side. The spanning genus 1 unicellular hypermap
θ = (1, 7)(2, 8)(3, 9)(4, 10)(6, 12) corresponds to

ζ = θ−1σ = (1, 10, 4, 8, 11, 3, 12, 7, 9, 2, 6, 5) ∈ Cσ(σ, α−1σ)

via the bijection described in Corollary 2.2. This too is a tour of a spanning tree, albeit
it is the tour of a spanning tree of genus 1. This observation inspires the following
definition.

Definition 3.16. Given a hypermap (σ, α) of genus g, for each spanning hypertree
(σ, γ−1) of (σ, α) we call the cyclic permutation η = γσ the vertex tour of the spanning
hypertree, and for each spanning genus g unicellular hypermap (σ, θ) we call the cyclic
permutation ζ = θ−1σ the face tour of the spanning genus g unicellular hypermap.

By Corollary 2.2 the set of face tours is exactly the set Cσ(σ, α). If we write the
labels in the cyclic order of a face tour ζ and represent the faces as in the upper half
of Figure 3, we get a noncrossing representation of the faces since, by the definition of
Cσ(σ, α), we have g(α−1σ, ζ) = 0. Similarly, by Corollary 3.13 the set of vertex tours
is exactly the set Cα−1σ(α−1σ, σ). If we write the labels in the cyclic order of a face
tour η and represent the vertices as in the lower half of Figure 3, we get a noncrossing
representation of the vertices. The notion of a face tour and a vertex tour coincides for
genus zero hypermaps.

The relation between the spanning genus 1 unicellular hypermap and spanning tree
in Figure 4 and their associated face- and vertex tours may be also interpreted as
follows. We begin with a hypermap (σ, α) of genus g. We perform a sequence of
topological hyperdeletions δ1, . . . , δ|α−1σ|−1 and obtain a spanning genus g unicellular
hypermap (σ, αδ) of (σ, α) with the single face ζ = δ−1α−1σ ∈ Cσ(σ, α−1σ). These
topological hyperdeletions leave the vertices σ unchanged. Next we perform a sequence
of topological hypercontractions γ1, . . . , γ|σ|−1 and obtain a monopole (γσ, γαδ) with
the single vertex η = γσ ∈ Cα−1σ(α−1σ, σ) and single face ζ. Here γ = γ|σ|−1 · · · γ1
and (σ, γ−1) is a spanning hypertree of (σ, α). The vertex η is shown as a bold circle
in the middle of Figure 5, and the face ζ appears as a collection of four line segments
(also to be interpreted as a circle on the torus) on the same illustration. Inside the
circle representing η we find the cycles of σ, represented by the shaded areas. Inside
the circle represented by ζ (shown in the four corners of Figure 5) we find the cycles of
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α−1σ = (1, 10, 4, 8, 5)(2, 6, 11, 3, 12, 7, 9), represented by the shaded areas. Between the
two circles we have the hyperedges of (η, ζ).
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Figure 5. A 2-disk diagram of Bernardi’s example

Wanting to generalize this picture to all hypermaps, we make the following definition.

Definition 3.17. Given a hypermap (σ, α), we say that the pair of circular permutations
(η, ζ) satisfying η ∈ Cα−1σ(α−1σ, σ) and ζ ∈ Cσ(σ, α) is a compatible pair of tours if
(η, ηζ−1) is a hypermap of genus g(σ, α).

Remark 3.18. Note that the only vertex of (η, ηζ−1) is the only cycle of η and the only
face is the only cycle of (ηζ−1)−1η = ζ.

Theorem 3.19. Given a hypermap (σ, α), the pair of circular permutations (η, ζ) sat-
isfying η ∈ Cα−1σ(α−1σ, σ) and ζ ∈ Cσ(σ, α) is compatible if and only if there is a
sequence of topological hyperdeletions δ1, . . . , δ|α−1σ|−1 followed by a sequence of topolog-
ical hypercontractions γ1, . . . , γ|σ|−1 taking (σ, α) into (η, ηζ−1).

Proof. Assume first that there is a sequence of topological hyperdeletions δ1, . . . , δ|α−1σ|−1
followed by a sequence of hypercontractions γ1, . . . , γ|σ|−1 taking (σ, α) into (η, ηζ−1).
Introducing δ = δ1 · · · δ|α−1σ|−1 and γ = γ|σ|−1 · · · γ1, the hypermap obtained from (σ, α)
after performing these topological hyperdeletions and hypercontractions is (γσ, γαδ).
Here η = γσ and the equality ηζ−1 = γαδ implies ζ = (ηζ−1)−1η = (γαδ)−1γσ =
δ−1α−1σ. Since topological hyperdeletions and hypercontractions do not change the
genus, we have g(η, ηζ−1) = g(σ, α) and (η, ζ) is a compatible pair of circular permuta-
tions.

Conversely, assume that (η, ζ) is a compatible pair of tours. By definition, ζ belongs
to Cσ(σ, α), and by Corollary 2.2 there is a spanning genus g unicellular hypermap
(σ, θ) of (σ, α) satisfying θ−1σ = ζ. By Proposition 3.9 there is a sequence of topolog-
ical hyperdeletions δ1, . . . , δ|α−1σ|−1 taking (σ, α) into (σ, θ). (Note that the number of
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topological hyperdeletions must be |α−1σ| − 1 since each hyperdeletion decreases the
number of faces by one.) The hypermap (σ, θ) has the same genus as (σ, α). Further-
more we have

2g(η, θ−1σ) = n+ 2− z(η)− z(θ−1σ)− z((θ−1σ)−1η) = n+ 2− z(η)− z(ζ)− z(ζ−1η)

= n+ 2− z(η)− z((ηζ−1)−1ζ)− z(ζ−1η) = 2g(η, ηζ−1),

which, by our assumption implies g(η, θ−1σ) = g(σ, α). Since η ∈ Cα−1σ(α−1σ, σ) also
implies g(η, σ) = 0, we obtain that η belongs to Cθ−1σ(θ−1σ, σ). By Proposition 3.13
there is a sequence of contractions taking (σ, θ) into (η, ηζ−1). �

A compatible pair of tours (η, ζ) of a hypermap (σ, α) allows to create a two-disk
diagram D(σ, α, η, ζ) of the hypermap (σ, α) on an appropriate surface of genus g(σ, α)
as follows:

(1) We create a diagram of the hypermap (η, ηζ−1) with noncrossing lines on a
surface of genus g(σ, α) as follows. We take two disjoint disks and we list the
points on the boundaries of both, in the cyclic order of η, respectively ζ. We
connect the identical labels, and fill the hyperedges ηζ−1.

(2) We draw the vertices of (σ, α) as a noncrossing partition inside the disk bounded
the vertex tour η.

(3) We draw the faces of (σ, α) as a noncrossing partition inside the disk bounded
by the face tour ζ.

An illustration of the process is shown in Figure 5. The diagram is drawn on a torus,
the bold circle in the middle is the vertex tour η. The circle representing the face tour ζ
appears as the union of four slanted bold line segments in the picture, due to the usual
toric identifications on the boundaries of the picture. The shaded regions in the interior
of the disk bounded by η are the vertices, that is, the cycles of σ. The shaded regions
in the interior of the disk bounded by ζ (appearing as the four corners in the picture)
are the faces, that is, the cycles of α−1σ. Note that the unshaded regions inside the
disk bounded by η may be labeled by the hypercontractions and the unshaded regions
inside the disk bounded by ζ may be labeled by the topological hyperdeletions.

The second and the third steps of the process outlined above are obvious.

4. Deletion-contraction processes

In this section we generalize the definition of deletion-contraction processes used to
define the Tutte polynomial, from connected graphs to hypermaps. Our generalization
is inspired by the following definition of the Tutte polynomial:

(1) We fix a numbering of the edges of the graph, and we consider all deletion-
contraction processes in which we delete or contract each edge in decreasing
order of their numbers.

(2) We may freely choose an edge to be deleted or contracted, except for the fol-
lowing two restrictions:
(a) We must contract an edge if deleting it would disconnect a graph. Such

edges are internally active.
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(b) We must delete an edge if it is a loop (hence contracting it would not be
topological). Such edges are externally active.

(3) For each such deletion-contraction process we take the variable x to the power
of the number of internally active edges and multiply it with the variable y to
the number of externally active edges. The Tutte polynomial is the sum of the
contributions of all deletion-contraction processes.

It has been shown by Tutte that the resulting polynomial is independent of the num-
bering of the edges. Furthermore, the set of (topologically) contracted edges must be
a spanning tree of the graph, each spanning tree, together with the fixed numbering
uniquely defines the deletion-contraction process: all edges which were not contracted
must be deleted.

This definition of a Tutte polynomial is immediately applicable to maps as they are
connected graphs with some additional topological structure, which we may ignore. The
only “topological” part of the definition of the Tutte polynomial is that we disallow non-
topological hypercontractions which may be defined in abstract terms by disallowing
the contractions of loops. Furthermore, the final monopole with no edges depends on
the set of contracted edges only, not the order in which the deletions and contractions
are performed. The order matters only in the definition of the activities.

A plausible generalization of the above definition of a deletion-contraction process to a
hypermap (σ, α) is the following. We consider all sequences of (arbitrary) hyperdeletions
and topological hypercontractions which take hypermaps into hypermaps, result in a
hypermap (γσ, γαδ) where z(γσ) = 1 (at the end we have a single vertex) and γαδ is
the identity (“we have no hyperedges”).

Definition 4.1. Given a hypermap (σ, α), a deletion-contraction process is a sequence
of hyperdeletions and topological hypercontractions resulting in a hypermap (γσ, γαδ)
where z(γσ) = 1 and γαδ is the identity. Each hyperdeletion and hypercontraction is
induced by a transposition, which we call the underlying transposition of the operation,
and we call the set of all these transpositions the set of underlying transpositions the
deletion-contraction process.

Definition 4.2. Given a hypermap (σ, α) and a deletion-contraction process for it, the
graph G of underlying transpositions of the process is the graph, whose vertices are the
cycles of σ and whose edges are the underlying transpositions (u, v).

Note that the graph of underlying transpositions of a deletion-contraction process
depends only on the set of underlying transpositions of the process, which set may be
uniquely reconstructed from the graph. The graph G is not a map, as several underlying
transpositions (u, v) may involve the same point u, but it is a topological graph, that is,
a graph whose edges may be cyclically ordered around each vertex (u1, u2, . . . , uk) as
follows:

(u1, v1,1), (u1, v1,2), . . . , (u1, v1,`1),
(u2, v2,1), (u2, v2,2), . . . , (u2, v2,`2), . . .
(uk, vk,1), (uk, vk,2), . . . , (u1, vk,`k).

Here, for each i ∈ {1, 2, . . . , k} the cycle (ui, vi,1, vi,2, . . . , vi,`i) is the cycle of α−1 con-
taining the point ui. Note that when we draw a hypermap (σ, α) of genus zero following
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the conventions of Figure 1, we obtain a counterclockwise list of all edges incident to
the vertex (u1, u2, . . . , uk). Next we state some necessary conditions.

Proposition 4.3. Given a hypermap (σ, α), the set of underlying transpositions of a
deletion-contraction process must satisfy the following criteria:

(1) For each transposition (u, v) the points u and v belong to the same cycle of α.
(2) For each cycle αi of α, the transpositions swapping two points permuted by αi

form a tree on the set of points permuted by αi. This tree has non-crossing edges
if we draw the points of αi in cyclic order on a cycle.

Proof. Each transposition underlying a hyperdeletion or hypercontraction must discon-
nect the current permutation representing the hyperedges, hence each transposition
(u, v) must have both u and v in the same cycle of the original permutation α. Since no
underlying transposition is allowed to reconnect already disconnected cycles, the set of
transpositions swapping two points permuted by αi must form the edges of a cycle-free
graph. Since, by the end of the process, the cycle αi must be completely disconnected,
the set of underlying transpositions swapping points permuted by αi must form a tree
on all points permuted by αi. The non-crossing property may be shown by induction on
the number of points, keeping in mind that the first transposition applied disconnects
αi into two cycles of cyclically consecutive points. �

Definition 4.4. Given a hypermap (σ, α), we call the topological graph G on the vertex
set of the cycles of σ, and indexed by ordered pairs of points of the hypermap, locally
tree-like if the set of transpositions constituting the edge set of G satisfy the criteria
stated in Proposition 4.3.

The next necessary condition is on the subsets of underlying transpositions that may
represent the hypercontractions in a deletion-contraction process.

Proposition 4.5. Let (σ, α) be a hypermap and let G be the graph of underlying trans-
positions for a deletion-contraction process. Consider the subgraph T of G whose edges
are the transpositions representing hypercontractions. Then T must be a spanning
tree of G and must satisfy the following criterion: given any point u, and the cycle
(u, v1, v2, . . . , vk) of α−1 containing u, the transpositions representing hypercontractions
on the list (u, v1), (u, v2), . . . , (u, vk) must precede the transpositions representing hyper-
deletions.

Proof. The subgraph T has to be a spanning tree to assure that the hypermap (γσ, γαδ)
obtained at the end of a vertex has a single vertex and that all hypercontractions
performed are topological. The second criterion is a direct consequence of a result
of Goulden and Yong [14, Theorem 2.2]. This states that when we write a cyclic
permutation as a minimal composition of transpositions, then these transpositions must
form the edges of a noncrossing tree on the points represented on a cycle in a clockwise
order, and around each point the transpositions moving that point must be performed
in a counterclockwise order. Conversely, any sequence of transpositions satisfying the
above conditions is a factoring of the cyclic permutation. Introducing γi respectively δi
to denote the product of transpositions underlying the hypercontractions, respectively
hyperdeletions acting on the set of points permuted by the cycle αi of α, the permutation
γiαiδi must be the identity permutation, equivalently we must have α−1i = δiγi. Note
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that the transpositions constituting δi must be all after the transpositions constituting
γi. �

Definition 4.6. Given a locally tree-like topological graph G associated to a hypermap
(σ, α), we call a spanning tree T allowable if it has the property stated in Proposition 4.5.
We say that the topological graph is a deletion-contraction graph of (σ, α) if it is locally
tree-like and has an allowable spanning tree. We will use the notation (σ, α) |= G to
indicate that G is a deletion-contraction graph for (σ, α).

Definition 4.6 is justified by the next theorem, stating that the criteria listed in
Propositions 4.3 and 4.5 are also sufficient.

Theorem 4.7. Given a hypermap (σ, α) a topological graph G is the map of underlying
transpositions of a deletion-contraction process if and only if (σ, α) |= G holds. Fur-
thermore, all deletion-contraction processes with the same graphs of underlying trans-
positions are fully characterized by the following criteria:

(i) The edges of G underlying a hypercontraction form an allowable spanning tree
of G.

(ii) For each cycle αi of α, if we list the points permuted by αi in clockwise order,
at each point u the hyperdeletions whose underlying transposition moves u are
performed in counterclockwise order and the hypercontractions whose underlying
transposition moves u are performed in clockwise order.

Proof. By Propositions 4.3 and 4.5, (σ, α) |= G is a necessary condition. To prove its
sufficiency, it suffices to prove the stated characterization of deletion-contraction pro-
cesses and then show that the hyperdeletions and hypercontractions may be performed
in such order that the conditions (i) and (ii) are satisfied.

Condition (i) is not only a necessary but also a sufficient condition to assure that
the hypermap (γσ, γαδ) obtained at the end of a vertex has a single vertex and that
all hypercontractions performed are topological. Condition (ii) is a direct consequence
of the already cited result of Goulden and Yong [14, Theorem 2.2]. As pointed out in
the proof of Proposition 4.5, we must have α−1i = δiγi for each cycle αi of α and this
equation holds if and only if the transpositions constituting δiγi are performed in in the
cyclic order of α−1i around each point moved by αi. The order in which we apply the
hypercontractions is the opposite to the order in which the corresponding transpositions
are composed to obtain γ−1i whereas the hyperdeletions are applied in the same order
as the corresponding transpositions are composed to obtain δ−1i .

We are left to show that for every map G satisfying (σ, α) |= G there is a deletion-
contraction process whose underlying graph of transpositions is G. First we select any
spanning tree of G then we number the cycles of α in some order: α1, α2, . . . , αm. We
will first number all edges of G contained in α1, then the ones contained in α2, and
so on. Hence all edges of G contained in the same αi will be labeled consecutively.
Let us represent the points permuted by αi on a circle in clockwise order. We only
need to show that the edges of this tree can be numbered in such a way that for each
point u the numbers of all edges containing u increase in clockwise order. We may then
reverse the numbering on the transpositions underlying to hypercontractions and use
the resulting numbering to label the edges of G contained in the set of points permuted
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by αi. Executing all hyperdeletions and hypercontractions in decreasing order of the
labels satisfies the conditions (i) and (ii).

The conclusion of the proof is a direct consequence of Lemma 4.8 below. �

Lemma 4.8. Given a set of m points on a circle, numbered in clockwise order, and a
noncrossing tree on this set of points one may number the edges of this tree in such a
way that for each point u the edges incident to u are numbered on increasing clockwise
order.

Proof. We proceed by induction on the number of points. Consider a leaf of the tree.
By cyclic rotation of the numbering, if necessary, we may assume that this leaf is (i,m)
and that the point numbered m is not contained in any other edge. Deleting this edge
from the tree results in a pair of trees: a tree T1 on the set {1, 2, . . . , i− 1, i} and a tree
T2 on the set (i, i+ 1, i+ 2, . . . ,m− 1). Consider the factorization

(1, 2, . . . ,m) = (1, 2, . . . , i− 1, i)(i,m)(i, i+ 1, i+ 2, . . . ,m− 1)

and apply the induction hypothesis to the cycles (1, 2, . . . , i − 1, i) and (i, i + 1, i +
2, . . . ,m− 1), and the trees T1 and T2. Number the edges of T1 first, then number the
edge (i, j) and then number the edges of T2. �

Deletion-contraction graphs may be equivalently described in terms of the permu-
tations γ, obtained by composing all the hypercontractions of a deletion-contraction
process. The proof of this statement is more easily presented by using the notion of the
Kreweras dual of a hypermap.

Theorem 4.9. Let (σ, α) be a hypermap of genus g on the set of points {1, 2, . . . , n}.
Let G be a graph whose vertices are the cycles of σ and whose edges are transpositions
(u, v) where 1 ≤ u < v ≤ n. Then G is a deletion-contraction graph, if and only if there
is a spanning genus g unicellular hypermap (σ, γ−1) of (σ, α) such that the following are
satisfied by the permutations γ and δ = α−1γ−1:

(1) Each edge of G either connects two points on he same cycle of γ, or on the same
cycle of δ.

(2) The restriction of G to any cycle of γ or δ is a noncrossing tree if we represent
the points in the cyclic order of the cycle of α containing the cycle of γ or δ.

Proof. Consider first a deletion-contraction process. The hyperdeletions of the process
leave the vertices unchanged, each topological contraction merges two vertices (and
refines a current hyperedge into two). The resulting monopole γσ is a vertex tour of
the hypermap, and conversely, every vertex tour arises as the composition of topo-
logical hypercontractions. As seen in Section 3, the permutation γσ is a vertex tour
of the hypermap if and only if (σ, γ−1) is a spanning hypertree of (σ, α). Whenever
this condition is satisfied, γα is a refinement of α, and the transpositions underlying
a hypercontraction must form a tree on each cycle of γ. Introducing δ as the com-
position of all transpositions underlying a hyperdeletion, the permutation γαδ is the
identity permutation if and only if δ = α−1γ−1 holds. The transpositions underlying
the hyperdeletions must form trees on each cycle of δ since, starting with γα, each
hyperdeletion refines a hyperedge into two, and at the end of the process γαδ is the
identity permutation.
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To prove the converse, assume that α1, α2, . . . , αm are the cycles of α and for each i
let us denote by γi, respectively δi the products of cycles of γ, respectively δi contained
in αi. To state that γα is a refinement of α is equivalent to stating that (αi, γ

−1
i ) is a

noncrossing partition for each i. (Note that αi is the single vertex here!) Furthermore
δ = α−1γ−1 is equivalent to stating that (αi, δ

−1
i ) is the Kreweras dual of (αi, γ

−1
i ) for

each i.
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Figure 6. The hypermap (σ, α) with σ = (1, 4)(2, 5)(3)(6), α =
(1, 2, 3, 4, 5, 6), γ−1 = (1, 5, 6)(2, 3)(4) and δ−1 = (1, 3, 4)(2)(5)(6).

At this point it is useful to recall the visualization of he Kreweras dual, as introduced
in [18]. The left hand side of Figure 6 contains an illustration for a genus 1 hypermap
which, for simplicity’s sake contains a single hyperedge α1 = (1, 2, 3, 4, 5, 6). We draw
these on a circle in the clockwise order and represent the cycles of γ−11 on these points.
For each point p we also introduce a new point p′ immediately after p in the clockwise
order. The Kreweras dual of a noncrossing partition is the coarsest noncrossing partition
on the new points whose parts do not intersect the parts of the original noncrossing
partition. For a general hypermap we repeat this representation for each αi. Now we
may take a tree on each cycle of γi, respectively δi thus represented, and conclude by
referring to Lemma 4.8. In Figure 6 the selected hypercontractions are marked with
bold solid lines and the hyperdeletions with bold dashed lines. The resulting admissible
tree is shown on the right hand side of Figure 6. �

The proof of Theorem 4.9 contains the proof of the following, stronger statement:

Proposition 4.10. Let (σ, α) be a hypermap, let G be a a deletion-contraction graph
for it, and let T be an admissible spanning tree of G. Let γ be the permutations obtained
by the transpositions marking the edges of T composed in such an order that each cycle
of α transpositions incident to the same point are performed in the cyclic order of α.
Let δ = α−1γ−1. Then there is a deletion-contraction process whose underlying graph
of transpositions is G, the transpositions underlying the hypercontractions are the edges
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of T , and hypercontractions, respectively hyperdeletions belonging to the same cycle of
γ, respectively δ are performed consecutively.

Let us call the deletion-contraction processes described Proposition 4.10 canonical.
Unfortunately, it seems unlikely that activities could be associated to the hyperdele-

tions and hypercontractions in a way that their statistics would be independent of the
ordering of these operations. Consider the example shown in Figure 7. This is the
hypermap (σ, α) with σ = (1, 4)(2, 5)(3) and α = (1, 2, 3)(4, 5).

3

1

2

4

5

Figure 7. Hypermap of genus zero with two hyperedges

This hypermap has two hyperedges and three spanning hypertrees (σ, γ−1), the pos-
sible values of γ−1 are (1, 2, 3)(4)(5), (1)(2, 3)(4, 5) and (1, 3)(2)(4, 5). In two of these
spanning hypertrees the edge (4, 5) is contracted, in one of them it is deleted. If we try
to replicate Tutte’s proof swapping two adjacent edge labels, and creating a bijection
between spanning trees, in the hypertree version we would need to match both hyper-
trees with (4, 5) contracted to the only hypertree with (4, 5) deleted. There is no such
bijection. If we refine the picture to deletion-contraction processes, the only spanning
hypertree with a cycle of length 3 gives rise to three maps such processes, whereas each
of the other two spanning hypertrees gives rise to only one map each. A Tutte style
bijection remains elusive.

5. Deletion-contraction formulas counting spanning hypertrees

It is well known that number of spanning trees of a mapM = (σ, α) containing an edge
e = (i, j) is equal to the number of spanning trees of the map M ′ = (σ, α(i, j)) obtained
by deleting e plus the number of the spanning trees of the map M ′′ = ((i, j)σ, (i, j)α)
obtained by contracting e. It is understood that deleting e is not allowed if this dis-
connects the map (in this case M ′ is not a map, as σ and α(i, j) do not generate a
transitive permutation group), and contracting (i, j) is not allowed if (i, j) is a loop
(and generates a non-topological contraction). The justification is very simple: the
spanning trees of M ′ are exactly the spanning trees of M not containing the edge (i, j),
and the spanning trees ((i, j)σ, θ′) of M ′′ correspond bijectively to those spanning trees
(σ, θ) of M which contain the edge (i, j), via the correspondence θ′ = (i, j)θ.

The obvious generalization of this result does not hold for counting spanning hyper-
trees of a hypermap, as the following example shows. Consider the hypermap (σ, α)
shown in Figure 1 and the transposition (1, 2). The hyperdeletion of (1, 2) gives the hy-
permap (σ, α(1, 2)) where α(1, 2) = (1, 3)(2)(4, 5). This hypermap has only one hyper-
tree (σ, (1, 3)(4, 5)). The hypercontraction of (1, 2) gives the hypermap ((1, 2)σ, (1, 2)α)
where (1, 2)σ = (1, 4, 2, 5)(3) and (1, 2)α = (1)(2, 3)(4, 5), which has the only spanning
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hypertree ((1, 2)σ, (2, 3)(4)(5)). However, as noted at the end of the last section, the
hypermap (σ, α) shown in Figure 1 has three hypertrees.

Hyperdeletions and hypercontractions remain still useful tools in describing the set of
spanning genus g unicellular hypermaps of a hypermap, because of the next two results.

Proposition 5.1. Let H = (σ, α) be a hypermap and let i, j be two points belonging
to the same cycle of α. Let g be any nonnegative integer. If H ′ = (σ, α(i, j)) obtained
by applying the hyperdeletion (i, j), is a hypermap then its spanning genus g unicellular
hypermaps form a subset of the set of all spanning genus g unicellular hypermap of H:
this subset contains only spanning genus g unicellular hypermaps (σ, θ) for which i and
j belong to different cycles of θ.

Proof. Let (σ, θ) be a spanning genus g unicellular hypermap of H ′. Clearly (σ, θ) is a
genus g unicellular hypermap. In order to check that it is a spanning genus g unicellular
hypermap of H one has to prove that θ is a refinement of α. This holds since θ is a
refinement of α(i, j) and i, j being in the same cycle of α, the permutation α(i, j) is a
refinement of α. �

Remark 5.2. Regarding the interpretation of Proposition 5.1 one should note that H ′ =
(σ, α(i, j)) may not be a hypermap, because the permutation group generated by σ and
α(i, j) may not be transitive. This happens also when we delete an isthmus in a map.
Furthermore (i, j) may induce a non-topological hyperdeletion, which will decrease the
genus. If g is the genus of H then none of the spanning genus g unicellular hypermaps
of H will be a spanning genus g unicellular hypermaps of a hypermap H ′ obtained
by a non-topological hyperdeletion. That said, the genus of a unicellular hypermap
(σ, θ) does not change if we change the hypermap in which it is a spanning unicellular
hypermap.

Regarding hypercontractions we have the following analogous result.

Proposition 5.3. Let H = (σ, α) be a hypermap and let i, j be two points belonging
to the same cycle α and to different cycles of σ. Let H ′′ = ((i, j)σ, (i, j)α) be the
hypermap obtained by applying the hypercontraction (i, j) in H. Then any spanning
genus g unicellular hypermap of H ′′ is of the form ((i, j)σ, (i, j)θ) where (σ, θ) is a
spanning genus g unicellular hypermap of H satisfying that i and j belong to the same
cycle of θ.

Proof. Let ((i, j)σ, θ′) be a genus unicellular hypermap of H ′′. Since i and j belong to
different cycles of σ, they also belong to the same cycle of (i, j)σ. The points i, j must
belong to different cycles of θ−1 otherwise ((i, j)σ, θ′) has more than one face. Hence
θ = (i, j)θ′ has i and j on the same cycle and the map (σ, θ) 7→ ((i, j)σ, (i, j)α) is a
topological hypercontraction, not changing the number of faces, nor the genus. �

Theorem 5.4. Let H = (σ, α) a hypermap such that (1, 2, . . . ,m) is a cycle of α. Let
g be any nonnegative integer. If H is not a genus g unicellular hypermap or z(σ) > 1
then the set of all spanning genus g unicellular hypermaps (σ, θ) of H is the disjoint
union of the following sets S1, S2, . . . , Sm:

(1) S1 is the set of all spanning genus g unicellular hypermaps of H1 = (σ, α(1,m)),
obtained by applying (1,m) to H as a hyperdeletion. We set S1 = ∅ if H1 is not
a hypermap.
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(2) S2 is the set of all spanning genus g unicellular hypermaps of the form (σ, (1, 2)θ′)
where ((1, 2)σ, θ′) is any spanning genus g unicellular hypermap of H2 = ((1, 2)σ, (1, 2)α)
obtained by applying (1, 2) to H as a hypercontraction. We set S2 = ∅ if 1 and
2 are contained in the same cycle of σ.

(3) For k = 3, . . . ,m we define Sk as the set of all genus g unicellular hypermaps
(σ, (1, k)θ′), where ((1, k)σ, θ′) is any spanning genus g unicellular hypermap of
the hypermap Hk = ((1, k)σ, (1, k)α(1, k− 1)), obtained by applying (1, k− 1) as
hyperdeletion and (1, k) as a hypercontraction to H. We set Sk = ∅ if Hk is not
a hypermap or 1 and k belong to the same cycle of σ.

Proof. Given a a spanning genus g unicellular hypermap (σ, θ) of H we define φ(θ) = 1
if 1 is a fixed point of θ and as the second smallest element of the cycle of θ containing
1 otherwise. We show for all k that belongs to the set Sk if and only if φ(θ) = k. For
this purpose let us describe the hyperedges of the hypermaps H1, H2, . . . , Hm. Since all
hyperdeletions and hypercontractions involve points on the cycle (1, 2, . . . ,m) of α, only
hyperedges contained in the set {1, 2, . . . ,m} are different in the hypermaps obtained
by our hyperdeletions and hypercontractions.

For k = 1, we have

(1, 2, . . . ,m)(1,m) = (1)(2, 3, . . . ,m).

Any element of S1 must satisfy φ(θ) = 1. Conversely, if 1 is a fixed point of θ then
the spanning genus g unicellular hypermap (σ, θ) is also a spanning genus g unicellular
hypermap of H1 by Proposition 5.1.

By Proposition 5.3, the spanning genus g unicellular hypermap (σ, θ) belongs to S2

if and only if 1 and 2 belong to the same cycle of θ, which is equivalent to φ(θ) = 2.
For k ≥ 3 we have

(1, k)(1, 2, . . . ,m)(1, k − 1) = (1)(k, k + 1, . . . ,m)(2, 3, . . . , k − 1).

Any spanning genus g unicellular hypermap ((1, k)σ), θ′) of H3 must satisfy that θ′ is
a refinement of the above permutation, hence the cycles of θ′ containing the elements
2, 3, . . . , k − 1 can not contain 1 or k. The permutation θ = (1, k)θ′ has then 1 and k
on the same cycle, but the elements 2, 3, . . . , k − 1 are still not on this cycle, forcing
φ(θ) = k. Conversely, if we have φ(θ) = k then θ is a refinement of

(1, 2, . . . ,m)(1, k − 1) = (1, k, k + 1, . . . ,m)(2, 3, . . . , k − 1)

hence (σ, θ) is a spanning genus g unicellular hypermap of (σ, θ(1, k − 1)) by Proposi-
tion 5.1 and 1 and k are on the same cycle of θ, hence Proposition 5.3 is applicable. �

Corollary 5.5. If H is not a monopole with a single face, we may use Theorem 5.4
to write the number of its spanning genus g unicellular hypermaps as the sum of the
numbers of spanning genus g unicellular hypermaps of at most m smaller hypermaps.
Here m is the size of the smallest hyperedge in H.

Remark 5.6. The refinements of the cycle (1, 2, . . . ,m), ordered by the refinement re-
lation, form a poset that isomorphic to the lattice of noncrossing partitions on the set
{1, 2, . . . ,m}. Since α contains the cycle (1, 2, . . . ,m), every spanning genus g unicel-
lular hypermap (σ, θ) has the property that each cycle of θ acts on a a set that is either
contained in or disjoint from the set {1, 2, . . . ,m}. The answer to the question whether
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(σ, θ) belongs to Sk depends only on the cycles of θ acting on the set {1, 2, . . . ,m}.
Remarkably (σ, θ) belongs to Sk if and only if the noncrossing partition correspond-
ing to the cycles of θ acting on the set {1, 2, . . . ,m} belongs to the set Rk defined by
Simion and Ullman [25, Theorem 2] as an aid to recursively construct a symmetric
chain decomposition of the noncrossing partition lattice.

Remark 5.7. The classes S1, S2, . . . , Sm may be visualized as follows. Let us represent
the cycle (1, 2, . . . ,m) of α in this cyclic order on the boundary of a disc, and let us also
represent the vertex tour of the spanning hypertree with a dotted curve as shown in
Figure 8. The class S1 contains those spanning hypertrees whose vertex tour cuts out
the point 1 from the hyperedge, leaving the points 2, 3, . . . ,m on the outside. For k ≥ 2
the class Sk contains exactly those spanning hypertrees whose vertex tour contains the
points 1 and k inside the tour (that is, on the side containing the spanning hypertree)
and leaves the points 2, 3, . . . , k − 1 of the hyperedge on the outside. Nothing can be
assumed regarding the points k + 1, k + 2, . . . ,m. In a way, the index k of the set Sk
determines “which way we turn” when the vertex tour arrives near the point 1.
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Figure 8. A local image of the vertex tour for the classes S1, S2, and
S3 in the case when m = 4.

6. Semimeanders, meanders and reciprocals of monopoles and bipoles

Definition 6.1. For each integer m ≥ 0 we define the monopole with m nested edges
as the hypermap, whose vertex permutation is (2, 4, . . . , 2m, 2m−1, 2m−3, . . . , 3, 1) and
whose edge permutation is the involution (1, 2)(3, 4) . . . (2m − 1, 2m). For each m > 0
obtained by adding 1/2 to an integer we define the monopole with m nested edges as
the hypermap, whose vertex permutation is (2, 4, . . . , 2m− 1, 2m, 2m− 2, . . . , 3, 1) and
whose edge permutation is the involution (1, 2)(3, 4) . . . (2m− 2, 2m− 1)(2m).

The reciprocal of a monopole with 2.5, respectively 3, nested edges may be seen in
Figure 9, respectively 10 below. Note that we may think of the loop (3) in Figure 9 as
a “half-edge”.

Theorem 6.2. The number of semimeanders of order n equals the number of spanning
hypertrees of the reciprocal of a monopole with n/2 nested edges.



26 ROBERT CORI AND GÁBOR HETYEI

Proof. We prove the theorem by showing that there is a bijection between the the set
of of spanning hypertrees of the reciprocal of a monopole with n/2 nested edges and
the set of foldings of n − 1 stamps defined in Section 1.2. Introducing m = bn/2c, we
have n = 2m+ 1 if n is odd and n = 2m if n is even.

If n is odd, then the reciprocal of the monopole with n/2 nested edges is (σ, α) where

σ = (1, 2)(3, 4) · · · (2m− 1, 2m)(2m+ 1) and

α = (2, 4, . . . , 2m, 2m+ 1, 2m− 1, 2m− 3, . . . , 3, 1).

Figure 9 below is an example of the case when n = 5. Note that the faces of our hyper-

33 12 4 15 52 4

Figure 9. Spanning hypertree of a reciprocal monopole with 2.5 nested
edges and the corresponding stamp folding

map are given by α−1σ = (1)(2, 3)(4, 5) · · · (2m, 2m+ 1). To any spanning hypertree θ
of (σ, α) we associate the one line representation described in Proposition 2.4. On the
right hand side of Figure 9 we see the one line representation associated to the spanning
hypertree θ = (1, 5, 3)(2)(4). This corresponds to θ−1σ = (1, 2, 3, 4, 5), we list the points
on the line in this order. Above the line we see the faces α−1σ of our hypermap, below
the line we see the vertices σ. Note that the union of the set of non-singleton cycles of
α−1σ and of σ are all two-cycles of the form (i, i + 1) for ≤ i ≤ n− 1. This union is a
disjoint union, the two-cycles with an even smaller element belong to α−1σ, the others
belong to σ. Hence we obtain the diagram of a stamp folding.

A similar bijection may be constructed when n is even. In this case we have

σ = (1, 2)(3, 4) · · · (2m− 1, 2m) and

α = (2, 4, . . . , 2m, 2m− 1, 2m− 3, . . . , 3, 1).

Figure 10 below is an example of the case when n = 6.
In this case we have α−1σ = (1)(2, 3)(4, 5) · · · (2m− 1, 2m− 1)(2m). The example in

Figure 10 represents the spanning hypertree θ = (1)(2, 4)(3, 6)(5) and we have θ−1σ =
(1, 4, 6, 5, 3, 2). Once again the one line representation described in Proposition 2.4 is a
stamp folding diagram. �

Definition 6.3. We define the dipole with n parallel edges as the map whose vertex per-
mutation is (1, 3, 5, 2n−1)(2n, 2n−2, . . . , 4, 2) and whose edges are (2n, 1)(2, 3)(4, 5) · · · (2n−
2, 2n− 1).

Theorem 6.4. The number of meanders of order n equals the number of spanning
hypertrees of the reciprocal of a dipole with n parallel edges.
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34 156 1 6 5 2342

Figure 10. Spanning hypertree of a reciprocal monopole with 3 nested
edges and the corresponding stamp folding

Proof. The proof is analogous to the proof of Theorem 6.2. The reciprocal hypermap
σα is given by

σ = (2n, 1)(2, 3)(4, 5)(2n− 2, 2n− 1) and α = (1, 3, . . . , 2n− 1)(2n, 2n− 2, . . . , 4, 2).

Note that we have α−1σ = (1, 2)(3, 4) . . . (2n− 1, 2n).
An example of the reciprocal of a dipole of with 4 parallel edges is shown Figure 11.

3581 4 2
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Figure 11. Spanning hypertree of a reciprocal dipole with 4 parallel
edges and the corresponding meander

The example in the figure represents the spanning hypertree θ = (1, 3, 5)(2)(4, 6)(7)(8),
yielding θ−1σ = (1, 8, 5, 6, 7, 4, 3, 2). �

Remark 6.5. Since any spanning hypertree θ of (σ, α) is a refinement of α, a permutation
with two cycles of the same size, we may think of each spanning hypertree as a pair
of noncrossing partitions on the same n-element set. This identification is easier to
visualize if we relabel 2i + 1 as i for 1 ≤ i ≤ n − 1, relabel 1 as n, and relabel 2i as i′
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for 1 ≤ i ≤ n. We then obtain

σ = (1, 1′)(2, 2′)(3, 3′)(n, n′) and α = (1, 2, . . . , n)(n′, (n− 1)′, . . . , 1′).

Each cycle of θ contains either labels from the set {1, . . . , n} or from the set {1′, . . . , n′}.
The cycles of θ contained in {1, . . . , n} must form a noncrossing partition, represented
the usual way, and the cycles of θ contained in {1′, . . . , n′} must from a noncrossing
partition, represented with cycles in the reverse order compared to the usual way. Thus
we arrive precisely at the representation first developed by Franz [11]. The structure of
this representation was further studied and utilized in [12] and in [13].

7. Spanning hypertrees of reciprocals of maps

In this section we generalize the construction of Franz [11] defining labeled plane trees
representing meanders to defining labeled plane trees representing spanning hypertrees
of the reciprocal of a map. Our construction is illustrated with the map and a spanning
hypertree of its reciprocal shown in Figure 12.
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Figure 12. A map and a spanning hypertree of its reciprocal

Given a map (σ, α), we number its vertices (these numbers are circled in Figure 12)
and we number its edges. Furthermore, for each loop edge (that is, a 2-cycle of α, whose
points belong to the same cycle of σ) whose number is i we also associate a duplicate
label i′. Thanks to this duplication, every point of the map may be uniquely described
by the ordered pair (i, j) where i is the label of the vertex and j is the label of he edge
containing it. For example, after identifying each point with its pair of labels, cycle
number 3 of σ is ((3, 7), (3, 3), (3, 8), (3, 9), (3, 10), (3, 9′), (3, 10′)), cycle number 5 of α
is ((2, 5), (5, 5)) and cycle number 9 of α is ((3, 9), (3, 9′)).

Definition 7.1. We call a numbering of vertices and edges of a map, together with the
labeling of its points as defined above a vertex-edge labeling of the map.

Next we fix a spanning hypertree (α, θ) of the reciprocal hypermap (α, σ). The
permutation θ is a refinement of the permutation σ: for each cycle of σ, the cycles of θ
contained in it form a genus zero permutation. For example the cycles of θ contained
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in the first cycle of σ form the permutation ((1, 1)), ((1, 2), (1, 4), (1, 3)). We associate
a center to each cycle of θ and to each loop edge of α (these are small black disks in
Figure 12). We connect each center to the points on its cycle (of θ or α, shown in
bold). By merging the edges connecting the centers to the points on their cycles with
the edges of our map, we obtain a graph on the centers. For example, in Figure 12 we
connect the center of the cycle ((1, 2), (1, 4), (1, 3)) to the point (1, 2), we continue this
edge using the cycle ((1, 2), (4, 2)) of α to the point (4, 2) and then we continue to the
center of the cycle ((4, 2)(4, 6)). The resulting topological graph is shown on the right
hand side of Figure 12. We label the center of each loop edge of α with 0, and we label
all other centers with the number of the cycle of σ containing the cycle of θ containing
the center. Note that the second coordinates of all points on an edge connecting two
centers are the same: we label the edge connecting two centers with this coordinate.
The map we see in Figure 12 is a coherently (σ, α)-labeled plane tree. We explain its
definition in several steps.

Definition 7.2. Given a map (σ, α) with a vertex-edge labeling, a (σ, α)-labeled map
(σ′, α′) is map with numbered vertices and edges, subject to the following rules:

(1) Each vertex of (σ′, α′) is either labeled with zero or it is labeled with the first
coordinate of a point in the vertex-edge labeling of (σ, α). The same label may
appear on several vertices of (σ′, α′).

(2) The set of edge labels of (σ′, α′) is the set of the second coordinates of the points
in the vertex-edge labeling (σ, α). Each edge label appears exactly once.

(3) The vertices labeled 0 of (σ′, α′) have degree 2 and they correspond to the set
of loop edges of (σ, α) bijectively: if j is the label of a loop edge in (σ, α) then
there is exactly one vertex labeled 0 of (σ′, α′) that us incident to a pair of edges
labeled j and j′ respectively.

Alternatively, using Definition 3.3, we may describe (σ, α)-labeled maps as follows.

Proposition 7.3. (σ′, α′) is (σ, α)-labeled map if and only if its underlying graph may
be obtained from the underlying graph of (σ, α) by subdividing each loop edge into two
edges and then applying several vertex splitting operations (as defined in Definition 3.3)
that never split the newly introduced subdividing vertices.

Indeed, the vertices of (σ′, α′) that were added as vertices subdividing the loop edges
are labeled with zero, each other vertex of (σ′, α′) is labeled with the number of the
vertex of (σ, α) that was split (possibly several times) to obtain it). The edges of (σ′, α′)
are identifiable with the edges of (σ, α) after subdividing each loop edge of (σ, α) into
two edges. Each vertex of (σ′, α′) of color i > 0 is a cyclic permutation acting on a
subset of points moved by cycle number i of σ and the collection of all such cyclic
permutations of the same color i > 0 is a permutation of all points moved by cycle
number i of σ.

Definition 7.4. Given a map (σ, α) with a vertex-edge labeling and a (σ, α)-labeled
map (σ′, α′), we call the (σ, α)-labeling coherent if for each vertex label i > 0, the cycles
forming set of vertices of color i in σ′ form a refinement of the unique cycle numbered
i in σ.
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In the case when the (σ, α)-labeled map (σ′, α′) is a tree (of genus 0), we may draw it
in the plane in such a way that for each vertex of σ′ of positive color the incident edges
listed in the counterclockwise order mark the corresponding points in the order of the
cycle of σ′. We call the resulting plane tree corresponding to a coherently (σ, α)-labeled
map a coherently (σ, α)-labeled plane tree.

Theorem 7.5. For a map (σ, α), there is a bijection between its spanning hypertrees
and the coherently (σ, α)-labeled plane trees.

Proof. Let (σ′, α′) be the map drawn as coherently (σ, α)-labeled plane tree. Note that
the edge set of α′ is obtained by subdividing each loop edge in α into two edges, and the
requirement of coherence is equivalent to requiring that the restriction σ′′ of σ′ to the
set of the original points must be a refinement of σ. Conversely, for any refinement σ′′

of σ, we may introduce a center to each cycle of σ′′, a center to each loop edge of (σ, α)
and create a labeled topological graph using the procedure described at the beginning
of this section. We only need to show that (α, σ′′) is a hypertree if and only if the
map (σ′, α′) is a tree. The hypermap (α, σ′′) is a hypertree if and only if z(σ′′−1α) = 1.
The map (σ′, α′) is a tree if and only if z(α′−1σ′) = z(σ′−1α′) = 1. The statement is
now a consequence of the fact that σ′−1α′ may be computed from σ′′−1α by replacing
(. . . iσ′′−1(j) . . .) with (. . . ipi,jσ

′′−1(j) . . .) for each loop edge (i, j) in α. Here pi,j is the
midpoint inserted in (i, j) to obtain α′. �

Theorem 7.5 and its justification have the following consequence.

Corollary 7.6. The spanning hypertrees of the reciprocal (α, σ) of a map (σ, α) are the
reciprocals of all trees obtained from (σ, α) by a sequence of topological vertex splittings.

Corollary 7.6 inspires considering the generation of the spanning hypertrees of the
reciprocal of a map by a sequence of topological vertex splittings. Using this approach,
the key move presented in the work of Franz and Earnshaw [13] may be generalized
as follows. Let (σ, α) be a map and consider a spanning hypertree of a reciprocal of
a map, represented as a coherently (σ, α)-labeled plane tree (σ′, α′). Take two vertices
of the same color, representing adjacent blocks of σ′ that can be merged and still
have a noncrossing partition. For example, we may merge the two vertices of color 1
of the plane tree shown in Figure 12 in such a way that the edges around the only
vertex of color 1 are listed (1, 4, 3, 2) in the counterclockwise order. The resulting
plane graph has a unique cycle. In our example, this cycle is a triangle with vertices
of color 1, 4, 5, and edges labeled 1, 2, and 6. We may obtain another plane tree
representing a spanning hypertree by performing a topological vertex splitting that
breaks this cycle without disconnecting the graph. For example we may replace the
unique cycle ((5, 1), (5, 6), (5, 5)) of color 5 with the pair of cycles ((5, 1), (5, 6))((5, 5))
or with the pair of cycles ((5, 1))((5, 6), (5, 5)). (We cannot use ((5, 1), (5, 5)), ((5, 6)) as
the resulting plane graph would still contain a cycle and the edge ((5, 1), (1, 1)) would
be disconnected from the rest of the graph. This reciprocal tree flipping is analogous
to replacing a spanning tree T with the spanning tree T − {f} ∪ {e} where e is an
edge external to T and f belongs to the unique cycle contained in T ∪ {e}. Franz and
Earnshaw [13] apply this idea to maps with 2 vertices and n parallel (non-intersecting)
edges, and they call the operation a reduction if it merges the first block of the first
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vertex with the block containing the first point not in the first block and then splits the
first available block in some order that breaks the cycle. It is not hard to see that the
idea of this reduction map may be generalized to the reciprocal of an arbitrary map.
Using some ordering on the points, the reduction map becomes well-defined, its inverse
is not unique but has been useful in the constructive enumeration of meanders.

A remarkable consequence of Theorem 7.5 is that for loopless maps with vertices of
degree at most three the number of the spanning hypertrees of the reciprocal depends
only underlying graph and not on the cyclic order of the edges around the vertices.

Corollary 7.7. Let (σ, α) be a map such that each cycle of σ has length at most 3
and each cycle of α has length 2, containing points of two different cycles of σ. Let
G = (V,E) be a graph whose vertices are the cycles of σ and whose edges are bijectively
labeled with the cycles of α in such a way that the edge labeled (i, j) connects the vertices
containing the points i and j respectively. Then the spanning hypertrees of the reciprocal
hypermap (α, σ) are in bijection with all labeled trees T having the following properties:

(1) The edges of T are bijectively labeled with the edge set E.
(2) Each of T are labeled with the vertex of G.
(3) The vertex labeling is a proper coloring: no two vertices of T of the same vertex

label are adjacent.
(4) The set of edge labels of all edges incident to some vertex labeled with v ∈ V is

the set of all edges incident to v in G.

Indeed, by Theorem 7.5, the spanning hypertrees of (α, σ) are in bijection with (σ, α)-
labeled plane trees in which each vertex has degree at most 3. The criteria stated in
Corollary 7.7 match the definition of a (σ, α)-labeled plane tree, except there is no
topological restriction on the order of the edges around the vertices. These restrictions
have no meaning for vertices of degree one or two, neither on the (α, σ) side nor on
the plane tree side. For each vertex v ∈ V of degree 3, there are two possible cyclic
orientations of the edges around the vertex. This orientation becomes irrelevant if
there is more than one vertex labeled v in T . Otherwise exactly one cyclic orientation
of the edges incident to the unique v-colored vertex in T satisfies the the definition
of the (σ, α)-labeling. On the other hand, for any tree in which the maximum degree
is three, each planar embedding of the tree may be uniquely described by choosing a
cyclic orientation around each vertex of degree three, and these choices may be made
independently.
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(#514648 to Gábor Hetyei).

References

[1] O. Bernardi, A characterization of the Tutte polynomial via combinatorial embeddings, Ann.
Comb. 12 (2008), 139–153.

[2] O. Bernardi, Tutte polynomial, subgraphs, orientations and sandpile model: new connections via
embeddings, Electron. J. Combin. 15 (2008), Research Paper 109, 53 pp.



32 ROBERT CORI AND GÁBOR HETYEI
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[26] J. Touchard, Contribution à l’étude du problème des timbres poste, Canad. J. Math. 2 (1950),
385–398.

[27] W. T. Tutte, Duality and trinity. Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to
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