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ABSTRACT

XI NING. STATISTICAL INFERENCE OF SEMIPARAMETRIC COX-AALEN
TRANSFORMATION MODELS WITH FAILURE TIME DATA . (Under the

direction of DR. YANQING SUN and DR. YINGHAO PAN)

Censored failure time data are commonly encountered in epidemiological and biomed-

ical studies, where the exact time of an event may be unknown or incomplete. Many

semiparametric models have been developed in the literature to analyze such data;

however, they may not always be effective in dealing with the diverse complexities

that arise in practice. This motivated us to develop a more comprehensive class of

semiparametric models for analyzing censored failure time data, with the ultimate

goal of addressing the limitations of existing models and improving the accuracy of

statistical inference.

In the first project, we propose a broad class of so-called Cox-Aalen transforma-

tion models that incorporate both multiplicative and additive covariate effects on the

baseline hazard function through a transformation framework. The proposed model

offers a high degree of flexibility and versatility, encompassing the Cox-Aalen model

and transformation models as special cases. For right-censored data, we propose an

estimating equation approach and devise an Expectation-Solving (ES) algorithm that

involves fast and robust calculations. The resulting estimator is shown to be consis-

tent and asymptotically normal via empirical process techniques. Moreover, the ES

algorithm yields a computationally simple method for estimating the variance of both

parametric and nonparametric estimators. Finally, we assess the performance of the

proposed procedures by conducting extensive simulation studies and applying them

in two randomized, placebo-controlled HIV prevention efficacy trials. The data exam-

ple shows the utility of the proposed Cox-Aalen transformation models in enhancing

statistical power for discovering covariate effects.

In the second project, we consider the regression analysis of the Cox-Aalen transfor-
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mation models with partly interval-censored data, which comprise exact and interval-

censored observations. We formulate a set of estimating equations and utilize an ES

algorithm that guarantees stability and rapid convergence. Under regularity assump-

tions, we demonstrate that the estimators obtained are consistent and asymptotically

normal, and we propose the use of weighted bootstrapping techniques to estimate

their variance consistently. To evaluate the proposed methods, we perform thorough

simulation experiments and applied them to the analysis of the data from a random-

ized HIV/AIDS trial.
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CHAPTER 1: INTRODUCTION

Failure time data, also known as survival data, is encountered in various areas or

domains, such as medicine, social sciences, and finance. It represents the time between

a specific starting point and the occurrence of an event of interest, such as death,

machine failure, or disease development. Unlike traditional continuous or discrete

data, failure time data is often censored, meaning that the event of interest may not

have occurred for all subjects within the study at the time of analysis. Censoring

can occur in several ways, with right-censored data being the most common. In

right-censored data, the event of interest occurs after a certain observation time due

to various reasons, such as the end of the study period or the loss of follow-up of

the subjects. Another type of censoring is interval-censoring, which happens when

the exact time of an event is not observed but is known to have occurred within a

certain time interval. This can happen in situations such as periodic examinations

or screenings, where the event of interest may have occurred between the last and

current examination. Dealing with censored data imposes unique challenges for data

analysis and interpretation in survival analysis.

Multiplicative and additive hazards models are two fundamental frameworks used

to analyze censored failure time data, which assume that covariates affect the un-

specified baseline hazard in a multiplicative and additive manner, respectively. In

some cases, neither a strictly multiplicative nor additive model may be suitable. The

multiplicative-additive hazards model offers a solution by integrating the strengths

of both approaches, allowing the inclusion of covariates to have both multiplicative

and additive effects. This model can capture complex relationships between covari-

ates and the hazard function, including non-linear and interaction effects, and may
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provide improved predictions of the hazard function and survival probabilities.

The transformation model (Dabrowska and Doksum, 1988; Zeng and Lin, 2006) is

alternative framework for analyzing failure time data, utilizing the methodology of

transforming the failure time to improve the model fit or to satisfy modeling assump-

tions. One of the advantages of the transformation model is its flexibility in handling

non-linear relationships between the covariates and the failure time variable. Ad-

ditionally, the model can account for time-varying covariates and non-proportional

hazards. However, it assumes a monotonic relationship between the transformed fail-

ure time variable and the covariates. In some cases, the relationship may not be

monotonic, and a transformation model may not capture this relationship accurately.

This dissertation aims to enhance the existing literature on transformation mod-

els by proposing a more flexible and comprehensive approach. Specifically, we aim

to develop a semiparametric transformation model that can handle a wider range of

data scenarios and improve the accuracy of survival predictions. Chapter 2 presents

the proposed model in detail, describing its structure and properties, and highlight-

ing its advantages over existing models. In Chapter 3, we apply the proposed model

to right-censored data, which is a common scenario in survival analysis where some

observations have incomplete information on the event of interest. Additionally, we

access the proposed model’s performance against existing models, demonstrating its

effectiveness in accurately estimating survival probabilities. Finally, we apply the

proposed model and methods to simulation studies and two randomized HIV preven-

tion efficacy trials. In Chapter 4, we extend the application of the proposed model

to handle a mixture of exact and interval-censored observations, also known as the

partly interval-censored data. We show how our proposed model can be adapted

to handle this mixed type of data and demonstrate its performance via simulation

studies and application to a randomized HIV/AIDS trial.



CHAPTER 2: THE SEMIPARAMETRIC COX-AALEN TRANSFORMATION

MODELS

2.1 Introduction

Censored failure time data are frequently encountered in epidemiological and biomed-

ical studies. In the literature, the multiplicative and additive hazards models provide

two principal frameworks for analyzing such data. The most popular multiplicative

hazards model is the proportional hazards model (Cox, 1972), where the covariates are

assumed to act multiplicatively on an unknown baseline hazard function. In contrast,

the additive hazards models furnish an additive effect between the covariates and the

baseline hazard function, providing a way to directly capture the increase or decrease

in risk associated with the covariates (Aalen, 1980; Huffer and McKeague, 1991; Lin

and Ying, 1994). Without prior domain knowledge, it is hard to determine which

framework is preferable among multiplicative and additive hazards models. In fact,

both models may often be used to complement each other and provide more com-

plete insights. Therefore, various multiplicative-additive hazard models have been

proposed to capture both multiplicative and additive effects (Lin and Ying, 1995;

Martinussen and Scheike, 2002). In particular, Scheike and Zhang (2002) suggested

a Cox-Aalen model by replacing the baseline hazard function in the Cox model with

Aalen’s additive model. The Cox-Aalen model has been studied for various types

of censored data, e.g., right-censored (Scheike and Zhang, 2002), interval-censored

(Boruvka and Cook, 2015), left-truncated and right-censored (Shen and Weng, 2018),

left-truncated and mixed interval-censored (Shen and Weng, 2019), recurrent-event

(Qu and Sun, 2019).

Transformation models have also received wide attention in the field of survival
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analysis. Dabrowska and Doksum (1988) introduced the class of linear transforma-

tion models, which includes the proportional hazards and proportional odds models

(Pettitt, 1982; Bennett, 1983) as special cases. Estimators for this class of models

were proposed by Dabrowska and Doksum (1988), Cheng et al. (1995), Fine et al.

(1998), Chen et al. (2002), among others. Zeng and Lin (2006) later extended the

linear transformation models to allow time-dependent covariates. Hereafter, we refer

to this class of transformation models as Zeng and Lin’s model to avoid confusion.

There is rich literature investigating Zeng and Lin’s model. Zeng and Lin (2006) pro-

posed a nonparametric maximum likelihood estimator (NPMLE) in the presence of

right-censored data. Zeng and Lin (2007) derived a system of self-consistent equations

for the jump sizes of the baseline cumulative hazard function at exact failure times

through an expectation-maximization (EM) algorithm. Chen (2009) showed that the

self-consistent estimator derived in Zeng and Lin (2007) is asymptotically equivalent

to a weighted Breslow-type estimator, which can be solved by a computationally-

efficient iterative reweighting algorithm. More recently, Zeng et al. (2016) and Zhou

et al. (2021) have investigated the nonparametric maximum likelihood estimation of

Zeng and Lin’s model in the context of interval-censored and partly interval-censored

data, respectively.

However, one limitation of Zeng and Lin’s model is that all covariate effects are

assumed to be multiplicative within the transformation function. This assumption

is too restrictive in some applications. For example, in an analysis of risk factors

on mortality among patients with myocardial infarction, Scheike and Zhang (2003)

showed that some covariates (e.g., ventricular fibrillation and congestive heart failure)

have additive effects while others (e.g., age and sex) have multiplicative effects. In

addition, they pointed out that naively treating all covariates as multiplicative led

to incorrect results when predicting the survival probabilities. Another example is

that in an HIV-1 vaccine study, HIV prevalence varies from region to region and by
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sex/gender; thus, the different regions/sex/gender subgroups have different baseline

hazard functions (Corey et al., 2021). Moreover, a Kaplan-Meier plot shows that

survival curves for different regions cross, suggesting an additive region effect. To the

best of our knowledge, no existing work considers a class of semiparametric transfor-

mation models in which the baseline hazard function is allowed to depend on some

potentially time-varying covariates additively. Therefore, it is desirable to provide a

more powerful class of semiparametric transformation models that can accommodate

both multiplicative and additive covariate effects under one unified framework.

The EM algorithm is a powerful tool for performing maximum likelihood esti-

mation in the presence of latent variables or missing data (Dempster et al., 1977).

In particular, various EM-type algorithms have been proposed to find NPMLE for

semiparametric transformation models (Zeng and Lin, 2007; Liu and Zeng, 2013; Zeng

et al., 2016; Zhou et al., 2021). In analogy to EM, Elashoff and Ryan (2004) proposed

an expectation-solving (ES) algorithm that handles missing data for general estimat-

ing equations, greatly facilitating its application to a broader framework. When the

complete-data estimating equations correspond to the score functions from the likeli-

hood, the ES algorithm essentially reduces to the EM. The ES algorithm dramatically

improves computational efficiency for solving estimating equations involving frailty or

latent variables. For example, Johnson and Strawderman (2012) developed a smooth-

ing expectation and substitution algorithm for the semiparametric accelerated failure

time frailty model. Henderson and Rathouz (2018) considered an approximate EM

procedure for a longitudinal latent class model for count data.

In this chapter, we propose a broad class of so-called Cox-Aalen transformation

models that incorporate both multiplicative and additive covariate effects upon the

baseline hazard function within a transformation. The proposed class of models is

very flexible and contains Zeng and Lin’s model and the Cox-Aalen model as special

cases. However, the multiplicative-additive structure within the transformation and
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the need to estimate several nonparametric functions simultaneously impose addi-

tional challenges for model estimation. To alleviate such difficulties, we devise an

ES-type algorithm, which iterates between an E-step wherein functions of complete

data are replaced by their expectations and an S-step where these expected values

are substituted into the complete-data estimating equations, which are then solved.

More specifically, within the S-step, the high-dimensional parameters are updated

using closed-form expressions, i.e., explicit calculations, while the low-dimensional

parameters are updated via the Newton-Raphson method. Consequently, the pro-

posed ES algorithm is fast and stable even under a high percentage censoring rate, as

evidenced by our simulation studies and real data applications. Another attraction of

our approach is that we provide simple variance estimators for both parametric and

nonparametric estimates. Furthermore, the asymptotic properties of the proposed

estimators are rigorously studied via modern empirical process techniques.

2.2 Model Description

Let X(·) = (X1(·), . . . , Xq(·))> and Z(·) = (Z1(·), . . . , Zd(·))> denote q × 1 and

d × 1 vectors of potentially time-varying covariates, and T denote the failure time

of interest. We propose a broad class of so-called Cox-Aalen transformation models

such that the cumulative hazard function for T conditional on covariates X(·) and

Z(·) is represented as follows:

Λ(t | X(·), Z(·)) = G

[∫ t

0

exp{β>Z(s)}dΛX(s)

]
, (2.1)

where β represents a d × 1 vector of unknown regression parameters, ΛX(s) =∫ s
0

{
X>(v)α(v)

}
dv is an unknown increasing function with α(v) = (α1(v), · · · , αq(v))>,

andG(·) is a pre-specified transformation function that is strictly increasing and thrice

continuously differentiable with G(0) = 0, G′(0) > 0 and G(∞) =∞. Here and here-

after, G′(x) = dG(x)/dx. In addition, let A(t) =
∫ t

0
α(s)ds = (A1(t), . . . , Aq(t))

>,



7

where Aj(t) =
∫ t

0
αj(v)dv for j = 1, . . . , q. With X1 fixed at 1, α1(t) can be inter-

preted as a reference level of the risk. Generally, it is not meaningful to have that X(·)

equals or is proportional to Z(·). For the choices of G, the class of frailty-induced

transformations which is shown as below can be a useful tool:

G(x) = − log

∫ ∞
0

exp(−xξ)f(ξ)dξ, (2.2)

where f(ξ) is the density function of a non-negative random variable ξ with support

[0,∞). The choice of the gamma density with unit mean and variance r for f(ξ)

yields the logarithmic transformations G(x) = r−1 log(1 + rx) (r ≥ 0) with r = 0

corresponding to G(x) = x. The class of Box-Cox transformations G(x) = {(1 +

x)ρ − 1}/ρ can be obtained from the positive stable distribution with parameter

0 < ρ < 1. Note that G(x) = log(1 +x) is often considered as a member of the above

class with ρ = 0. By treating the latent variable ξ as missing, the frailty-induced

transformations are particularly useful in deriving EM-type algorithms (Zeng and

Lin, 2007; Liu and Zeng, 2013; Zeng et al., 2016; Gao et al., 2018; Zhou et al., 2021).

Some remarks regarding the Cox-Aalen transformation models are as follows:

Remark 2.1. When αj(t) = 0 (j = 2, . . . , q) for any t, the right-hand side of (2.1)

reduces to

G

[∫ t

0

exp{β>Z(s)}dA1(s)

]
. (2.3)

Hence, Zeng and Lin’s model is a special case of the proposed models. Furthermore,

when Z is time-independent, (2.3) further reduces to the class of linear transforma-

tion models taking the form logA1(T ) = −β>Z + logG−1(− log ε0), where ε0 has a

uniform distribution (Chen et al., 2002). Especially, the choices of G(x) = x and

G(x) = log(1 + x) yield the proportional hazards model and proportional odds model,

respectively.

Remark 2.2. When G(x) = x, according to (2.1), the cumulative hazard function
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can be written as ∫ t

0

{
X>(s)α(s)

}
exp{β>Z(s)}ds. (2.4)

Thus, the conditional hazard function of T is X>(t)α(t) exp{β>Z(t)}. Therefore,

the Cox-Aalen model is a special case of the proposed models. In particular, when

X2, . . . , Xq represent levels in a set of factors, model (2.4) further reduces to the

stratified Cox model (Kalbfleisch and Prentice, 2002).

Remark 2.3. Based on (2.1), the odds of surviving beyond time t are

γ(t | X,Z) =
Pr(T > t | X,Z)

Pr(T ≤ t | X,Z)
= {ΛX(t)}−1 exp(−β>Z),

when G(x) = log(1 + x) and Z are time-independent covariates. Consequently,

γ(t | X,Z) = γ(t | X,Z0) exp{−β>(Z − Z0)},

which is essentially a stratified proportional odds model.

As illustrated above, our proposed class of semiparametric models is very flexible

and contains many popular models in survival analysis. To motivate our approach,

we first set up the observed data likelihood and derive the NPMLE for a special case.

Then, for more general situations, we propose estimating the parameters β and A(·)

using estimating equations along with an easily-implemented ES algorithm.



CHAPTER 3: SEMIPARAMETRIC REGRESSION ANALYSIS OF THE

COX-AALEN TRANSFORMATION MODELS WITH RIGHT-CENSORED DATA

3.1 Methods

3.1.1 Data Structure and Likelihood

For the ith individual, we let Ti and Ci be the failure time and censoring time,

respectively. Let T̃i = min(Ti, Ci) be the observed time and define ∆i = I(Ti ≤ Ci).

Thus, ∆i = 1 indicates that the exact failure time for the ith individual was observed

while ∆i = 0 implies censoring. For a random sample of n subjects, the observed data

consists of Oi =
{

∆i, T̃i, Xi(t), Zi(t), t ∈ [0, τ ]
}

for i = 1, . . . , n, where τ denotes the

duration of the study. Moreover, we define Yi(t) = I(T̃i ≥ t) and Ni(t) = ∆iI(T̃i ≤ t).

Assume that Ti and Ci are conditionally independent given Xi(·) and Zi(·). Under

the proposed model (2.1), we can construct the likelihood function for the observed

data as follows:

Ln(β,ΛX) =
n∏
i=1


(

Λ
′

Xi
(T̃i) exp{β>Zi(T̃i)}G

′

[∫ T̃i

0

exp{β>Zi(s)}dΛXi
(s)

])∆i

× exp

(
−G

[∫ T̃i

0

exp{β>Zi(s)}dΛXi
(s)

])}
,

(3.1)

where Λ
′
X(·) and G′(·) are the derivatives of ΛX(·) and G(·), respectively. The likeli-

hood (3.1) involves β and q infinite dimensional parameters Aj (j = 1, . . . , q), and it

may not be concave in these parameters. Thus, the nonparametric maximum likeli-

hood techniques are usually employed to restrict the parameter space.
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3.1.2 Nonparametric Maximum Likelihood Estimation

To establish a simple and efficient estimation procedure, we adopt the idea in

Zeng and Lin (2007) by treating ξ as a latent variable in the class of frailty-induced

transformations (2.2). Note that model (2.1) is equivalent to the failure time T with

Λ(t | X(·), Z(·), ξ) = ξ

∫ t

0

exp{β>Z(s)}dΛX(s), (3.2)

because

Pr(T > t | X(·), Z(·)) = E [Pr{T > t | X(·), Z(·), ξ} | X(·), Z(·)]

= E

(
exp

[
−ξ
∫ t

0

exp
{
β>Z(s)

}
dΛX(s)

] ∣∣∣∣X(·), Z(·)
)

=

∫ ∞
0

exp

[
−ξ
∫ t

0

exp
{
β>Z(s)

}
dΛX(s)

]
f(ξ)dξ

= exp

(
−G

[∫ t

0

exp{β>Z(s)}dΛX(s)

])
.

Based on model (3.2), it can be shown that the likelihood (3.1) is equivalent to the

following

n∏
i=1

∫
ξi

([
ξiΛ

′

Xi
(T̃i) exp{β>Zi(T̃i)}

]∆i

exp

[
−ξi

∫ T̃i

0

exp{β>Zi(s)}dΛXi
(s)

]
f(ξi)

)
dξi.

Now we consider the nonparametric maximum likelihood estimation of β and

A(·). Specifically, let 0 = t0 < t1 < · · · < tm < ∞ denote the uniquely ob-

served event times among n observations. Assume that the estimator for Aj(j =

1, . . . , q) is a step function with jump size ajk at tk for k = 1, . . . ,m and define

aj0 = 0. By observing that dΛX(t) = X>(t)dA(t), thus, the estimator for ΛX

is a step function with jump size X>(tk)ak at tk where ak = (a1k, . . . , aqk)
>. Let

OCi =
{

∆i, T̃i, Xi(t), Zi(t), ξi, t ∈ [0, τ ]
}

be the complete data for the ith subject.
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The complete-data log-likelihood function can be written as

n∑
i=1

{
m∑
k=1

(
∆iI(T̃i = tk)

[
log
{
ξi
(
X>ikak

)}
+ β>Zik

])

−ξi
∑
tk≤T̃i

exp(β>Zik)(X
>
ikak) + log f(ξi)

 ,

(3.3)

where Zik = Zi(tk) and Xik = Xi(tk).

To obtain the NPMLE of β and A(·), we propose an EM-type algorithm by treating

ξ as missing data. In the E-step, we evaluate the posterior mean of ξi given the

observed data, denoted by Ê(ξi). The detailed calculations are given in the next

subsection (Section 3.1.3). In the M-step, we maximize the expectation of (3.3)

conditional on the observed data. More specifically, we set the derivatives of the

conditional expectation of (3.3) with respect to ak (k = 1, . . . ,m) and β to zeros,

respectively. Then one can solve for the estimates through the following equations:

n∑
i=1

{
∆iI(T̃i = tk)

Xik

X>ikak
− I(T̃i ≥ tk)Ê(ξi) exp(β>Zik)Xik

}
= 0, for k = 1, . . . ,m

(3.4)
n∑
i=1

m∑
k=1

{
∆iI(T̃i = tk)− I(T̃i ≥ tk)Ê(ξi)(X

>
ikak) exp(β>Zik)

}
Zik = 0. (3.5)

Notice that the dimension of unknown parameters (a1, . . . , am, β) depends on m,

which could be a large number when n is large or the censoring rate is low. There-

fore, (3.4) and (3.5) are a system of high-dimensional nonlinear equations that is

notoriously difficult to solve due to the curse of dimensionality. For a special case,

i.e., X is a vector of design variables for categories, there exist explicit formulae for

calculating the high-dimensional parameters ak (k = 1, . . . ,m).

Here, we give further illustrations of the procedures in the M-step for the afore-

mentioned special case. Let D be a categorical variable with q levels. Without loss

of generality, we assume that D takes values in {1, . . . , q}. Let X = (1, X2, . . . , Xq)
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where X2, . . . , Xq are group indicators, i.e., X2 = I(D = 2), . . . , Xq = I(D = q).

Here, D = 1 is considered as the reference group. We propose the following Gauss-

Seidel method to jointly solve (3.4) and (3.5). Start with some initial values of the

unknown parameters.

Step 1. Fix β, we update ak, (k = 1, . . . ,m) by solving (3.4). Note that for a fixed

k, (3.4) can be written as



∑n
i=1 I(Di = 1)

{
∆iI(T̃i=tk)

a1k
− I(T̃i ≥ tk)Ê(ξi) exp(β>Zik)

}
= 0∑n

i=1 I(Di = 2)
{

∆iI(T̃i=tk)
a1k+a2k

− I(T̃i ≥ tk)Ê(ξi) exp(β>Zik)
}

= 0

. . .∑n
i=1 I(Di = q)

{
∆iI(T̃i=tk)
a1k+aqk

− I(T̃i ≥ tk)Ê(ξi) exp(β>Zik)
}

= 0.

Hence, we obtain that



a1k =
∑n

i=1 I(Di=1)∆iI(T̃i=tk)∑n
i=1 I(Di=1)I(T̃i≥tk)Ê(ξi) exp(β>Zik)

a2k =
∑n

i=1 I(Di=2)∆iI(T̃i=tk)∑n
i=1 I(Di=2)I(T̃i≥tk)Ê(ξi) exp(β>Zik)

− a1k

. . .

aqk =
∑n

i=1 I(Di=q)∆iI(T̃i=tk)∑n
i=1 I(Di=q)I(T̃i≥tk)Ê(ξi) exp(β>Zik)

− a1k.

(3.6)

Step 2. Fix a1, . . . , am, we update β by solving (3.5) using the Newton-Raphson

method.

In the M-step, we iterate between steps 1 and 2 until convergence. The EM algo-

rithm can be done when one alternates between E-step and M-step until convergence.

However, such explicit formulae do not exist for more general scenarios; hence we

consider an alternative estimating equation approach to overcome the aforementioned

computational difficulties.
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3.1.3 Estimating Equations

Following Elashoff and Ryan (2004), we develop an expectation-solving (ES) al-

gorithm for model (2.1) in this section. We begin by constructing a system of

complete-data estimating equations based on model (3.2), which has been shown

to be equivalent to the proposed model (2.1). Note that the intensity for Ni(t) is

Yi(t)ξi exp{β>Zi(t)}X>i (t)α(t) if ξi is known. Let

Mi(t) = Ni(t)−
∫ t

0

Yi(s)ξi exp{β>0 Zi(s)}X>i (s)dA0(s),

where (β0, A0) are the true values of (β,A). It is clear that E{Xi(t)dMi(t)} = 0 for

any 0 ≤ t ≤ τ and E{
∫ τ

0
Zi(t)dMi(t)} = 0. By treating ξi as missing, we consider the

following complete-data estimating equations

n∑
i=1

Xi(t)
[
dNi(t)− Yi(t)ξi exp{β>Zi(t)}X>i (t)dA(t)

]
= 0 (0 ≤ t ≤ τ), (3.7)

n∑
i=1

∫ τ

0

Zi(t)
[
dNi(t)− Yi(t)ξi exp{β>Zi(t)}X>i (t)dA(t)

]
= 0. (3.8)

By the previous argued nonparametric techniques, i.e., the estimator for ΛX is a step

function with jump size X>(tk)ak at tk (k = 1, . . . ,m), it is easy to note that (3.7)

and (3.8) can be expressed as



∑n
i=1

{
∆iI(T̃i = t1)− I(T̃i ≥ t1)ξi(X

>
i1a1) exp(β>Zi1)

}
Xi1 = 0

. . .∑n
i=1

{
∆iI(T̃i = tm)− I(T̃i ≥ tm)ξi(X

>
imam) exp(β>Zim)

}
Xim = 0∑n

i=1

∑m
k=1

{
∆iI(T̃i = tk)− I(T̃i ≥ tk)ξi(X

>
ikak) exp(β>Zik)

}
Zik = 0.

(3.9)

Write θ = (a>1 , . . . , a
>
m, β

>)>. We propose to estimate θ through an ES-type algo-
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rithm by treating ξi as missing. The ES algorithm iterates between an E-step wherein

the functions of the complete data are replaced by their expectations, and an S-step

where these expected values are substituted into the complete-data estimating equa-

tions (3.9), which are then solved. After specifying initial values of the unknown

parameters θ, say θ(0), the proposed ES algorithm iterates between the following two

steps until convergence:

E-step. Evaluate the posterior means Ê(ξi). When ∆i = 1, the posterior density

of ξi given the observed data (∆i = 1, Ti, Xi, Zi) is proportional to ξi exp(−ξiSi1)f(ξi),

where Si1 = ∆i

∑
tk≤Ti(X

>
ikak) exp(β>Zik). Hence, we calculate

Ê(ξi) = G
′
(Si1)− G

′′
(Si1)

G′(Si1)
,

where G′(·) and G′′(·) are the first and second derivatives of G(·), respectively. When

∆i = 0, the posterior density of ξi given the observed data (∆i = 0, Ci, Xi, Zi) is

proportional to exp(−ξiSi2)f(ξi), where Si2 = (1 − ∆i)
∑

tk≤Ci
(X>ikak) exp(β>Zik).

One can obtain Ê(ξi) = G′(Si2). Therefore, the E-step can be summarized as

Ê(ξi) = ∆i

{
G′(Si1)− G′′(Si1)

G′(Si1)

}
+ (1−∆i)G

′(Si2).

S-step. After replacing ξ by Ê(ξi), we solve (3.9) for θ. To this end, we propose

the following nonlinear Gauss-Seidel method (Ortega and Rheinboldt, 1970; Ortega,

1972).

Step 1. Fix β, update ak (k = 1, . . . ,m) by solving



∑n
i=1

{
∆iI(T̃i = t1)− I(T̃i ≥ t1)Ê(ξi)(X

>
i1a1) exp(β>Zi1)

}
Xi1 = 0

. . .∑n
i=1

{
∆iI(T̃i = tm)− I(T̃i ≥ tm)Ê(ξi)(X

>
imam) exp(β>Zim)

}
Xim = 0.

(3.10)
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Note that for fixed β, (3.10) is a system of linear equations in terms of ak (k =

1, . . . ,m). The update of ak is independent of updating aj for k 6= j (k, j = 1, . . . ,m).

In particular, we have explicit formulae for updating ak (k = 1, . . . ,m), i.e.,

ak =

{
n∑
i=1

I(T̃i ≥ tk)Ê(ξi) exp(β>Zik)XikX
>
ik

}−1 { n∑
i=1

∆iI(T̃i = tk)Xik

}
, (3.11)

for k = 1, . . . ,m.

Step 2. Fix a1, . . . , am, we use the Newton-Raphson method to update β by solving

the following equation:

n∑
i=1

m∑
k=1

{
∆iI(T̃i = tk)− I(T̃i ≥ tk)Ê(ξi)(X

>
ikak) exp(β>Zik)

}
Zik = 0.

Within the S-step, we alternate between Step 1 and Step 2 until convergence is

achieved. We employed a convergence criterion based on the absolute difference in the

parameter estimates between two consecutive iterations. Specifically, we considered

convergence to have been achieved when the absolute difference in the estimates fell

below a predetermined threshold, such as 10−3.

The E- and S-steps are iterated until convergence, and the resulting estimates are

denoted by θ̂ = (â>1 , . . . , â
>
m, β̂

>)>. A natural estimator of A(t) is Â(t) =
∑

tk≤t âk

for 0 ≤ t ≤ τ . Moreover, recall that A(t) =
∫ t

0
α(s)ds, hence we can estimate α(t),

0 ≤ t ≤ τ via a kernel estimator

α̂(t) =
m∑
k=1

h−1K

(
t− tk
h

)
âk,

where K(x) is the kernel function and h is the bandwidth. Throughout this paper,

we choose the Epanechnikov kernel function, i.e., K(x) = 3
4
max{1− x2, 0}.

The ES algorithm presented above has several advantageous characteristics. First,

a closed-form formula for computing Ê(ξi) is obtained in the E-step. Second, the
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explicit calculation of the high-dimensional parameters ak (k = 1, . . . ,m) in the S-

step avoids the need to solve a large system of nonlinear equations. Accordingly, the

proposed ES algorithm performs stably and satisfactorily without calculating the in-

verse of any high-dimensional matrices. Third, when X is a vector of design variables

for categories, the corresponding ES algorithm coincides with the EM algorithm pro-

posed in Section 3.1.2 by observing that for fixed β, (3.4) and (3.10) share the same

solution in terms of ak (k = 1, . . . ,m). This implies that the proposed ES estimator

is also efficient under this special case. The justifications are presented in the next

subsection. Similarly, it can be shown that the ES algorithm coincides with the EM

algorithm when X ≡ 1, i.e., q = 1. Finally, we remark that (3.10) can be considered

as a weighted version of (3.4), where each subject i receives a weight X>ikak.

3.1.4 A Special Case

In this section, we show that when X is a vector of design variables for categories,

the ES algorithm proposed in Section 3.1.3 coincides with the EM algorithm proposed

in Section 3.1.2. To show this, we only need to show that for fixed β, equations (3.4)

and (3.10) share the same solution in terms of ak (k = 1, . . . ,m). Note that for a

fixed k, (3.10) can be written as

∑n
i=1

{
∆iI(T̃i = tk)− I(T̃i ≥ tk)Ê(ξi)(X

>
ikak) exp(β>Zik)

}
Xik = 0,

which under this special case, is equivalent to



∑n
i=1 I(Di = 1)

{
∆iI(T̃i = tk)− I(T̃i ≥ tk)Ê(ξi) exp(β>Zik)a1k

}
= 0∑n

i=1 I(Di = 2)
{

∆iI(T̃i = tk)− I(T̃i ≥ tk)Ê(ξi) exp(β>Zik)(a1k + a2k)
}

= 0

. . .

. . .∑n
i=1 I(Di = q)

{
∆iI(T̃i = tk)− I(T̃i ≥ tk)Ê(ξi) exp(β>Zik)(a1k + aqk)

}
= 0.

(3.12)
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It is easy to notice that (3.6) is the unique solution to (3.12) and thus also the unique

solution to (3.10). In addition, we already showed in Section 3.1.2 that (3.6) is the

unique solution to (3.4) under this special case. Thus, the ES and EM estimator

coincide with each other when X is a vector of design variables for categories.

3.2 Variance Estimator

In this section, we provide easy-to-compute variance estimators for both the para-

metric estimates β̂ and the nonparametric estimates Â(t), α̂(t). Note that Ê(ξi) is a

function of the observed data Oi and the unknown parameter θ, i.e., Ê(ξi) = g(Oi, θ).

Let O be the collection of Oi (i = 1, . . . , n), the proposed ES estimator is intrinsically

equivalent to solving the following observed-data estimating equation: U(O, θ) = 0,

where U(O, θ) = (Ua1 , . . . , Uam , Uβ),



Ua1 =
∑n

i=1

{
∆iI(T̃i = t1)− I(T̃i ≥ t1)g(Oi, θ)(X>i1a1) exp(β>Zi1)

}
Xi1

. . .

Uam =
∑n

i=1

{
∆iI(T̃i = tm)− I(T̃i ≥ tm)g(Oi, θ)(X>imam) exp(β>Zim)

}
Xim

Uβ =
∑n

i=1

∑m
k=1

{
∆iI(T̃i = tk)− I(T̃i ≥ tk)g(Oi, θ)(X>ikak) exp(β>Zik)

}
Zik.

(3.13)

Note that Ua1 , . . . , Uam , Uβ also depend on the observed data O and the unknown

parameter θ. Here, we compress the notation when there is no confusion. From

(3.13), one can easily note that U(O, θ) can be expressed as the sum of independent

terms:

U(O, θ) =
n∑
i=1

Ui(Oi, θ).

Let D(O, θ) be the derivative of U(O, θ) with respect to θ, then the covariance matrix

of θ̂ is consistently estimated by

D(O, θ)−1

{
n∑
i=1

Ui(Oi, θ)U>i (Oi, θ)

}
{D(O, θ)−1}>

∣∣∣∣∣
θ=θ̂

. (3.14)
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Therefore, the variance covariance matrix of β̂ can be consistently estimated by the

d × d lower right-hand corner of (3.14). The variance covariance matrix of âk (k =

1, . . . ,m) can be consistently estimated by the (qm) × (qm) upper left-hand corner

of (3.14).

In addition, recall that Â(t) =
∑

tk≤t âk and α̂(t) =
∑m

k=1 h
−1K

(
t−tk
h

)
âk for 0 ≤

t ≤ τ , the variance for Â(t) and α̂(t) are

Var
{
Â(t)

}
=
∑
tk≤t

∑
tj≤t

Cov(âk, âj),

Var {α̂(t)} =
m∑
k=1

m∑
j=1

h−2K

(
t− tk
h

)
K

(
t− tj
h

)
Cov(âk, âj).

Variance estimators are obtained by replacing Cov(âk, âj) by Ĉov(âk, âj) in the above

expressions.

3.3 Asymptotic Properties

In this section, we present the asymptotic properties of the proposed ES estimator.

Let φ(t) = G′(t), ψ(t) = G′′(t)/G′(t) and

ρ(t; β,A) =

∫ t

0

Y (s) exp{β>Z(s)}X>(s)dA(s).

Hence, we express the posterior mean of ξ as

g(τ ; β,A) = φ(ρ(τ ; β,A))−∆ψ(ρ(τ ; β,A)).

Let P and Pn denote the true probability and denote the empirical measure, re-

spectively. In addition, let θ = (β,A) be the parameters of interest and θ0 = (β0, A0)

be the true values of the parameters. Then the proposed ES estimator θ̂ = (β̂, Â) is
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essentially a Z-estimator solving the following observed-data estimating equation

PnΦ(β,A)(t) ≡ Pn

 Φ1(β,A)

Φ2(β,A)(t)

 = 0,

for 0 ≤ t ≤ τ , where

Φ1(β,A) =

∫ τ

0

[
Z(t)dN(t)− Y (t) exp{β>Z(t)}g(τ ; β,A)Z(t)X>(t)dA(t)

]
,

Φ2(β,A)(t) = X(t)dN(t)− Y (t) exp{β>Z(t)}g(τ ; β,A)X(t)X>(t)dA(t).

Let h be a function in BV1[0, τ ], where BV1[0, τ ] denotes the set of functions with

total variation bounded by 1 on [0, τ ]. Define

Φ2(β,A)[h] =

∫ τ

0

h(t)
[
X(t)dN(t)− Y (t) exp{β>Z(t)}g(τ ; β,A)X(t)X>(t)dA(t)

]
.

Similar to Gao et al. (2017) and van der Vaart and Wellner (1996a, Section 3.3.1),

the proposed ES estimator (β̂, Â) is equivalent to the root of the estimating equation

PnΦ(β,A)[h] ≡ Pn

 Φ1(β,A)

Φ2(β,A)[h]

 = 0,

for all h ∈ BV1[0, τ ].

Write Ψ(θ) = PΦ(β,A)[h] and Ψn(θ) = PnΦ(β,A)[h]. Note that Ψ(θ) and

Ψn(θ) are actually h-dependent. Rigorously speaking, we should write Ψ(θ)[h] =

PΦ(β,A)[h] and Ψn(θ)[h] = PnΦ(β,A)[h], but in the rest of the article, we suppress

the letter h when there is no confusion. The proposed ES estimator is a Z-estimator

that satisfies Ψn(θ̂) = 0. To establish the asymptotic properties, we assume the

following regularity conditions:

Condition 1. With probability one, X(·) and Z(·) have bounded total variation in
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[0, τ ].

Condition 2. Let B be a compact set of Rd and BV [0, τ ] be the class of functions

with bound variation over [0, τ ]. The true parameter (β0, A0) belongs to B×BV q[0, τ ]

with β0 an interior point of B and A0(t) = (A01(t), . . . , A0q(t))
> is continuous over

[0, τ ] with A0(0) = 0. Here BV q[0, τ ] denotes the product space BV [0, τ ] × · · · ×

BV [0, τ ].

Condition 3. With probability one, there exists a positive constant a such that

P (Y (τ) = 1 | X(·), Z(·)) > a and PN2(τ) < ∞. If there exists a vector Γ and a

deterministic function Γ0(t) such that Γ0(t) + Γ>X(t) = 0 with probability one, then

Γ0(t) = 0 and Γ = 0 for any t ∈ [0, τ ].

Condition 4. The transformation function G(x) is thrice continuously differentiable

on the interval [0,∞) and satisfy the following: G(0) = 0, G′(x) > 0 and G(∞) =∞.

Condition 5. Let Ψ̇θ0 be the Fréchet derivative of Ψ(θ) with respect to θ at θ = θ0.

See (A.4) and (A.5) in Appendix A for detailed expressions of Ψ̇θ0 . We assume that

Ψ̇θ0 is an invertible map.

Remark 3.1. Conditions 1 and 2 state the boundedness of the covariates and the

compactness of the Euclidean parameter space, which are conventional conditions used

in most regression analyses. Condition 3 ensures the existence and uniqueness of the

jump sizes in (3.11). Condition 4 ensures that the function G is strictly increasing

on [0,∞). Condition 5 is a classical condition for Z-estimators.

Theorem 3.1. Under Conditions 1− 5, the proposed ES estimator (β̂, Â) is strongly

consistent to (β0, A0).

Theorem 3.2. Under Conditions 1 − 5,
√
n(β̂ − β0, Â − A0) converges weakly to a

zero-mean Gaussian process in the metric space Rd × linq(BV1[0, τ ]).

Here, we let lin(BV1[0, τ ]) be the closed linear span for linear functionals ofBV1[0, τ ].

For each j (j = 1, . . . , q), Aj belongs to the Banach space lin(BV1[0, τ ]), where
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Aj[h] =
∫
h(t)dAj(t) for h ∈ BV1[0, τ ]. Thus, A = (A1, . . . , Aq)

> belongs to the

Banach space linq(BV1[0, τ ]). Here, linq(BV1[0, τ ]) stands for the product space

lin(BV1[0, τ ]) × · · · × lin(BV1[0, τ ]). Detailed proofs of the above theorems are pre-

sented in Appendix A.

3.4 Simulation Studies

First, we conducted extensive simulation studies to assess the accuracy and relia-

bility of the estimation and inference methods we proposed. Assume that the failure

time T follows the Cox-Aalen transformation model given by:

Λ(t) = G

[∫ t

0

exp{β1Z1(s) + β2Z2}dΛX(s)

]
.

Here, Z1(t) = B1I(t ≤ V ) + B2I(t > V ) is a time-dependent covariate where

B1 and B2 are independent Ber(0.5), V ∼ Unif(0, 3), and Z2 ∼ Unif(0, 1) is a

time-independent covariate. We chose β1 = 0.5 and β2 = −0.5 as the values for

the regression coefficients, and consider three different configurations for ΛX(s) =∫ s
0
X>(v)dA(v), A(t) = (A1(t), . . . , Aq(t))

>:

Scenario 1. X = (1, X2)> with X2 ∼ Ber(0.4), A1(t) = log(1 + t/4) and A2(t) =

0.1t.

Scenario 2. X = (1, X2)> with X2 ∼ Unif(0, 1), A1(t) = log(1 + t/4) and A2(t) =

0.1t.

Scenario 3. X(t) = (1, X2(t))> with X2(t) = B3 + B4t, where B3 ∼ Unif(1, 2) and

B4 ∼ Unif(0.1, 0.5), A1(t) = log(1 + t/4) and A2(t) = 0.1t.

Scenario 4. Let D be a categorical variable that takes values in {1, 2, 3} with

equal probability. X = (1, X2, X3)>, where X2 = I(D = 2), X3 = I(D = 3),

A1(t) = log(1 + t/4), A2(t) = 0.1t and A3(t) = 0.05t.

For function G(·), we consider the the class of logarithmic transformations G(x) =

r−1 log(1 + rx) with r = 0, 0.5 and 1, where r = 0 yields the Cox-Aalen model. For
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all setups, we let τ = 1 be the duration of the study. For each study participant, we

generate one censoring time C ∼ Exponential(0.5). We set ∆ = 1 if T ≤ min(C, τ),

and 0 otherwise. This process yields about 75% ∼ 85% right-censored observations

for r = 0, 0.5 and 1. We initialized the proposed ES algorithm for each simulated

dataset with β = 0 and ak = (1/m, 0, . . . , 0) for k = 1, . . . ,m. We also experimented

with other initial values for β and ak, but the resulting estimates were virtually

indistinguishable from those obtained using the initial values specified above. We

performed 1000 simulation replicates for each of the sample sizes n = 200, 500, and

800.

Table 3.1 presents the estimation results for β1 and β2 across Scenarios 1− 4. De-

spite the high censoring percentage, the results in Table 3.1 indicate that the proposed

estimation methods exhibit favorable performance in multiple respects: (i) the pro-

posed estimators are nearly unbiased; (ii) the estimated standard errors are in good

agreement with the empirical standard errors; (iii) the empirical coverage probability

of 95% confidence intervals are all close to the nominal 95% level; (iv) increasing

the sample size reduces the bias and variability of the parameter estimator. Thus,

our proposed estimating procedures are reliable for various Cox-Aalen transformation

models.

In addition, Figure 3.1 presents the estimation results for the cumulative regression

functions A1(·) and A2(·) in Scenario 1. The proposed estimators are again virtually

unbiased and the estimated curves are able to capture the shapes of the true cumu-

lative regression functions very well; the estimated standard errors are close to the

empirical standard errors; the confidence intervals have reasonable coverage probabil-

ities. Throughout all scenarios, we chose bandwidth h = 0.1 for the kernel estimator

α̂(t). Figure 3.2 shows the estimation results for α(·) under Scenario 1. Figure 3.3

and 3.4 give the estimation results for A(·) and α(·) under Scenario 2, respectively.

Similarly, Figure 3.5 and 3.6 present the estimation results for A(·) and α(·) under
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Table 3.1: Estimation results of the regression parameter β under scenarios 1 to 4

β1 = 0.5 β2 = −0.5

r n Bias SE SEE CP Bias SE SEE CP
Scenario 1

0 200 0.003 0.350 0.340 0.950 −0.014 0.587 0.574 0.947
500 0.007 0.212 0.212 0.952 −0.005 0.354 0.359 0.956
800 −0.003 0.172 0.167 0.948 −0.001 0.279 0.285 0.951

0.5 200 −0.001 0.380 0.369 0.949 −0.014 0.639 0.630 0.950
500 0.007 0.227 0.230 0.961 −0.002 0.388 0.395 0.957
800 −0.004 0.185 0.181 0.951 −0.001 0.302 0.313 0.951

1 200 −0.002 0.402 0.402 0.956 −0.020 0.690 0.699 0.957
500 0.008 0.246 0.252 0.957 0.002 0.415 0.437 0.968
800 −0.005 0.198 0.198 0.946 −0.003 0.323 0.347 0.957

Scenario 2
0 200 0.004 0.337 0.334 0.954 −0.002 0.574 0.563 0.942

500 0.006 0.208 0.209 0.962 −0.004 0.348 0.353 0.960
800 −0.002 0.169 0.164 0.945 −0.006 0.275 0.280 0.949

0.5 200 −0.002 0.363 0.362 0.951 −0.014 0.624 0.620 0.948
500 0.007 0.223 0.227 0.954 −0.000 0.384 0.389 0.963
800 −0.003 0.184 0.179 0.946 −0.003 0.300 0.308 0.948

1 200 −0.005 0.389 0.396 0.957 −0.019 0.672 0.690 0.958
500 0.007 0.240 0.248 0.957 0.002 0.412 0.432 0.965
800 −0.004 0.197 0.195 0.944 −0.005 0.325 0.342 0.961

Scenario 3
0 200 0.005 0.288 0.287 0.958 −0.009 0.494 0.486 0.947

500 0.002 0.180 0.180 0.949 −0.004 0.305 0.305 0.953
800 −0.001 0.146 0.141 0.949 −0.009 0.245 0.241 0.950

0.5 200 0.001 0.319 0.321 0.954 −0.009 0.552 0.555 0.953
500 0.001 0.198 0.202 0.956 −0.004 0.348 0.348 0.953
800 −0.001 0.160 0.159 0.947 −0.009 0.276 0.276 0.942

1 200 0.010 0.343 0.365 0.964 −0.002 0.624 0.647 0.962
500 −0.002 0.216 0.229 0.959 −0.002 0.380 0.403 0.963
800 −0.006 0.175 0.180 0.963 −0.003 0.305 0.318 0.960

Scenario 4
0 200 0.010 0.339 0.334 0.951 −0.011 0.572 0.562 0.938

500 0.005 0.211 0.209 0.948 −0.003 0.348 0.353 0.958
800 −0.000 0.169 0.164 0.948 −0.000 0.280 0.279 0.948

0.5 200 0.007 0.366 0.362 0.946 −0.014 0.615 0.619 0.947
500 0.003 0.228 0.227 0.950 −0.005 0.378 0.389 0.968
800 0.001 0.183 0.179 0.950 −0.001 0.308 0.307 0.949

1 200 0.002 0.389 0.396 0.951 −0.008 0.657 0.690 0.960
500 0.002 0.244 0.248 0.957 −0.002 0.412 0.433 0.967
800 0.001 0.195 0.196 0.956 0.000 0.330 0.341 0.954

Note: Bias, bias of the parameter estimator; SE, empirical standard error of the parameter estimator;
SEE, mean of the standard error estimator; CP, empirical coverage percentage of the 95% confidence
interval.
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Table 3.2: Estimation results of the regression parameter β with a misspecified r = 0
under the logarithmic transformation G(x) = r−1 log(1 + rx)

β1 = 0.5 β2 = −0.5
n rtrue Bias SE SEE CP Bias SE SEE CP

Scenario 3
500 0 0.002 0.180 0.180 0.949 −0.004 0.305 0.305 0.953

0.5 −0.032 0.186 0.185 0.950 0.034 0.318 0.315 0.951
1 −0.059 0.192 0.192 0.943 0.067 0.329 0.326 0.947
1.5 −0.082 0.199 0.197 0.933 0.086 0.332 0.335 0.950
2 −0.098 0.205 0.201 0.917 0.101 0.344 0.343 0.946
2.5 −0.118 0.212 0.206 0.906 0.117 0.357 0.352 0.932
3 −0.133 0.216 0.210 0.888 0.129 0.363 0.359 0.936

2000 0 0.001 0.088 0.089 0.951 −0.006 0.149 0.152 0.965
0.5 −0.031 0.094 0.092 0.933 0.033 0.165 0.157 0.938
1 −0.058 0.098 0.095 0.904 0.058 0.165 0.162 0.941
1.5 −0.078 0.097 0.098 0.872 0.084 0.167 0.167 0.929
2 −0.094 0.100 0.100 0.839 0.103 0.168 0.171 0.907
2.5 −0.110 0.102 0.102 0.812 0.117 0.171 0.175 0.904
3 −0.122 0.105 0.105 0.786 0.130 0.175 0.179 0.895

Note: See the note to Table 3.1

Scenario 4, respectively. These results further confirm the satisfactory performance

of our proposed method in various numerical settings.

We also conducted simulation studies to investigate the robustness of the proposed

estimator under the misspecification of the G function. The setups were the same as

Scenario 3, and Table 3.2 reports the parameter estimation resultswith r misspecified

as 0 while the data is generated from r = rtrue. Here, rtrue can be any value from

{0, 0.5, 1, 1.5, 2, 2.5, 3}. It is easy to see that the misspecification of r values led to

biased estimates and lower coverage probabilities than the nominal levels, even though

the proposed variance estimators can accurately reflect the true variations.

Second, we show the advantages of the proposed model over Zeng and Lin’s model

through simulation studies. Specifically, we considered Scenario 5 as shown below,
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Figure 3.1: Estimation results for (a) A1(t) = log(1 + t/4) and (b) A2(t) = 0.1t in
Scenario 1 with r = 0. The dashed and solid lines represent n = 500 and n = 800,
respectively.
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Figure 3.2: Estimation results for (a) α1(t) = 1/(4+t) and (b) α2(t) = 0.1 in Scenario
1 with r = 0. The dashed and solid lines represent n = 500 and n = 800, respectively.
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Figure 3.3: Estimation results for (a) A1(t) = log(1 + t/4) and (b) A2(t) = 0.1t in
Scenario 2 with r = 0.5. The dashed and solid lines represent n = 500 and n = 800,
respectively.
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Figure 3.4: Estimation results for (a) α1(t) = 1/(4 + t) and (b) α2(t) = 0.1 in
Scenario 2 with r = 0.5. The dashed and solid lines represent n = 500 and n = 800,
respectively.
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Figure 3.5: Estimation results for (a) A1(t) = log(1 + t/4) , (b) A2(t) = 0.1t and (c)
A3(t) = 0.05t in Scenario 4 with r = 1. The dashed and solid lines represent n = 500
and n = 800, respectively.
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Figure 3.6: Estimation results for (a) α1(t) = 1/(4 + t), (b) α2(t) = 0.1 and (c)
α3(t) = 0.05 in Scenario 4 with r = 1. The dashed and solid lines represent n = 500
and n = 800, respectively.
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and generated the failure time T from the following Cox-Aalen transformation model

Λ(t | X,Z) = G
{∫ t

0

exp(β1Z1)X>dA(s)
}
. (3.15)

Scenario 5. β1 = 1, Z1 ∼ Ber(0.5) and X(t) = (1, X2)> with X2 ∼ Ber(0.4). A1(t) =

0.1t+ t4/2 and A2(t) = −2t3/3 + t2/2.

Clearly, in model (3.15), Z1 has a multiplicative effect while X2 has an additive

effect. If we naively treat all covariate effects as multiplicative and fit Zeng and Lin’s

model, we will obtain biased survival probability predictions. Figure 3.7 illustrates

this bias. We also compared the predicted cumulative hazards from the proposed

model and Zeng and Lin’s model, displayed in Figure 3.8. When Z1 = 0, the cumula-

tive hazards for groups X2 = 0 and X2 = 1 intersect, indicating that the cumulative

hazard in X2 = 1 group is initially larger than the X2 = 0 group, but becomes smaller

later in the study. However, using Zeng and Lin’s model, the cumulative hazard in

X2 = 0 is consistently larger than the group X2 = 1. Hence, the proposed model can

more accurately capture the complexity of the cumulative hazards when there exist

additive covariate effects.

Lastly, we performed simulation studies to confirm that the log-likelihood values

remain relatively stable across different r values when the percentage of censoring is

high. Specifically, we assumed that the failure time T follows the Cox-Aalen trans-

formation model:

Λ(t) = G

{∫ t

0

exp(β1Z1)dΛX(s)

}
, (3.16)

where β1 = 1, Z1 ∼ Unif(0, 1), X = (1, X2)> with X2 ∼ Ber(0.5), A1(t) = t2/2 and

A2 = 0.1t. Let τ = 1. We generate one censoring time C ∼ Exponential(b) such

that b = 0.3 and b = 7 yield a censoring rate around 50% and 95%, respectively.

We generate the data from the model (3.16) with r = 0 and then fit the generated

data with r values in the interval [0, 3] with a step size of 0.1. Note that r = 0 can
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Figure 3.7: Predicted survival probabilities under Scenario 5 with r = 1 based on the
proposed model and Zeng and Lin’s model. Here, “ZL” stands for Zeng and Lin’s
model.
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Figure 3.8: Predicted baseline cumulative hazard functions under Scenario 5 with
r = 1 based on the proposed model and Zeng and Lin’s model. Here, “ZL” stands
for Zeng and Lin’s model.
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be considered as the true model while other r values are misspecified. In Figure 3.9,

we plot the average log-likelihood values across 200 replicates as a function of r.

It is evident that the true value of r = 0 is indeed the one that maximizes the log-

likelihood. However, under high censoring percentage, the log-likelihood changes very

slowly with different values of r.
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Figure 3.9: Average log-likelihood function at the final parameter estimates for model
(3.16) with r values in the interval [0, 3] and a step size of 0.1.

3.5 Data Application

In this section, we apply the proposed model and methods to two harmonized

randomized trials, HIV Vaccine Trials Network (HVTN) 704/HIV Prevention Trials

Network (HPTN) 085 and HVTN 703/HPTN 081 (Corey et al., 2021), designed to

determine whether a broadly neutralizing antibody (bnAb) can be used to prevent the

acquisition of human immunodeficiency virus type 1 (HIV-1). The HVTN 704/HPTN

085 trial enrolled 2687 men who have sex with men and transgender persons in the

Americas and Europe, and HVTN 703/HPTN 081 trial enrolled 1924 females in sub-

Saharan Africa. For each trial, HIV-1 uninfected participants were randomly assigned

in 1:1:1 ratio to receive infusions of a bnAb (VRC01) at a dose of 10 mg per kilogram

of body weight (low-dose group), VRC01 at 30 mg per kilogram (high-dose group) or
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saline placebo, administered at 8-week intervals for 10 total infusions. The primary

efficacy endpoint was diagnosis of HIV-1 infection by the week 80 trial visit, and HIV-

1 testing was conducted at each 4-week trial visit starting at week 0. For participants

acquiring HIV-1 infection, the diagnosis date was determined by the adjudicated

diagnosis date based on validated assays (Corey et al., 2021). Participant follow-up

is right-censored by the minimum of their last negative HIV-1 sample collection date

and τ = 85.9 weeks (Corey et al., 2021).

Among the 4559 HIV-1 negative participants from both trials, 1401 are in the

USA and Switzerland, 1249 in Brazil and Peru, 1009 in South Africa, and 900 in

other sub-Saharan African countries (Switzerland was pooled with the U.S. given few

participants in Switzerland). We analyze the two trials pooled together, which is

valid given the harmonized protocols such that essentially the study is one trial in

two distinct study populations. There were a total of 174 HIV-1 infection diagnosis

endpoints in the two trials pooled, including 60 out of 1520 participants in the low-

dose group, 47 out of 1520 in the high-dose group, and 67 out of 1519 in the placebo

group. The numbers of HIV-1 infection diagnosis endpoints by region are reported in

Table 3.3. Participants were categorized by age (in years old) into four groups, [17, 20],

[21, 30], [31, 40] and [41, 52], with 540, 2651, 1102 and 266 participants, respectively.

Table 3.3: Summary statistics for the HIV-1 infections

Regions Placebo Low-dose High-dose Total
USA&Switzerland 9 8 6 23
Brazil&Peru 29 24 22 75
South Africa 16 16 11 43
Other sub-Saharan African countries 13 12 8 33
Total 67 60 47 174

Figure 3.10 reveals that the risk of HIV-1 infection in different regions cross over.

Therefore, without imposing proportional hazards for different regions, we consider

the following Cox-Aalen transformation model to assess the association between treat-
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Figure 3.10: Kaplan-Meier plot for four regions in the full cohort. Here, “USAS",
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Africa and other sub-Saharan African countries, respectively.
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ment assignment, age, and region with the time since first infusion to HIV-1 infection

diagnosis:

Λ(t | X,Z) = G

{∫ t

0

exp(β>Z)dΛX(s)

}
, (3.17)

where β is the unknown regression coefficients, and ΛX(s) =
∫ s

0

{
X>α(v)

}
dv =

X>A(s) with A(s) = (A1(s), · · · , A4(s))>. Here, Z = (Z1, Z2, Z3, Z4, Z5)>, where

Z1 and Z2 are indicators of being assigned to the low-dose and high-dose group,

respectively, with the placebo group as the reference group; Z3, Z4, Z5 are indicators of

the age groups [21, 30], [31, 40] and [41, 52], respectively, with [17, 20] as the reference

age group. In addition, let X = (1, X2, X3, X4)>, where X2, X3, X4 are indicators

of participants from Brazil and Peru, South Africa, and other sub-Saharan African

countries, respectively. The participants from USA and Switzerland are considered

as the reference group.

To conduct our analysis, we employed model (3.17) with G(x) = r−1 log(1 + rx).

We tested r values in the interval [0, 3] with a step size of 0.1 and chose the value

of r that that yielded the maximum log-likelihood function at the final parameter

estimates. Despite a high censoring rate of approximately 96.2%, we found that the

log-likelihood was maximized at r = 0, as shown in Figure 3.11. Our simulation

studies in Section 3.4 supported this finding by demonstrating that the log-likelihood

values did not change significantly for different values of r due to the high censoring

rate.

The lower panel of Table 3.4 shows the regression parameter estimates for the

selected transformation function (r = 0). One can see that a high-dose VRC01

significantly lowers the risk of HIV-1 infections, while a low-dose VRC01 does not.

Table 3.4 also reflects a significant correlation between age and HIV-1 infections,

i.e., being older decreases the risk of HIV-1 infections. Figure 3.12 displays the

estimated baseline cumulative hazard function for four different regions under the

selected model. The risk of HIV-1 infection is the highest in Brazil and Peru, and
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Figure 3.11: Log-likelihood function at the final parameter estimates in model (3.17)
with r values in the interval [0, 3] and a step size of 0.1.

lowest in the United States and Switzerland. The estimates for South Africa and other

sub-Saharan African countries cross; in particular, South Africa has a lower risk at

the beginning of the study but a higher risk later. Furthermore, Figure 3.13 depicts

the estimated survival probabilities at sixteen distinct combinations of covariates,

including age group and region. The figure provides additional evidence that supports

our previously reported findings.

The four other panels of Table 3.4 (upper panels) show results from Zeng and

Lin’s model fit to each of the four geographic regions separately; this method was

not applied to the full cohort (pooled) data because it cannot flexibly model the

differences in baseline cumulative hazards and the diagnostics support lack of fit.

In these results, the p-values for the effect of high-dose VRC01 markedly increase,

and the coefficient estimates for the age group [41, 52] are unstable because there are

very few HIV-1 infection diagnosis endpoints in this age group in the three regions

Brazil and Peru, South Africa, and other sub-Saharan African countries. Therefore,
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Table 3.4: Regression analysis results in the HIV-1 trials under Zeng and Lin’s model
and the proposed model with r = 0

USA/Switzerland Brazil/Peru

Covariates Est SE p-value Est SE p-value
Low-dose −0.107 0.484 0.825 −0.167 0.276 0.545
High-dose −0.437 0.524 0.404 −0.279 0.283 0.325
21− 30 −0.454 0.630 0.472 −0.525 0.262 0.045
31− 40 −2.709 1.141 0.018 −1.283 0.396 0.001
41− 52 −1.152 0.903 0.202 −16.859 1.668 < 0.001

South Africa Other SSA

Covariates Est SE p-value Est SE p-value
Low-dose −0.025 0.354 0.943 −0.080 0.400 0.842
High-dose −0.392 0.392 0.317 −0.509 0.449 0.258
21− 30 −0.187 0.380 0.623 −0.480 0.498 0.335
31− 40 −0.954 0.601 0.112 −0.719 0.586 0.220
41− 52 −13.867 2.366 < 0.001 −13.871 2.626 < 0.001

The Proposed Model

Covariates Est SE p-value

Low-dose −0.108 0.178 0.542
High-dose −0.363 0.190 0.056
21− 30 −0.429 0.187 0.022
31− 40 −1.219 0.274 < 0.001
41− 52 −1.989 0.721 0.006

Note: Est and SE stand for the estimates of the regression parameters and the estimated standard
errors, respectively. “Other SS” is for other sub-Saharan African countries. “USA/Switzerlan”,
“Brazil/Per”, “South Afric”, and “Other SSA” correspond to the estimation results when fitting Zeng
and Lin’s transformation models with the participants in those regions separately. “The Proposed
Mode” corresponds to the estimation results when fitting the proposed Cox-Aalen transformation
models with the full cohort.
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the results from the Cox-Aalen transformation modeling – which could be based on

the full cohort data through flexible specifications of the baseline cumulative hazard

functions – provide new insights with improved precision and power beyond insights

achieved from the application of Zeng and Lin’s model.
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Figure 3.12: Estimated baseline cumulative hazard function, i.e., Λ̂(t | X,Z = 0)
for four regions under the selected model (r = 0). Here,“USAS", “BP", “SA" and
“Other SSA" represent USA and Switzerland, Brazil and Peru, South Africa and
other sub-Saharan African countries, respectively.
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3.6 Discussion

In this chapter, we explored the use of frailty-induced transformations and devel-

oped a fast and stable ES algorithm to estimate the parametric and nonparametric

components of the proposed Cox-Aalen transformation model with right-censored

data, along with easy-to-compute variance estimators.

Elashoff and Ryan (2004) pointed out that an ES algorithm can be regarded as

a block Newton-Gauss-Seidel algorithm (see Ortega 1972, p.146). Following Ortega

(1972, p.147), an ES algorithm converges locally to the solution, θ̂, of U(θ) = 0 if the

Jacobian matrix D = ∂U/∂θ is nonsingular at θ = θ̂ and the largest eigenvalue of

D−1(θ̂) is less than 1. For general estimating equations, the two conditions above are

difficult to verify in advance, especially for the second condition. Nevertheless, the

matrix D is needed to calculate the variance of θ̂ in (3.14), and hence one can check

the required conditions numerically.

In real data applications, we ascertain whether a covariate has a multiplicative or

additive effect based on the following criteria. First, we may employ the underlying

biological, physical meaning, or other domain knowledge for decision-making. Sec-

ond, initial data exploration can be performed for each covariate, such as drawing the

Kaplan-Meier (KM) plot. If the KM curves cross, forming an X-shape, this covariate

should be modeled additively. Third, similar to Qu and Sun (2019), Yu et al. (2019),

we may employ some AIC or BIC-based procedures. In particular, all possible com-

binations of covariate effects will be examined. However, it is easy to see that this

is inefficient when there are many covariates. In addition, Scheike and Zhang (2003)

proposed the supremum tests to determine the multiplicative and additive parts of

the Cox-Aalen model. It would be valuable to explore whether similar testing pro-

cedures can be constructed for our proposed model. More theoretical and numerical

studies are needed, which we leave for future work.



CHAPTER 4: SEMIPARAMETRIC REGRESSION ANALYSIS OF THE

COX-AALEN TRANSFORMATION MODELS WITH PARTLY

INTERVAL-CENSORED DATA

4.1 Introduction

Partly interval-censored data arises in epidemiological and biomedical studies when

some failure times of interest are observed with exactitude while others are only known

to have occurred within a specific time interval. This type of data combines features

of both right-censored and interval-censored data. Regression modeling of partly

interval-censored data in the literature has primarily focused on the multiplicative

and additive hazards models, which depend on whether the effects of covariates are

multiplicative or additive. The proportional hazards model (Cox, 1972; Andersen

and Gill, 1982) is the most popular multiplicative hazards model and has been ex-

tensively studied for modeling different types of censored data. For interval-censored

data, maximum likelihood estimators have been proposed by several authors, includ-

ing Finkelstein (1986), Huang (1996), Zhang et al. (2010), and Wang et al. (2016).

For partly interval-censored data, Kim (2003) conducted the maximum likelihood

estimation, and Pan et al. (2020) considered a Bayesian approach by introducing

a nonhomogeneous Poisson process. However, the proportional hazards assumption

cannot always be validated. Alternatively, the proportional odds model (Pettitt, 1982;

Bennett, 1983) is prevalent in dealing with the non-proportionality. The literature on

the use of this model for interval-censored data is extensive. Some examples include

Huang and Rossini (1997), Rabinowitz et al. (2000), Zhu et al. (2021), and more

references therein.

The additive hazards models have been advocated and utilized by several re-
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searchers, including Aalen (1980), Buckley (1984), Aalen (1989), Huffer and McK-

eague (1991), Lin and Ying (1994), and others. When analyzing interval-censored

data, there are typically three types of statistical methods that are used: maximum

likelihood estimation (Zeng et al., 2006; He et al., 2020), multiple imputation ap-

proach (Chen and Sun, 2010), and estimating equation approach (Wang et al., 2010).

Researchers have also proposed models that combine both multiplicative and additive

effects of covariates to enhance the modeling capacity (Lin and Ying, 1995; Marti-

nussen and Scheike, 2002; Scheike and Zhang, 2002). The Cox-Aalen model (Scheike

and Zhang, 2002) is an example of a multiplicative-additive hazards model that ex-

tends the proportional hazards model by replacing the baseline hazard function with

Aalen’s additive model. However, existing methods for interval-censored data (Boru-

vka and Cook, 2015; Shen and Weng, 2019) rely on the assumption of fixed covariates

and cannot easily accommodate time-varying covariates. Furthermore, to the best of

our knowledge, there is currently limited research on the use of the Cox-Aalen model

for analyzing partly interval-censored data.

Recently, significant progress has been made in the development of transformation

models (Zeng and Lin, 2006), referred to as Zeng and Lin’s model in this dissertation.

This class of models extends linear transformation models (Dabrowska and Doksum,

1988; Fine et al., 1998) by incorporating potentially time-variant covariates. For

interval-censored data, Zhang et al. (2005) proposed an estimating equation approach

for linear transformation models, and Zeng et al. (2016) developed a nonparametric

maximum likelihood estimator (NPMLE) for Zeng and Lin’s model using an EM

algorithm. However, available inference methods for partly interval-censored data

with transformation models are relatively limited due to the complex model and

data structures involved. Some recent studies include the nonparametric maximum

likelihood estimator by Zhou et al. (2021) and a Bayesian approach with a monotone

spline approximation by Wang et al. (2022). Efficient semiparametric estimation for
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partly interval-censored data has also been studied for other models, such as the

accelerated failure time model Gao et al. (2018). However, one limitation of Zeng

and Lin’s models is that they assume all covariate effects to be multiplicative. This

assumption has been recognized as too restrictive by Scheike and Zhang (2003) and

may result in prediction biases.

In this chapter, we focus on the regression analysis of partly interval-censored data

through the Cox-Aalen transformation models. We begin by formulating the like-

lihood and deriving the NPMLE for a specific case. Subsequently, we propose a

collection of estimating equations and develop an expectation-solving (ES) algorithm

(Elashoff and Ryan, 2004), which iterates between an E-step wherein functions of

complete data are replaced by their expectations and an S-step where these expected

values are substituted into the estimating equations. The asymptotic properties of

the proposed estimators are thoroughly investigated. Additionally, we show that the

variance of the estimators can be consistently estimated using the weighted boot-

strap method. Finally, we demonstrate the proposed procedure’s performance via

simulation studies and a randomized HIV/AIDS trial analysis.

4.2 Methods

4.2.1 Data structure and Notation

For the ith individual subject to partly interval censoring, let Ti denote their failure

time. If Ti is observed exactly, we set ∆i = 1. Otherwise, we set ∆i = 0 and

denote the sequence of examination times for individual i as Ui1, Ui2, . . . , UiKi
, where

0 < Ui1 < Ui2 < · · · < UiKi
< ∞, and Ki is the total number of examinations.

For each event Ti, we define (Li, Ri] as the interval with the smallest possible width

that encloses Ti. The left endpoint Li of this interval is the maximum value of Uik

for k = 0, 1, . . . , Ki such that Uik ≤ Ti. Similarly, the right endpoint Ri is the

minimum value of Uik for k = 1, 2, . . . , Ki + 1 such that Uik ≥ Ti. We set Ui0 = 0 and

Ui,Ki+1 =∞ to ensure that Li and Ri are well-defined for all i. In addition, note that
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Li = 0 and Ri =∞ correspond to left- and right-censored observations, respectively,

while 0 < Li < Ri < ∞ corresponds to typically interval-censored observations.

Let Xi(·) and Zi(·) be q × 1 and d× 1 vectors of potentially time-varying covariates

for individual i, respectively. Suppose we have a random sample of n individuals.

Therefore, the observed partly interval-censored data comprise

Oi = {∆i,∆iTi, (1−∆i)Li, (1−∆i)Ri, Xi(·), Zi(·)} for i = 1, . . . , n. (4.1)

4.2.2 Models and Likelihood

Recall that, for the proposed Cox-Aalen transformation model, the cumulative

hazard function of failure time Ti conditional on Xi(·) and Zi(·) takes the following

form:

Λ(t | Xi(·), Zi(·)) = G

[ ∫ t

0

exp{β>Zi(s)}dΛXi
(s)

]
, (4.2)

where β is a d-dimensional regression parameter, ΛXi
(s) =

∫ t
0
X>i (v)α(v)dv is an

unspecified increasing function that depends on Xi(·) and a vector of unknown re-

gression functions α(t) = (α1(t), . . . , αq(t))
>. The function G(·) is pre-determined

and satisfies the following properties: it is strictly increasing, thrice continuously dif-

ferentiable, and G(0) = 0, G′(0) > 0, and G(∞) = ∞. By setting the first element

of Xi(·) to 1, the function α1(t) can serve as a baseline or reference level for risk. In

addition, we define A(t) =
∫ t

0
α(s)ds = (A1(t), . . . , Aq(t))

>, where Aj(t) =
∫ t

0
αj(s)ds

for j = 1, . . . , q, as a vector of cumulative regression functions. For the choices of

G(·), we again consider a class of frailty-induced transformation functions

G(x) = − log

∫ ∞
0

exp(−xξ)f(ξ)dξ, (4.3)

where f(ξ) is the the probability density function of a nonnegative random variable

ξ on [0,∞). One widely used choice for f(ξ) is the gamma density with mean 1 and
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variance r, which leads to G(x) = r−1 log(1 + rx) for r ≥ 0. Notably, when r = 0,

G(x) reduces to the identity function G(x) = x, and the Cox-Aalen transformation

model (4.2) reduces to the Cox-Aalen model.

Suppose that Ki, {Uij, j = 1, . . . , Ki} are independent of Ti conditional on Xi(·)

and Zi(·). Under model (4.2), the observed-data likelihood function based on (4.1)

takes the form

n∏
i=1

(
Λ
′

Xi
(Ti)e

β>Zi(Ti)G
′
{∫ Ti

0

eβ
>Zi(s)dΛXi

(s)

}
exp

[
−G

{∫ Ti

0

eβ
>Zi(s)dΛXi

(s)

}])∆i

(
exp

[
−G

{∫ Li

0

eβ
>Zi(s)dΛXi

(s)

}]
− exp

[
−G

{∫ Ri

0

eβ
>Zi(s)dΛXi

(s)

}])1−∆i

.

(4.4)

Here, the derivatives of ΛX(·) and G(·) are denoted as Λ
′
X(·) and G′(·), respectively.

With the class of frailty-induced transformations (4.3), it is easy to show that the

likelihood (4.4) is equivalent to

n∏
i=1

[
Λ
′

Xi
(Ti)e

β>Zi(Ti)

∫
ξi

ξi exp

{
−ξi

∫ Ti

0

eβ
>Zi(s)dΛXi

(s)

}
f(ξi)dξi

]∆i

(∫
ξi

[
exp

{
− ξi

∫ Li

0

eβ
>Zi(s)dΛXi

(s)

}
− exp

{
− ξi

∫ Ri

0

eβ
>Zi(s)dΛXi

(s)

}]
f(ξi)dξi

)1−∆i

.

(4.5)

This class of frailty-induced transformations has the benefit of eliminating the need

for the function G(·), allowing for the development of a computationally efficient EM

algorithm by treating ξi as missing. This technique has been frequently applied in

various studies, including those by Zeng and Lin (2007); Liu and Zeng (2013); Zeng

et al. (2016); Gao et al. (2018); Zhou et al. (2021).
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4.2.3 Nonparametric Maximum Likelihood Estimation

This subsection considers the nonparametric maximum likelihood estimator for β

and ΛXi
(·) in the Cox-Aalen transformation model. Specifically, let 0 = t0 < t1 <

· · · < tm < ∞ be the distinct time points in the set of Ti, Li and Ri < ∞ for

i = 1, . . . , n. Moreover, we assume that the cumulative regression function Aj(t)

(j = 1, . . . , q) is a step function with jump size ajk at tk for k = 1, . . . ,m with

aj0 = 0. By observing that dΛXi
(t) = X>i (t)dA(t), thus, ΛXi

can be represented as

a step function with a jump size X>i (tk)ak at time tk, where ak = (a1k, . . . , aqk)
>.

Then, we can express the likelihood function (4.5) as:

n∏
i=1

[
ΛXi
{Ti}eβ

>Zi(Ti)

∫
ξi

ξi exp

{
− ξi

∑
tk≤Ti

(X>ikak)e
β>Zik

}
f(ξi)dξi

]∆i

(∫
ξi

exp

{
− ξi

∑
tk≤Li

(X>ikak)e
β>Zik

}
[
1− exp

{
− ξi

∑
Li<tk≤Ri

(X>ikak)e
β>Zik

}]I(Ri<∞)

f(ξi)dξi

)1−∆i

.

(4.6)

Here, ΛXi
{Ti} represents the jump size of ΛXi

at time point Ti, Xik = Xi(tk) and

Zik = Zi(tk). For simplicity, we rearrange (4.6) as

n∏
i=1

(∫
ξi

exp

{
− ξi

∑
tk<Ti

(X>ikak)e
β>Zik

}

ξiΛXi
{Ti}eβ

>Zi(Ti) exp
[
− ξiΛXi

{Ti}eβ
>Zi(Ti)

]
f(ξi)dξi

)∆i

(∫
ξi

exp

{
− ξi

∑
tk≤Li

(X>ikak)e
β>Zik

}
[
1− exp

{
− ξi

∑
Li<tk≤Ri

(X>ikak)e
β>Zik

}]I(Ri<∞)

f(ξi)dξi

)1−∆i

.

(4.7)

To simplify the process of maximizing the likelihood function (4.7), we adopt a

set of independent Poisson variables, denoted as Wik (i = 1, . . . , n; k = 1, . . . ,m).
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These variables are considered as latent variables with means ξi(X>ikak) exp(β>Zik)

conditional on ξi. Other references that share similar ideas include Wang et al. (2016),

Zeng et al. (2016), and Zhou et al. (2021).

Define Ai = ∆i

∑
tk<Ti

Wik, Bi = ∆i

∑
tk=Ti

Wik, Ci = (1 − ∆i)
∑

tk≤Li
Wik and

Di = (1−∆i)I(Ri <∞)
∑

tk≤Ri
Wik for i = 1, . . . , n. Suppose that the observed data

consist of 
(Ti, Xi, Zi, Ai = 0, Bi = 1) if ∆i = 1

(Li, Ri, Xi, Zi, Ci = 0, Di > 0) if ∆i = 0,

(4.8)

for i = 1, . . . , n. If Ai = 0 and Bi = 1, this indicates that Ai and Bi are known to

be 0 and 1, respectively. Specifically, if ∆i = 1, then Wik = 0 for all tk < Ti and

Wik = 1 for tk = Ti. Similarly, if Ci = 0 and Di > 0, this implies that Ci and Di

are known to be zero and positive, respectively. Specifically, if ∆i = 0, then Wik = 0

for all tk ≤ Li, and at least one Wik ≥ 1 for Li < tk ≤ Ri with Ri < ∞. By

independent properties of Wik, we can compute the conditional probability Pr(Ai =

0|ξi) = exp
{
− ξi

∑
tk<Ti

(X>ikak)e
β>Zik

}
. Applying this similar idea, the likelihood

(4.7) can be represented with the data in (4.8) as

n∏
i=1

{∫
ξi

Pr

( ∑
tk<Ti

Wik = 0
∣∣∣ξi)Pr( ∑

tk=Ti

Wik = 1
∣∣∣ξi)f(ξi)dξi

}∆i

[∫
ξi

Pr

( ∑
tk≤Li

Wik = 0
∣∣∣ξi){1− Pr

( ∑
Li<tk≤Ri

Wik = 0
∣∣∣ξi)}I(Ri<∞)

f(ξi)dξi

]1−∆i

.

(4.9)

Thus, maximizing the likelihood function (4.7) based on the observed partly interval-

censored data in (4.1) is tantamount to maximizing the likelihood function (4.9)

based on (4.8). In other words, the latent variables Wik provide a useful tool for

modeling the partly interval-censored data, and the resulting likelihood function can

be simplified and expressed in terms of (4.8).
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The parameter vector of interest is represented by θ = (a>1 , . . . , a
>
m, β

>)>. To

estimate θ, we propose maximizing the likelihood function (4.9) using an EM algo-

rithm that treats Wik and ξi as complete data. Specifically, we aim to maximize

the complete-data loglikelihood function in the EM algorithm, which is given by the

following expression:

n∑
i=1

(
m∑
k=1

I(tk ≤ R∗i )
[
Wik log

{
ξi(X

>
ikak) exp(β>Zik)

}
− ξi(X>ikak) exp(β>Zik)− logWik!

]
+ log f(ξi)

)
,

(4.10)

where R∗i = ∆iTi + (1−∆i) {LiI(Ri =∞) +RiI(Ri <∞)}.

In the E-step of the EM algorithm, we calculate the conditional expectation of

(4.10). This step involves evaluating the posterior means of the latent variables Wik

and ξi given the observed data, which are denoted by Ê(Wik) and Ê(ξi), respectively.

More details on this step are described in the next subsection. In the M-step, we

maximize the conditional expectation of (4.10) with respect to the parameter vector

θ = (a>1 , . . . , a
>
m, β

>)>. Specifically, we set the derivatives of the conditional expecta-

tion of (4.10) with respect to ak (k = 1, . . . ,m) and β to zero, respectively. Then we

solve for the estimates of ak and β through the following equations:

n∑
i=1

I(tk ≤ R∗i )
{Ê(Wik)

X>ikak
− Ê(ξi) exp(β>Zik)

}
Xik = 0, for k = 1, . . . ,m, (4.11)

n∑
i=1

m∑
k=1

I(tk ≤ R∗i )
{
Ê(Wik)− Ê(ξi)(X

>
ikak) exp(β>Zik)

}
Zik = 0. (4.12)

Note that the dimension of θ is (mq+d), which may exceed the sample size n of partly

interval-censored data. Hence, (4.11) and (4.12) are a system of high-dimensional non-

linear equations that are unprecedentedly challenging and computationally expensive

to solve. Under a special case that Xi represents levels in a set of factors, there exist
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explicit formulae for calculating the high-dimensional parameters ak (k = 1, . . . ,m)

when fixing β in (4.11). With those high-dimensional parameters fixed in (4.12), the

low-dimensional parameter β can be solved via any root-finding algorithms, such as

the Newton-Raphson method. Here, we give some further illustrations.

Let D be a categorical variable with q levels. We can assume, for the sake of

simplicity and without affecting the generality of the analysis, that D takes values

in {1, . . . , q}. Let X = (1, X2, . . . , Xq) where X2, . . . , Xq are group indicators, i.e.,

X2 = I(D = 2), . . . , Xq = I(D = q). Here, D = 1 is considered as the reference

group. We propose the following Gauss-Seidel method to jointly solve (4.11) and

(4.12). Start with some initial values of the unknown parameters.

Step 1. Fix β, we update ak, (k = 1, . . . ,m) by solving (4.11). Note that for a fixed

k, equation (4.11) is equivalent to



∑n
i=1 I(Di = 1)I(tk ≤ R∗i )

{
Ê(Wik)
a1k

− Ê(ξi) exp(β>Zik)
}

= 0∑n
i=1 I(Di = 2)I(tk ≤ R∗i )

{
Ê(Wik)
a1k+a2k

− Ê(ξi) exp(β>Zik)
}

= 0

. . .∑n
i=1 I(Di = q)I(tk ≤ R∗i )

{
Ê(Wik)
a1k+aqk

− Ê(ξi) exp(β>Zik)
}

= 0.

Hence, we obtain that



a1k =
∑n

i=1 I(Di=1)I(tk≤R∗i )Ê(Wik)∑n
i=1 I(Di=1)I(tk≤R∗i )Ê(ξi) exp(β>Zik)

a2k =
∑n

i=1 I(Di=2)I(tk≤R∗i )Ê(Wik)∑n
i=1 I(Di=2)I(tk≤R∗i )Ê(ξi) exp(β>Zik)

− a1k

. . .

aqk =
∑n

i=1 I(Di=q)I(tk≤R∗i )Ê(Wik)∑n
i=1 I(Di=q)I(tk≤R∗i )Ê(ξi) exp(β>Zik)

− a1k.

(4.13)

Step 2. Fix a1, . . . , am, we update β by solving (4.12) using the Newton-Raphson

method. We alternate between E- and M-steps until convergence is achieved.
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In the case where X represents levels in a set of factors, coupled with G(x) = x,

the model (4.2) reduces to the stratified Cox model (Kalbfleisch and Prentice, 2002),

which serves as an alternative to accommodate the non-proportionality hazards as-

sumption in the literature. Our methods fill the gap for estimating the stratified Cox

model from partly interval-censored data, which has not been investigated yet, to the

best of our knowledge. However, there are no explicit forms for ak despite the afore-

mentioned special case. Therefore, the computational challenges continue to present

barriers to implementing the EM algorithm. To cope with more general situations,

we adopt an estimating equation approach and employ an expectation-solving (ES)

algorithm (Elashoff and Ryan, 2004) for feasible and simple computations.

4.2.4 Estimating Equations

In the previous subsection, we introduced a collection of independent latent vari-

ables Wik such that Wik|ξi ∼ Poisson{(X>ikak) exp(β>Zik)}. Based on this, we con-

struct the complete-data estimating equations U(θ) = (Ua1 , . . . , Uam , Uβ) = 0, where



Ua1 =
∑n

i=1 I(t1 ≤ R∗i )
{
Wi1 − ξi(X>i1a1) exp(β>Zi1)

}
Xi1

. . .

Uam =
∑n

i=1 I(tm ≤ R∗i )
{
Wim − ξi(X>imam) exp(β>Zim)

}
Xim

Uβ =
∑n

i=1

∑m
k=1 I(tk ≤ R∗i )

{
Wik − ξi(X>ikak) exp(β>Zik)

}
Zik.

(4.14)

Conditional expectation arguments easily establish that (4.14) is a system of unbiased

estimating equations. For instance, notice that

E
[
I(t1 ≤ R∗i )

{
Wi1 − ξi(X>i1a1) exp(β>Zi1)

}
Xi1

]
= E

(
E
[
I(t1 ≤ R∗i )

{
Wi1 − ξi(X>i1a1) exp(β>Zi1)

}
Xi1 | Oi, ξi

])
= E

[
I(t1 ≤ R∗i )

{
E(Wi1|Oi, ξi)− ξi(X>i1a1) exp(β>Zi1)

}
Xi1

]
= 0.
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Hence, E
[∑n

i=1 I(t1 ≤ R∗i )
{
Wi1 − ξi(X>i1a1) exp(β>Zi1)

}
Xi1

]
= 0.

We propose to estimate θ through an ES algorithm by treating Wik and ξi (i =

1, . . . , n; k = 1, . . . ,m) as missing. The ES algorithm consists of two steps: an E-step,

in which the missing data Wik and ξi are imputed by their conditional expectations,

and an S-step, which solves the conditional expectation of the estimating equations

(4.14) given the observed data. Starting with initial values of parameters θ, the

proposed ES algorithm proceeds through the following two steps iteratively until

convergence:

E-step. Evaluate the posterior means Ê(Wik) and Ê(ξi) given the observed data.

When ∆i = 1, the posterior density function of ξi given the observed data is pro-

portional to ξi exp(−ξiSiT )f(ξi), where SiT =
∑

tk≤Ti(X
>
ikak) exp(β>Zik). Hence, we

calculate

Ê(ξi) = G
′
(SiT )− G

′′
(SiT )

G′(SiT )
,

whereG′(x) andG′′(x) are the first and second derivatives ofG(·) with respect to x, re-

spectively. When ∆i = 0, the posterior density of ξi given the observed data is propor-

tional to {exp(−ξiSiL) − exp(−ξiSiR)}f(ξi), where SiL =
∑

tk≤Li
(X>ikak) exp(β>Zik)

and SiR =
∑

tk≤Ri
(X>ikak) exp(β>Zik). We then obtain

Ê(ξi) =
exp{−G(SiL)}G′(SiL)− exp{−G(SiR)}G′(SiR)

exp{−G(SiL)} − exp{−G(SiR)}
.

For the posterior mean of Wik, when ∆i = 1, we observe (Xi, Zi, Ai = 0, Bi = 1).

Thus, Ê(Wik) = 0 for all tk < Ti and Ê(Wik) = 1 for tk = Ti. When ∆i = 0, we

observe (Li, Ri, Xi, Zi, Ci = 0, Di > 0). Thus, for any tk ≤ Li,

Ê(Wik) = E(Wik|Ci = 0, Di > 0, Xi, Zi) = 0,
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For Li < tk ≤ Ri with Ri <∞,

Ê(Wik) = Eξi {E(Wik|ξi, Ci = 0, Di > 0)|Ci = 0, Di > 0}

= Eξi

[
ξi(X

>
ikak) exp(β>Zik)

1− exp{−ξi(SiR − SiL)}

∣∣∣∣∣Ci = 0, Di > 0

]

=
(X>ikak) exp(β>Zik)

exp{−G(SiL)} − exp{−G(SiR)}

∫ ∞
0

ξi{exp(−ξiSiL)− exp(−ξiSiR)}
1− exp{−ξi(SiR − SiL)}

f(ξi)dξi

=
(X>ikak) exp(β>Zik)

exp{−G(SiL)} − exp{−G(SiR)}

∫
ξi

ξi exp(−ξiSiL)f(ξi)dξi

=
(X>ikak) exp(β>Zik)

exp{−G(SiL)} − exp{−G(SiR)}
exp{−G(SiL)}G′(SiL).

S-step. Replacing Wik and ξi with Ê(Wik) and Ê(ξi) in (4.14), we then solve for

θ. Note that (4.14) is a large-dimensional nonlinear equation, and is not easy to be

solved simultaneously. Thus, we propose the following nonlinear Gauss-Seidel method

(Ortega and Rheinboldt, 1970; Ortega, 1972).

Step 1. Fix β, update ak (k = 1, . . . ,m) by solving



∑n
i=1 I(t1 ≤ R∗i )

{
Ê(Wi1)− Ê(ξi)(X

>
i1a1) exp(β>Zi1)

}
Xi1 = 0

. . .∑n
i=1 I(tm ≤ R∗i )

{
Ê(Wim)− Ê(ξi)(X

>
imam) exp(β>Zim)

}
Xim = 0.

(4.15)

It is noted that for fixed β, equation (4.15) is linear with respect to ak (k = 1, . . . ,m).

ak =
{ n∑

i=1

I(tk ≤ R∗i )Ê(ξi) exp(β>Zik)XikX
>
ik

}−1{ n∑
i=1

I(tk ≤ R∗i )Ê(Wik)Xik

}
,

(4.16)

for k = 1, . . . ,m.

Step 2. Fix a1, . . . , am, we update β by solving the following equation via the
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Newton-Raphson method:

n∑
i=1

m∑
k=1

I(tk ≤ R∗i )
{
Ê(Wik)− Ê(ξi)(X

>
ikak) exp(β>Zik)

}
Zik = 0. (4.17)

The S-step is declared convergent when the total absolute difference between the

estimates obtained in two consecutive iterations falls below a predefined threshold,

such as 10−3.

We alternate between the E- and S-steps until convergence and denote the final

estimates by θ̂ = (â>1 , . . . , â
>
1 , β̂)>. In this chapter, we employed a convergence crite-

rion based on the largest absolute difference in the parameter estimates between

two consecutive iterations. Specifically, we considered convergence to have been

achieved when the largest absolute difference in the estimates fell below a prede-

termined threshold, such as 5 × 10−3. We also explored the effect of using different

threshold values and found that various small values led to similar results. A natural

estimator for A(t) is Â(t) =
∑

tk≤t âk for 0 ≤ t ≤ τ . Recall that A(t) =
∫ t

0
α(s)ds,

hence we can estimate α(t), 0 ≤ t ≤ τ via a kernel estimator

α̂(t) =
m∑
k=1

h−1K

(
t− tk
h

)
âk,

where K(x) is the kernel function and h is the bandwidth. Here, we choose the

Epanechnikov kernel function, i.e., K(x) = 3
4
max{1− x2, 0}.

The derived ES algorithm advances the maximization of the observed likelihood in

several directions. First, closed expressions of the posterior means of Wik and ξ are

obtained in the E-step. Second, it only involves the low-dimensional parameter β in

each iteration because of the explicit calculation of the high-dimensional parameters

ak (k = 1, . . . ,m) in the S-step. Third, when X is a vector of design variables

for categories, the proposed ES estimator is efficient because the corresponding ES

algorithm coincides with the EM algorithm proposed in Section 4.2.3 by observing
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that for fixed β, (4.11) and (4.16) share the same solution in terms of ak (k =

1, . . . ,m). Similarly, when X ≡ 1, it can be shown that the ES algorithm coincides

with the EM algorithms proposed in Zhou et al. (2021) with partly interval-censored

data. Finally, we remark that (4.16) can be considered as a weighted version of (4.11),

where each subject i receives a weight X>ikak.

4.3 Variance Estimator

Note that Ê(Wik) and Ê(ξi) (i = 1, . . . , n; k = 1, . . . ,m) can be represented as

functions of the unknown parameter θ and the observed data Oi. Write Ê(Wi1) =

f1(Oi, θ), . . . , Ê(Wim) = fm(Oi, θ) and Ê(ξi) = g(Oi, θ). Plugging those functions

back in (4.15) and (4.17), the proposed ES algorithm is intrinsically solving a sys-

tem of observed-data estimating equations. However, the high dimensionality of the

parameter θ can pose computational challenges for estimating the variance of θ. Al-

ternatively, we suggest employing the weighted bootstrap procedure, which works

reasonably well in our settings.

Let e1, . . . , en be i.i.d exponential random variables with mean one, which are in-

dependent of the observed data O = (O1, . . . ,On) defined in Section (4.2.1). Let

e = n−1
∑n

i=1 ei and ẽi = ei/e. In addition, let Ũ(θ) = (Ũa1 , . . . , Ũam , Ũβ) be the

weighted version of U(θ) constructed in Section 4.2.4, where

Ũak =
n∑
i=1

I(tk ≤ R∗i )ẽi
{
Wik − ξi(X>ikak) exp(β>Zik)

}
Xik,

for k = 1, . . . ,m, and

Ũβ =
n∑
i=1

m∑
k=1

I(tk ≤ R∗i )ẽi
{
Wik − ξi(X>ikak) exp(β>Zik)

}
Zik.

Let θ̃ = (ã>1 , . . . , ã
>
m, β̃

>)> denotes estimator that solves the weighted estimating

equation Ũ(θ) = 0, which can be achieved through the proposed ES algorithm in
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Section 4.2.4 only with trivial modifications. Specifically, in the E-step, the posterior

means of Wik and ξi (i = 1, . . . , n; k = 1, . . . ,m), denoted by Ẽ(Wik) and Ẽ(ξi), have

the same expressions as Ê(Wik) and Ê(ξi) in Section 4.2.4. In the Step 1 of the S-step,

for fixed β̃, ãk (k = 1, . . . ,m) can be updated via

ãk =
{ n∑

i=1

I(tk ≤ R∗i )ẽiẼ(ξi) exp(β>Zik)XikX
>
ik

}−1{ n∑
i=1

I(tk ≤ R∗i )ẽiẼ(Wik)Xik

}
.

In the Step 2 of the S-step, for fixed ãk (k = 1, . . . ,m), we solve for β̃ through the

following

n∑
i=1

m∑
k=1

I(tk ≤ R∗i )ẽi

{
Ẽ(Wik)− Ẽ(ξi)(X

>
ikak) exp(β>Zik)

}
Zik = 0.

Then one can iterate between the revised E-steps and S-steps until convergence. For

each bootstrap replicate, we generate a set of bootstrap weights and run the revised

ES algorithm to obtain θ̃. The variance of θ̂ can be estimated using the sample

variance of the bootstrap replications, which are denoted as θ̃. The validity of the

weighted bootstrap is proved in Appendix B.

4.4 Asymptotic Properties

We establish the asymptotic properties of the proposed estimators under the fol-

lowing regularity conditions:

Condition 1. With probability one, the vectors X(t) and Z(t) are uniformly

bounded with uniformly bounded total variation over [0, τ ].

Condition 2. Let B be a compact set of Rd and BV [0, τ ] be the class of functions

with bound variation over [0, τ ]. The true parameter (β0, A0) belongs to B×BV q[0, τ ]

with β0 an interior point of B and A0(t) = (A01(t), . . . , A0q(t))
> is continuously dif-

ferentiable over [0, τ ] with A0(0) = 0. Here, BV q[0, τ ] denotes the product space

BV [0, τ ]× · · · ×BV [0, τ ].
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Condition 3. 0 < P (∆ = 0) ≤ 1. For ∆ = 0, the number of monitoring times, K,

is positive, and E(K) < ∞. In addition, there exists some constant c > 0 such that

P (Uj+1 − Uj ≥ c|K,X,Z,∆ = 0) = 1 (j = 1, . . . , K − 1).

Condition 4. The transformation function G is thrice continuously differentiable

on [0,∞) with G(0) = 0, G′(x) > 0 and G(∞) =∞.

Condition 5. If there exists a vector η and a deterministic function η0(t) such that

η0(t) + η>X(t) = 0 with probability one, then η = 0 and η0(t) = 0.

Condition 6. The map Ψ̇θ0 defined in Appendix B is invertible, where θ0 = (β0, A0).

Remark 4.1. Conditions 1 and 2 state the boundedness of the covariates and the

compactness of the Euclidean parameter space, which are standard used in survival

analysis. Condition 3 is a conventional condition for partly interval-censored data,

which requires that the smallest interval that brackets the failure time must be sep-

arated by at least c. The smoothness condition for the joint density of (Uj, Uj+1) is

used to prove the Donsker property of some function classes. Condition 4 ensures that

the transformation function G is strictly increasing on [0,∞). Condition 5 ensures

the existence and uniqueness of the jump sizes in (4.16). Condition 6 is a classical

condition for Z-estimators.

Theorem 4.1. Under Conditions 1− 6, the proposed ES estimator (β̂, Â) is strongly

consistent to (β0, A0).

Theorem 4.2. Under Conditions 1 − 6,
√
n(β̂ − β0, Â − A0) converges weakly to a

zero-mean Gaussian process in the metric space Rd × linq(BV1[0, τ ]).

Here, we let lin(BV1[0, τ ]) be the closed linear span for linear functionals ofBV1[0, τ ].

For each j (j = 1, . . . , q), Aj is contained in the Banach space lin(BV1[0, τ ]), where

Aj[h] =
∫
h(t)dAj(t) for h ∈ BV1[0, τ ]. Let linq(BV1[0, τ ]) stands for the product

space lin(BV1[0, τ ]) × · · · × lin(BV1[0, τ ]). Thus, A = (A1, . . . , Aq)
> is contained in

the Banach space linq(BV1[0, τ ]).
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Theorem 4.3. Under Conditions 1 − 6, the conditional distribution of
√
n(θ̃ − θ̂)

given the data converges weakly to the asymptotic distribution of
√
n(θ̂ − θ0).

Detailed proofs of the above theorems are presented in Appendix B.

4.5 Simulation Studies

We conducted extensive simulation studies to examine the finite sample perfor-

mance of the proposed estimators. The failure time Ti is generated from the following

Cox-Aalen transformation model

Λ(t) = G

[∫ t

0

exp{β1Z1(s) + β2Z2}dΛX(s)

]
.

Here, Z1(t) = B1I(t ≤ V )+B2I(t > V ) is a time-dependent covariate, with B1 and B2

being independent Ber(0.5) random variables and V ∼ Unif(0, 3). Additionally, Z2 ∼

Unif(0, 1) is time-independent. To examine the effects of different transformations, we

use a class of logarithmic transformations G(x) = log(1 + rx)/r with r = 0, 0.5, and

1, and note that r = 0 aligns with the Cox-Aalen model. We assigned the value of 0.5

to β1 and the value of −0.5 to β2 for all simulation scenarios, and considered following

nnumerical scenarios for ΛX(s) =
∫ s

0
X>(u)dA(u) with A(t) = (A1(t), . . . , Aq(t))

>:

Scenario 1. X = (1, X2)> with X2 ∼ Ber(0.4), A1(t) = log(1 + t/2) and A2(t) =

0.1t.

Scenario 2. X = (1, X2)> with X2 ∼ Unif(0, 1), A1(t) = log(1 + t/2) and A2(t) =

0.1t.

Scenario 3. Let D be a categorical variable that takes values in {1, 2, 3} with equal

probability, i.e., 1/3. Let X = (1, X2, X3)>, where X2 = I(D = 2), X3 = I(D = 3),

A1(t) = log(1 + t/2), A2(t) = 0.1t and A3(t) = 0.05t.

For all setups, we let τ = 5 be the duration of the study, beyond which no examina-

tions occurred. For each study participant, we generate at least two monitoring times

U1 ∼ Unif(0, τ/2) and U2 ∼ min{0.1 + U1 + Unif(0, τ/2), τ}. If U2 < τ , we continue



60

generating the third monitoring time U3 ∼ min{0.1 + U2 + Unif(0, τ/2), τ}, and if

U3 < τ , we generate one last monitoring time U4 ∼ min{0.1 + U3 + Unif(0, τ/2), τ}.

Thus, the time axis (0,∞) is partitioned into at least three intervals and at most

five intervals. We let (L,R] be smallest interval that brackets the failure time T . In

particular, if R = ∞, we set ∆ = 0. Otherwise, we generate ∆ ∼ Ber(γ). If ∆ = 1,

the failure time is assumed to be exactly observed. Moreover, we can interpret γ as

the proportion of failure observations that are exactly observed among those that are

not right-censored. We investigate the impact of different levels of interval censoring

by setting γ = 0, 0.25, 0.5, 0.75, or 1, where γ = 0 and γ = 1 correspond to purely

interval-censored and right-censored data, respectively, and intermediate values gen-

erate partly interval-censored data. On average, the right-censoring rates range from

25% to 45% across all experimental setups.

For each experimental scenario, we initialized the proposed ES algorithm with

β = 0 and ak = (1/m, 0, . . . , 0) for k = 1, . . . ,m. The estimated parameters were

found to be highly robust to different initial values. To estimate the variance of

the proposed estimator β̂, we used the weighted bootstrap procedure described in

Section 4.3. The sample sizes were set to 200, 500, and 1000. We conducted 1000

simulation replicates for each scenario, and the variance estimate was obtained from

1000 bootstrap samples.

Table 4.1, 4.2, and 4.3 provide a summary of the parameter estimation results for

Scenarios 1− 3. The simulation results demonstrate that the proposed methods per-

form exceptionally well in all experimental scenarios. The parameter estimators are

nearly unbiased, the variance estimators obtained via bootstrapping are very accu-

rate, and the resulting confidence intervals exhibit correct coverage probabilities. As

expected, the variance estimator tends to become smaller as the sample size increases

and the proportion of exact observations grows. Figures 4.1 and 4.2 illustrate that

the proposed estimating procedures for A1(·) and A2(·) exhibit negligible bias, further
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affirming their reliability. For the other values of γ, the estimated cumulative regres-

sion functions resemble those shown in Figure 4.1, and are consequently omitted from

the report.

4.6 Data Application

In this section, we considered a randomized trial, the AIDS Clinical Trials Group

(ACTG) 175 trial, which enrolled a total of 2467 HIV-1-infected patients whose CD4

cell counts were from 200 to 500 cubic millimeter (Hammer et al., 1996). The trial in-

cluded both patients who had received prior antiretroviral therapy (ART-experienced)

and those who had not (ART-naive). The primary goal of the study was to compare

the effectiveness of four antiretroviral regimens − zidovudine only, zidovudine and di-

danosine, zidovudine and zalcitabine, and didanosine only − in reducing mortality or

AIDS morbidity among HIV-1-infected patients (Hammer et al., 1996). The study’s

primary endpoint was a composite outcome of death or development of AIDS, which

has been historically used as a common measure of disease progression and treatment

efficacy in HIV/AIDS research. The participants were randomly assigned to one of

the four antiretroviral regimens, examined at weeks 2, 4, and 8, followed by assess-

ments every 12 weeks. Their CD4 cell counts were measured at each of these follow-up

visits, with the first measurement taken at week 8. Thus, if death occurs before the

development of AIDS, the exact failures were determined. However, if AIDS occurs

first, then we didn’t know the exact time points instead of an interval due to the

periodical examinations, i.e., interval-censored. Thus, the data consists of exact and

interval-censored observations.

We excluded 10 participants without CD4 cell counts measurements, resulting in

a total of 2457 HIV-1-infected participants in the full cohort, with 1396 and 1061 in

the ART-experienced and ART-naive groups, respectively. Among the full cohort,

there were a total of 306 cases observed, which represented 12.45% of the cohort.

Within these cases, there were 230 AIDS events and 76 deaths, indicating 9.36%
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Table 4.1: Estimation results of the regression parameter β under Scenario 1

β1 = 0.5 β2 = −0.5

n γ Bias SE SEE CP Bias SE SEE CP
r = 0

200 0 0.017 0.194 0.198 0.949 −0.012 0.299 0.300 0.956
0.25 0.007 0.185 0.185 0.943 −0.002 0.292 0.293 0.955
0.5 0.005 0.177 0.177 0.946 −0.002 0.290 0.290 0.956
0.75 0.003 0.171 0.171 0.951 −0.003 0.290 0.288 0.951
1 0.003 0.166 0.167 0.948 −0.000 0.287 0.287 0.954

500 0 0.006 0.116 0.119 0.965 0.003 0.184 0.186 0.954
0.25 0.002 0.113 0.115 0.958 0.004 0.178 0.184 0.953
0.5 0.001 0.110 0.111 0.950 0.004 0.177 0.183 0.954
0.75 0.001 0.107 0.108 0.948 0.003 0.176 0.182 0.954
1 0.002 0.105 0.106 0.949 0.003 0.175 0.181 0.951

1000 0 0.004 0.083 0.083 0.950 −0.009 0.130 0.131 0.951
0.25 0.005 0.081 0.081 0.951 −0.006 0.129 0.130 0.947
0.5 0.003 0.079 0.078 0.948 −0.005 0.128 0.129 0.945
0.75 0.002 0.077 0.076 0.954 −0.005 0.129 0.129 0.950
1 0.003 0.075 0.075 0.954 −0.004 0.128 0.128 0.950

r = 0.5
200 0 0.020 0.249 0.251 0.950 0.009 0.387 0.397 0.959

0.25 0.003 0.235 0.228 0.948 0.015 0.378 0.385 0.960
0.5 0.001 0.225 0.215 0.940 0.017 0.373 0.378 0.955
0.75 −0.002 0.218 0.207 0.939 0.019 0.369 0.375 0.954
1 −0.002 0.213 0.200 0.942 0.018 0.367 0.372 0.961

500 0 0.001 0.140 0.148 0.964 0.003 0.238 0.243 0.953
0.25 0.001 0.136 0.140 0.954 0.004 0.237 0.240 0.944
0.5 −0.001 0.132 0.134 0.960 0.006 0.235 0.237 0.948
0.75 −0.001 0.127 0.130 0.956 0.007 0.233 0.236 0.948
1 0.001 0.125 0.127 0.953 0.006 0.232 0.235 0.944

1000 0 −0.001 0.103 0.103 0.949 −0.003 0.171 0.171 0.947
0.25 0.000 0.100 0.098 0.951 −0.001 0.170 0.170 0.951
0.5 −0.002 0.097 0.095 0.942 0.000 0.169 0.168 0.952
0.75 0.000 0.093 0.092 0.949 −0.002 0.169 0.167 0.945
1 0.002 0.091 0.090 0.945 −0.002 0.169 0.167 0.953

r = 1
200 0 0.025 0.291 0.294 0.953 0.011 0.460 0.477 0.963

0.25 0.005 0.270 0.260 0.946 0.023 0.446 0.455 0.956
0.5 0.001 0.252 0.243 0.939 0.025 0.442 0.446 0.954
0.75 −0.000 0.248 0.232 0.938 0.020 0.438 0.442 0.960
1 −0.001 0.238 0.224 0.940 0.021 0.434 0.438 0.958

500 0 −0.004 0.163 0.171 0.963 0.009 0.287 0.290 0.945)
0.25 −0.008 0.155 0.159 0.953 0.009 0.286 0.285 0.946)
0.5 −0.008 0.149 0.152 0.949 0.013 0.283 0.281 0.940
0.75 −0.003 0.144 0.147 0.958 0.012 0.278 0.279 0.948
1 −0.002 0.140 0.142 0.962 0.010 0.278 0.277 0.941

1000 0 −0.002 0.118 0.118 0.948 0.003 0.207 0.203 0.944
0.25 −0.004 0.114 0.112 0.951 0.002 0.206 0.201 0.941
0.5 −0.004 0.111 0.108 0.946 0.004 0.205 0.199 0.939
0.75 0.000 0.105 0.104 0.949 0.003 0.204 0.198 0.937
1 0.001 0.103 0.101 0.943 0.000 0.203 0.197 0.945

Note: Bias, SE, SEE, and CP stand, respectively, for the bias, empirical standard error, standard
error estimator, and empirical coverage percentage of the 95% confidence interval. SEE is based on
1000 bootstrap samples.
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Table 4.2: Estimation results of the regression parameter β under Scenario 2

β1 = 0.5 β2 = −0.5

n γ Bias SE SEE CP Bias SE SEE CP
r = 0

200 0 −0.008 0.192 0.186 0.952 0.005 0.298 0.291 0.945
0.25 0.001 0.180 0.179 0.954 0.014 0.294 0.288 0.943
0.5 −0.005 0.176 0.173 0.945 0.007 0.288 0.286 0.946
0.75 −0.001 0.172 0.169 0.945 0.008 0.286 0.285 0.944
1 −0.001 0.169 0.166 0.945 0.009 0.283 0.285 0.944

500 0 0.006 0.116 0.118 0.957 0.002 0.184 0.185 0.956
0.25 0.009 0.113 0.116 0.950 −0.004 0.181 0.189 0.956
0.5 0.003 0.109 0.111 0.944 0.001 0.177 0.184 0.953
0.75 0.000 0.106 0.108 0.948 0.003 0.175 0.181 0.954
1 0.001 0.104 0.105 0.947 0.004 0.173 0.179 0.956

1000 0 0.003 0.083 0.083 0.948 −0.009 0.129 0.130 0.948
0.25 0.006 0.081 0.081 0.954 −0.009 0.129 0.131 0.952
0.5 0.004 0.078 0.078 0.949 −0.006 0.128 0.129 0.948
0.75 0.004 0.077 0.076 0.946 −0.005 0.128 0.128 0.942
1 0.004 0.076 0.074 0.948 −0.005 0.128 0.127 0.946

r = 0.5
200 0 −0.010 0.239 0.234 0.941 0.024 0.383 0.377 0.951

0.25 −0.011 0.226 0.214 0.936 0.030 0.380 0.364 0.940
0.5 −0.001 0.222 0.210 0.933 0.020 0.376 0.370 0.947
0.75 −0.006 0.210 0.203 0.936 0.026 0.366 0.367 0.949
1 −0.002 0.207 0.199 0.946 0.020 0.364 0.370 0.952

500 0 0.001 0.143 0.147 0.956 0.007 0.235 0.241 0.948
0.25 0.012 0.141 0.141 0.956 −0.008 0.242 0.242 0.944
0.5 0.002 0.133 0.133 0.950 0.002 0.235 0.236 0.947
0.75 0.001 0.129 0.129 0.952 0.007 0.230 0.234 0.954
1 −0.001 0.126 0.126 0.957 0.007 0.229 0.234 0.946

1000 0 -0.004 0.104 0.102 0.946 -0.000 0.170 0.169 0.948
0.25 0.003 0.101 0.097 0.937 −0.004 0.172 0.169 0.945
0.5 −0.000 0.097 0.094 0.937 0.001 0.169 0.167 0.945
0.75 0.000 0.094 0.091 0.945 0.001 0.169 0.166 0.946
1 0.002 0.091 0.089 0.949 −0.002 0.168 0.166 0.951

r = 1
200 0 −0.018 0.265 0.266 0.944 0.061 0.454 0.430 0.937

0.25 −0.005 0.258 0.244 0.931 0.074 0.447 0.424 0.931
0.5 −0.003 0.258 0.235 0.931 0.032 0.443 0.431 0.945
0.75 −0.001 0.248 0.229 0.934 0.025 0.434 0.434 0.958
1 −0.002 0.238 0.222 0.941 0.023 0.432 0.436 0.954

500 0 0.001 0.172 0.168 0.939 0.021 0.289 0.281 0.946
0.25 −0.007 0.158 0.159 0.947 0.014 0.289 0.284 0.939
0.5 −0.001 0.152 0.151 0.961 0.008 0.284 0.279 0.944
0.75 −0.007 0.144 0.146 0.952 0.011 0.276 0.277 0.950
1 −0.003 0.139 0.142 0.953 0.010 0.275 0.277 0.949

1000 0 −0.007 0.116 0.116 0.949 0.010 0.204 0.199 0.939
0.25 0.006 0.112 0.111 0.939 0.003 0.204 0.200 0.941
0.5 −0.002 0.110 0.107 0.944 0.007 0.203 0.198 0.942
0.75 −0.001 0.104 0.103 0.953 0.006 0.202 0.197 0.944
1 0.002 0.102 0.101 0.956 −0.000 0.201 0.197 0.947

Note: See the note to Table 4.1
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Table 4.3: Estimation results of the regression parameter β under Scenario 3

β1 = 0.5 β2 = −0.5

n γ Bias SE SEE CP Bias SE SEE CP
r = 0

200 0 0.016 0.200 0.205 0.952 −0.030 0.308 0.300 0.935
0.25 0.001 0.190 0.186 0.950 −0.016 0.300 0.291 0.931
0.5 −0.003 0.183 0.176 0.934 −0.012 0.294 0.287 0.940
0.75 −0.007 0.174 0.170 0.944 −0.012 0.292 0.284 0.937
1 −0.005 0.172 0.165 0.938 −0.009 0.289 0.282 0.939

500 0 0.001 0.118 0.119 0.955 −0.016 0.188 0.185 0.949
0.25 −0.001 0.112 0.114 0.956 −0.010 0.187 0.183 0.947
0.5 −0.001 0.109 0.110 0.955 −0.010 0.184 0.181 0.945
0.75 −0.004 0.107 0.107 0.954 −0.010 0.182 0.180 0.949
1 −0.003 0.103 0.104 0.955 −0.007 0.181 0.179 0.942

1000 0 0.003 0.083 0.083 0.948 -0.011 0.129 0.130 0.949
0.25 0.003 0.081 0.080 0.940 −0.007 0.128 0.129 0.946
0.5 0.002 0.078 0.077 0.946 −0.007 0.127 0.128 0.947
0.75 0.003 0.077 0.076 0.945 −0.005 0.127 0.127 0.950
1 0.004 0.076 0.074 0.946 −0.003 0.126 0.126 0.947

r = 0.5
200 0 0.016 0.248 0.263 0.965 −0.030 0.394 0.401 0.953

0.25 −0.005 0.230 0.231 0.948 −0.013 0.380 0.383 0.958
0.5 −0.011 0.222 0.214 0.940 −0.006 0.374 0.374 0.952
0.75 −0.007 0.214 0.205 0.941 −0.008 0.370 0.369 0.955
1 −0.008 0.210 0.197 0.933 −0.005 0.366 0.366 0.956

500 0 −0.003 0.149 0.149 0.945 −0.015 0.238 0.243 0.954
0.25 −0.006 0.141 0.140 0.951 −0.013 0.238 0.239 0.949
0.5 −0.006 0.135 0.134 0.941 −0.009 0.235 0.236 0.951
0.75 −0.007 0.130 0.129 0.944 −0.008 0.231 0.234 0.957
1 −0.006 0.126 0.126 0.945 −0.007 0.231 0.232 0.951

1000 0 0.003 0.104 0.102 0.955 −0.005 0.164 0.169 0.959
0.25 0.002 0.099 0.098 0.955 −0.003 0.163 0.168 0.954
0.5 0.001 0.096 0.094 0.953 0.002 0.160 0.166 0.960
0.75 0.004 0.094 0.091 0.935 0.003 0.161 0.165 0.947
1 0.004 0.091 0.089 0.943 0.003 0.161 0.164 0.958

r = 1

200 0 0.030 0.296 0.309 0.959 −0.013 0.479 0.482 0.949
0.25 0.003 0.274 0.265 0.941 0.015 0.449 0.456 0.963
0.5 −0.002 0.257 0.243 0.934 0.021 0.437 0.443 0.957
0.75 −0.003 0.250 0.230 0.936 0.022 0.433 0.436 0.959
1 −0.000 0.242 0.221 0.931 0.021 0.432 0.432 0.958

500 0 0.006 0.167 0.173 0.953 0.014 0.288 0.290 0.958
0.25 −0.001 0.160 0.159 0.946 0.013 0.284 0.283 0.950
0.5 −0.004 0.149 0.151 0.953 0.009 0.276 0.278 0.951
0.75 −0.003 0.145 0.146 0.950 0.012 0.272 0.275 0.946
1 −0.000 0.139 0.141 0.955 0.011 0.273 0.274 0.949

1000 0 0.000 0.117 0.118 0.956 0.002 0.203 0.201 0.950
0.25 −0.000 0.111 0.111 0.948 0.001 0.200 0.199 0.947
0.5 0.000 0.107 0.107 0.949 0.004 0.199 0.196 0.949
0.75 0.002 0.103 0.103 0.952 0.006 0.200 0.195 0.952
1 0.003 0.101 0.100 0.950 0.003 0.199 0.195 0.946

Note: See the note to Table 4.1
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Figure 4.1: Estimation results for (a) A1(t) = log(1 + t/2) and (b) A2(t) = 0.1t in
Scenario 1 with r = 0. The dotted, dashed and solid lines represent n = 200, 800 and
1000, respectively. Bias, SE, SEE, and CP see the note to Table 4.1.
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Figure 4.2: Estimation results for (a) A1(t) = log(1 + t/2) and (b) A2(t) = 0.1t in
Scenario 2 with r = 0.5. The dotted, dashed and solid lines represent n = 200, 800
and 1000, respectively. Bias, SE, SEE, and CP see the note to Table 4.1.
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Figure 4.3: Estimation results for (a) A1(t) = log(1 + t/2), (b) A2(t) = 0.1t and (c)
A3(t) = 0.05t in Scenario 3 with r = 1. The dotted, dashed and solid lines represent
n = 200, 800 and 1000, respectively. Bias, SE, SEE, and CP see the note to Table 4.1.
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interval-censored observations and 3.09% exact observations. Of the cases observed,

215 occurred in the ART-experienced group, with 167 AIDS events and 48 deaths,

while 91 cases occurred in the ART-naive group, with 63 AIDS events and 28 deaths.

The following Cox-Aalen transformation model is used to assess the association

between the time to AIDS or death and log10(CD4), treatment assignment (zidovu-

dine + didanosine, zidovudine + zalcitabine, or didanosine), and ART experienced

assignment, without assuming proportional hazards for patients who received prior

ART versus those who did not. Moreover, we assume that the treatment effect is

different between ART-experienced and ART-naive groups. Specifically, the model is

defined as follows:

Λ(t | X,Z(·)) = G
[ ∫ t

0

exp
{
β1Z1(s) + β2Z2 + β3(X2 · Z2)

}
dΛX(s)

]
, (4.18)

where β1, β2 and β3 are unknown regression coefficients, Z1(s) is the time-dependent

covariate log10(CD4), and Z2 indicates whether or not the patient received treat-

ment (1 for received, 0 for not received), X = (1, X2)>, where X2 is an indicator

variable taking on values of 1 or 0 depending on whether the patient is in the ART-

experienced or ART-naive group, respectively. In addition, ΛX(s) =
∫ s

0
X>dA(v),

A(v) = (A1(v), A2(v))>.

We fitted model (4.18) with a logarithmic transformation G(x) = r−1 log(1 + rx).

To determine the optimal value of r, we plotted the loglikelihood against r, as shown

in Figure 4.4. We considered values of r from 0 to 3 in increments of 0.1. Based on

this plot, we selected r = 2 as the best-fit value. We present the estimation results

for the selected model with r = 2 in Table 4.4, including estimates of the model

parameters and their standard errors. For comparison, we also report the estimation

results for r = 0 and r = 1. Overall, the results suggest that the selected model with

r = 2 provides a better fit to the data than the other models considered. However, it
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Figure 4.4: Log-likelihood function at the final parameter estimates in model (4.18)
using G(x) = r−1 log(1 + rx) with r values in the interval [0, 3] and a step size of 0.1.

is important to note that the choice of r can affect the model’s performance, and it is

advisable to consider a range of values and perform model selection based on various

criteria.

Based on the all of the models considered, a lower value of log10(CD4) is associated

with a significantly lower risk of time to death or AIDS onset, as shown in the upper

panel of Table 4.4. The effect of treatment is significant under the model r = 0 and

marginally significant under the model r = 1. Notably, the treatment effect differs

between the ART-naive and experienced groups. The estimated coefficient for treat-

ment is negative in the ART-naive group, indicating that patients in this group who

receive treatment have a significantly lower risk of AIDS onset or death. In contrast,

the estimated coefficient is positive in the ART-experienced group, suggesting that

patients in this group who receive a placebo have a lower risk. Figure 4.5 supports

these findings. Additionally, Figure 4.6 shows the estimated regression functions for

patients in the ART-naive and experienced groups. The plot demonstrates that the

risk of death or AIDS onset is non-proportional within each group. Specifically, pa-

tients in the ART-experienced group have a higher risk than those in the ART-naive
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Table 4.4: Regression analysis results for the ACTG 175 trial via the logarithmic
transformation G(x) = r−1 log(1 + rx)

r = 0 r = 1 Selected model

Covariates Est SE p-value Est SE p-value Est SE p-value
The proposed model

log10(CD4) −2.749 0.119 < 0.001 −3.538 0.160 < 0.001 −4.050 0.187 < 0.001
Treatment −0.524 0.224 0.019 −0.440 0.258 0.088 −0.388 0.281 0.167

Treatment × ART 0.621 0.281 0.027 0.678 0.335 0.043 0.641 0.369 0.082

ART-naive group
log10(CD4) −2.811 0.170 < 0.001 −3.607 0.263 < 0.001 −4.497 0.367 < 0.001

Treatment −0.533 0.225 0.018 −0.439 0.267 0.100 −0.342 0.317 0.281

ART-experienced group
log10(CD4) −2.717 0.119 < 0.001 −3.503 0.181 < 0.001 −3.867 0.209 < 0.001

Treatment 0.094 0.151 0.536 0.232 0.195 0.234 0.245 0.214 0.252
Note: Est and SE stand for the estimates of the regression parameters and the estimated standard
errors, respectively. Here, “ART” refers to the ART-naive group when ART = 0, and to the ART-
experienced group when ART = 1. The selected r values for the proposed model, ART-naive group
and ART-experienced group are 2, 2.8 and 1.7, respectively. Here, the estimation results for ART-
naive and experienced groups are based on Zeng and Lin’s model. SE is calculated via 1000 weighted
bootstrapping samples.

group at the beginning of the study and through an earlier stage. However, after this

point, the risk becomes greater in the ART-naive group.

We also applied Zeng and Lin’s model (Zeng and Lin, 2006) to the ART-naive

and experienced groups separately to compare their results with those obtained using

the proposed model. From the lower two panels of Table 4.4, we found that a lower

value of log10(CD4) significantly reduces the risk of time to death or AIDS onset in

both groups. However, for the ART-naive group, the p-value for the treatment under

the selected Zeng and Lin’s model is 0.281, which is higher than the p-value (0.167)

for treatment using the proposed model. The proposed Cox-Aalen transformation

model, which considers both ART-naive and experienced groups together by allowing

for different baseline risk effects within each group, is suggested to be more flexible

and has the potential to improve statistical power.



71

0.80

0.85

0.90

0.95

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

t

S
u
rv

iv
a

l 
p
ro

b
a
b

ili
ti
e
s

ART−naive (r=0)

0.80

0.85

0.90

0.95

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

t

S
u
rv

iv
a

l 
p
ro

b
a
b

ili
ti
e
s

ART−naive (r=1)

0.80

0.85

0.90

0.95

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

t

S
u
rv

iv
a

l 
p
ro

b
a
b

ili
ti
e
s

ART−naive (r=2)

0.80

0.85

0.90

0.95

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

t

S
u

rv
iv

a
l 
p
ro

b
a
b

ili
ti
e
s

ART−experienced (r=0)

0.80

0.85

0.90

0.95

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

t

S
u

rv
iv

a
l 
p
ro

b
a
b

ili
ti
e
s

ART−experienced (r=1)

0.80

0.85

0.90

0.95

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

t

S
u

rv
iv

a
l 
p
ro

b
a
b

ili
ti
e
s

ART−experienced (r=2)

S25+Z0

S25+Z1

S50+Z0

S50+Z1

S75+Z0

S75+Z1

Figure 4.5: Estimated survival probabilities for ART experienced and naive groups.
Here, S25, S50 and S75 represent the 25th, 50th and 75th percentile of log10(CD4),
respectively. Moreover, Z0 and Z1 stand for the placebo and treatment groups, re-
spectively.
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Figure 4.6: Estimated regression functions: Â1(·), represented by a black dashed line,
and Â1(·) + Â2(·), represented by a red solid line. These functions were estimated
with r = 0, 1, and 2, using the function G(x) = r−1 log(1 + rx).
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4.7 Discussion

The Cox-Aalen transformation models are a versatile framework for modeling cen-

sored data, including the Cox-Aalen model (Scheike and Zhang, 2002) and the trans-

formation models (Zeng and Lin, 2006) as special cases. Nevertheless, modeling partly

interval-censored data within this class of regression models presents significant com-

putational and theoretical challenges. To tackle these challenges, we proposed an es-

timating equation approach and derived a straightforward ES algorithm that enables

fast and stable calculations. Moreover, we established the large sample properties

of the proposed ES estimator by leveraging empirical process theory in a meticulous

manner.

Previous studies on multiplicative hazards models or transformation models have

focused primarily on maximum likelihood estimation. However, to the best of our

knowledge, the maximum likelihood approach has not been extensively studied in

the context of additive hazards models. Instead, ordinary least squares is commonly

used to estimate the cumulative effect of covariates (Aalen, 1980, 1989; Huffer and

McKeague, 1991; Scheike and Zhang, 2002). Nevertheless, performing maximum

likelihood estimation with additive components can be highly challenging, even in

the presence of right-censored data.

More recently, Boruvka and Cook (2015) explored semiparametric maximum likeli-

hood estimation for the Cox-Aalen model with fixed covariates from interval-censored

data. The proposed Cox-Aalen transformation model performed well in simulation

studies with purely interval-censored data. However, it is important to note that the

proposed model cannot be theoretically extended to purely interval-censored data.

This limitation presents an interesting area for future research.



CHAPTER 5: CONCLUSIONS AND FUTURE WORK

This dissertation has presented a novel semiparametric transformation model that

offers a more comprehensive and flexible approach to survival analysis. By incorpo-

rating both multiplicative and additive effects of covariates within the transformation,

the proposed model can capture more complex relationships between covariates and

survival time, resulting in improved accuracy of survival predictions. Through the ap-

plication the proposed model to censored and partly interval-censored data scenarios,

we have demonstrated its superior performance compared to existing models. The

results from our simulation studies and real-world data analyses provide evidence of

the model’s effectiveness and highlight its potential for practical use in fields such as

healthcare and social sciences.

Despite the promising results obtained in this dissertation, further research is

necessary. Assessing the adequacy of the proposed model is also crucial because

model misspecification affects the validity of inference and prediction accuracy. For

instance, mis-specifying the transformation function can result in erroneous infer-

ences. For Zeng and Lin’s model, Chen et al. (2012) considered appropriate time-

dependent residuals and constructed various graphical and numerical procedures

for model assessment with censored data. In our analysis of the HIV-1 preven-

tion trials and ACTG 175 trial, we use the log-likelihood to select the transfor-

mation function, even though the log-likelihood surface is relatively flat. Similar

to Chen et al. (2012), we suggest constructing the cumulative sums of residuals

over the argument of the transformation function to check the transformation form

with censored data. Specifically, we propose using the function W (x, t), defined

as: W (x, t) = n−1/2
∑n

i=1

∫ t
0
I
(∫ u

0
Yi(s)e

β̂>Zi(s)X>i (s)dÂ(s) ≤ x
)
dMi(u; β̂, Â), where
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Mi(t; β,A) = Ni(t) − G
{∫ t

0
Yi(s)e

β>Zi(s)X>i (s)dA(s)
}
. A thorough theoretical and

numerical investigation of model misspecification is still needed for the proposed

model. We are currently pursuing this direction. Furthermore, it is crucial to note

that the transformation form should should also be checked for interval-censored data.

One possible approach is to construct time-dependent residuals given the observed

intervals. However, further examination and investigation are still required.

Another area for further research is to investigate the proposed model’s performance

in handling covariates with missingness. Incomplete data can significantly impact

the accuracy of survival analysis, and it would be beneficial to evaluate the proposed

model’s performance under different types of missing data mechanisms for covariates.

For example, if the covariate is missing at random, the inverse probability method

can be used to estimate the missing covariate values based on the observed data

and then include these imputed values in the survival analysis model. Ning et al.

(2018) considered a class of weighted estimating equations for censored with missing

covariates via linear transformation models to facilitate computation. Similar ideas

may be applied to the proposed model, but further exploration and investigation are

needed to assess the effectiveness and feasibility of this approach in the context of the

proposed model.
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APPENDIX A: PROOF OF THEOREMS IN CHAPTER 3

To establish the asymptotic properties, we assume the following regularity condi-

tions:

Condition 1. With probability one, X(·) and Z(·) have bounded total variation in

[0, τ ].

Condition 2. Let B be a compact set of Rd and BV [0, τ ] be the class of functions

with bound variation over [0, τ ]. The true parameter (β0, A0) belongs to B×BV q[0, τ ]

with β0 an interior point of B and A0(t) = (A01(t), . . . , A0q(t))
> is continuous over

[0, τ ] with A0(0) = 0. Here BV q[0, τ ] denotes the product space BV [0, τ ] × · · · ×

BV [0, τ ].

Condition 3. With probability one, there exists a positive constant a such that

P (Y (τ) = 1 | X(·), Z(·)) > a and PN2(τ) < ∞. If there exists a vector Γ and a

deterministic function Γ0(t) such that Γ0(t) + Γ>X(t) = 0 with probability one, then

Γ0(t) = 0 and Γ = 0 for any t ∈ [0, τ ].

Condition 4. The transformation function G(x) is thrice continuously differentiable

on the interval [0,∞) and satisfy the following: G(0) = 0, G′(x) > 0 and G(∞) =∞.

Condition 5. Assume Ψ̇θ0 in (A.4) is an invertible map.

A.1 Proof of Consistency

Theorem A.1. Under Conditions 1−5, the proposed ES estimator (β̂, Â) is strongly

consistent to (β0, A0).

Proof. Let φ(t) = G′(t), ψ(t) = G′′(t)/G′(t) and

ρ(t; β,A) =

∫ t

0

Y (s)eβ
>Z(s)X>(s)dA(s).

Hence, the posterior mean of ξ can be written as

g(τ ; β,A) = φ(ρ(τ ; β,A))−∆ψ(ρ(τ ; β,A)).
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Let P denote the true probability measure and Pn denote the empirical measure.

Let θ = (β,A) and θ0 = (β0, A0). Then the proposed ES estimator θ̂ = (β̂, Â) is

essentially a Z-estimator solving the following observed-data estimating equation

PnΦ(β,A)(t) ≡ Pn

 Φ1(β,A)

Φ2(β,A)(t)

 = 0, (A.1)

for 0 ≤ t ≤ τ , where

Φ1(β,A) =

∫ τ

0

{
Z(t)dN(t)− Y (t)eβ

>Z(t)g(τ ; β,A)Z(t)X>(t)dA(t)
}
, (A.2)

and

Φ2(β,A)(t) = X(t)dN(t)− Y (t)eβ
>Z(t)g(τ ; β,A)X(t)X>(t)dA(t).

Let h be a function in BV1[0, τ ], where BV1[0, τ ] denotes the set of functions with

total variation bounded by 1 on [0, τ ]. Define

Φ2(β,A)[h] =

∫ τ

0

h(t)
{
X(t)dN(t)− Y (t)eβ

>Z(t)g(τ ; β,A)X(t)X>(t)dA(t)
}
. (A.3)

Similar to Gao et al. (2017) and van der Vaart and Wellner (1996b, Section 3.3.1),

the proposed ES estimator (β̂, Â) is equivalent to the root of the estimating equation

PnΦ(β,A)[h] ≡ Pn

 Φ1(β,A)

Φ2(β,A)[h]

 = 0,

for all h ∈ BV1[0, τ ]. From (A.1), Â is a step function with jumps at the observed

failure time points tk (k = 1, . . . ,m). Write h̃(t) =
∑m

k=1 h(tk)I(tk−1 < t ≤ tk). Then

the step function h̃ can be written as a finite sum of simple functions, denoted as
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h̃(t) =
∑m

k=1 αkI(tk−1 < t ≤ tk), where αk = h(tk). It is easy to see that (β̂, Â) solves

PnΦ2(β̂, Â)[h̃] =
m∑
k=1

αkPnΦ2(β̂, Â)(tk) = 0.

The parameter of interest is θ = (β,A), whereA = (A1, . . . , Aq)
>. Let lin(BV1[0, τ ])

be the closed linear span for linear functionals of BV1[0, τ ]. For each j (j = 1, . . . , q),

Aj is contained in the Banach space lin(BV1[0, τ ]), where Aj[h] =
∫
h(t)dAj(t) for h ∈

BV1[0, τ ]. The corresponding norm is defined as ‖Aj‖ρ = sup‖h‖BV ≤1 |
∫
h(t)dAj(t)|,

where ‖ · ‖BV is the bounded variation norm. Thus, A = (A1, . . . , Aq)
> is con-

tained in the Banach space linq(BV1[0, τ ]) and we define A[h] =
∫
h(t)dA(t) =

(
∫
h(t)dA1(t), . . . ,

∫
h(t)dAq(t))

> for h ∈ BV1[0, τ ]. Here, linq(BV1[0, τ ]) stands for

the product space lin(BV1[0, τ ])×· · ·× lin(BV1[0, τ ]). Furthermore, the norm for A is

defined as ‖A‖H =
∑q

j=1 ‖Aj‖ρ and the norm for θ is defined as ‖θ‖V = ‖β‖d+‖A‖H,

where ‖ · ‖d is the Euclidean norm in Rd space. Hence, the function PnΦ(β,A)[h] is

a map from Rd × linq(BV1[0, τ ]) to Rd × linq(BV1[0, τ ]).

Define Bδ(β0, A0) = {(β,A) : ‖β − β0‖d + ‖A − A0‖H < δ}. We first show that

the class of functions {Φ(β,A)[h] : (β,A) ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]} is P-Donsker

for some fixed δ > 0. Since Y (t) and N(t) are either cadlag or caglad functions in

l∞[0, τ ], they are both Donsker by Lemma 4.1 in Kosorok (2008). Trivially, Conditions

1 and 2 indicate that {β ∈ B}, {Z(t), t ∈ [0, τ ]} and {X(t), t ∈ [0, τ ]} are all Donsker

classes, and therefore so is {β>Z(t), β ∈ B, t ∈ [0, τ ]} since the products of bounded

Donsker classes are Donsker. The class {eβ>Z(t), β ∈ B, t ∈ [0, τ ]} is also Donsker

since exponentiation is Lipschitz continuous on compacts. On the other hand, we

rewrite

ρ(τ ; β,A) =

∫ τ

0

Y (s)eβ
>Z(s)X>(s)dA(s) =

q∑
j=1

∫ τ

0

Y (s)eβ
>Z(s)Xj(s)dAj(s).

Following Zeng et al. (2016), for any j = 1, . . . , q, if Aj is a monotone function, the
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class {
∫ τ

0
Y (s)eβ

>Z(s)Xj(s)dAj(s) : (β,A) ∈ Bδ(β0, A0)} is a Donsker class because

it is a convex hull of functions {Y (s) exp{β>Z(s)}Xj(s)}. By Condition 2, Aj (j =

1, . . . , q) can be expressed as the difference of pairs of monotonely increasing functions

since it has bounded total variation over [0, τ ]. Thus, {
∫ τ

0
Y (s)eβ

>Z(s)Xj(s)dAj(s) :

(β,A) ∈ Bδ(β0, A0)} is Donsker because the sums of bounded Donsker classes are

also Donsker from Example 2.10.7 in van der Vaart and Wellner (1996b). It follows

immediately that {ρ(τ ; β,A) : (β,A) ∈ Bδ(β0, A0)} is also a Donsker class. Similarly,

the class
{∫ τ

0
Y (t)eβ

>Z(t)Z(t)X>(t)dA(t) : (β,A) ∈ Bδ(β0, A0)
}

is a Donsker class.

By Condition 4, G(x) is thrice continuously differentiable on [0,∞) and G′(x) > 0

for any x ∈ [0,∞), then

g(τ ; β,A) = G′(ρ(τ ; β,A))−∆G′′(ρ(τ ; β,A))/G′(ρ(τ ; β,A)),

is bounded for (β,A) ∈ Bδ(β0, A0). Moreover, {g(τ ; β,A) : (β,A) ∈ Bδ(β0, A0)} is a

Donsker class due to the fact that any continuously differentiable function is locally

Lipschitz and the preservation of the Donsker property under Lipschitz-continuous

transformations by Theorem 9.31 in Kosorok (2008). Notice that {h(·) : h ∈ BV1[0, τ ]},

{
∫ τ

0
h(t)X(t)dN(t) : h ∈ BV1[0, τ ]} and

{∫ τ

0

h(t)Y (t)eβ
>Z(t)X(t)X>(t)dA(t) : (β,A) ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]

}
,

are all Donsker classes. This follows because the class of functions with an upper

bound of their total variations is Donsker by Example 19.11 and Theorem 19.5 of

van der Vaart (1998). Under Conditions 1 − 4, now it is clear that the following
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classes

{∫ τ

0

Z(t)dN(t)

}
,

{∫ τ

0

h(t)X(t)dN(t) : h ∈ BV1[0, τ ]

}
,{

g(τ ; β,A)

∫ τ

0

Y (t)eβ
>Z(t)Z(t)X>(t)dA(t) : (β,A) ∈ Bδ(β0, A0)

}
,{

g(τ ; β,A)

∫ τ

0

h(t)Y (t)eβ
>Z(t)X(t)X>(t)dA(t) : (β,A) ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]

}
,

are all Donsker classes. Therefore, the class of function

{Φ(β,A)[h] : (β,A) ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]} ,

is P-Donsker as the sums of bounded Donsker classes are also Donsker.

To prove the local consistency of θ̂ = (β̂, Â), we use Theorem 1.20 (the implicit

function theorem) in Schwartz (1969). For any θ = (β,A) in Bδ(β0, A0), write

Ψ(θ) = PΦ(β,A)[h] and Ψn(θ) = PnΦ(β,A)[h]. Note that Ψ(θ) and Ψn(θ) are

actually h-dependent. Rigorously speaking, we should write Ψ(θ)[h] = PΦ(β,A)[h]

and Ψn(θ)[h] = PnΦ(β,A)[h], but in the rest of the article, we suppress the letter h

in both Ψ(θ)[h] and Ψn(θ)[h] when there is no confusion. The Fréchet derivative of

Ψ(θ) with respect to θ at θ = θ0 can be derived using (A.2) and (A.3). In particular,

the Fréchet derivative Ψ̇θ0(θ − θ0) can be easily computed based on the weaker form

Ψ̇θ0(θ − θ0) =
dΨ(θ0 + η(θ − θ0))

dη

∣∣∣∣
η=0

=

C11(β − β0) + C12(A− A0)

C21(β − β0) + C22(A− A0)

 , (A.4)
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where

C11(β − β0) = B1(β − β0),

C12(A− A0) =

∫ τ

0

B2(t)d(A− A0),

C21(β − β0)[h] = B3[h](β − β0),

C22(A− A0)[h] =

∫ τ

0

B4[h](t)d(A− A0).

(A.5)

Specifically,

B1 =− E
[
g(τ, β0, A0)

∫ τ

0

Y (t)eβ
>
0 Z(t)Z(t)Z>(t)X>(t)dA0(t)

]
− E

[
{φ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

{∫ τ

0

Y (t)eβ
>
0 Z(t)Z(t)X>(t)dA0(t)

}⊗
2
]
,

B2(t) =− E
[
{φ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

∫ τ

0

Y (t)eβ
>
0 Z(t)Z(t)X>(t)dA0(t)

×Y (t)eβ
>
0 Z(t)X>(t)

]
− E

{
g(τ ; β0, A0)Y (t)eβ

>
0 Z(t)Z(t)X>(t)

}
,

B3[h] =− E
[
{φ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

∫ τ

0

Y (t)eβ
>
0 Z(t)X(t)X>(t)h(t)dA0(t)

×
∫ τ

0

Y (t)eβ
>
0 Z(t)Z>(t)X>(t)dA0(t)

]
− E

[
g(τ ; β0, A0)

∫ τ

0

Y (t)eβ
>
0 Z(t)X(t)Z>(t)X>(t)h(t)dA0(t)

]
,

B4[h](t) = −E
[
{φ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

×
{∫ τ

0

h(t)Y (t)eβ
>
0 Z(t)X(t)X>(t)dA0(t)

}
Y (t)eβ

>
0 Z(t)X>(t)

]
− E

{
h(t)Y (t)eβ

>
0 Z(t)g(τ ; β0, A0)X(t)X>(t)

}
.

Here, a
⊗

2 = aa> for any column vector a. It can be shown that ||Ψ(θ) −Ψ(θ0) −

Ψ̇θ0(θ − θ0)|| = o(||θ − θ0||) as θ → θ0. Hence, Ψ(θ) is Fréchet-differentiable at

θ0. The detailed calculations of the derivatives are given in Web Appendix C.3.
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Here we just present the corresponding results. Similarly, the Fréchet derivative of

Ψn(θ) = PnΦ(β,A)[h] with respect to θ at θ = θ0 can be derived and we use Ψ̇θ0,n

to denote the corresponding derivative map. In particular, Ψ̇θ0,n can be obtained by

replacing Ψ with Ψn in (A.4) and the expectations E in the terms B1, B2(t), B3[h] and

B4[h](t) with the empirical measure Pn. Then one can obtain that ‖Ψn(θ)−Ψn(θ0)−

Ψ̇θ0,n(θ− θ0)‖ = o(‖θ− θ0‖) as θ → θ0. Hence, Ψn(θ) is also Fréchet-differentiable at

θ0. Clearly, the maps Ψ̇θ and Ψ̇θ,n depend continuously on θ in Bδ(β0, A0).

Next, we show that Ψ̇θ0,n is invertible for larger enough n. Following the previous

Donsker theory arguments, it can be shown that Ψ̇θ(θ
∗)[h] − Ψ̇θ,n(θ∗)[h] = op(1)

uniformly in (θ, θ∗, h) in Bδ(β0, A0)×Rd× linq(BV1[0, τ ])×BV1[0, τ ] for some δ > 0.

By Condition 5, we know that Ψ̇θ0 is invertible. Thus, there exists a constant c1 > 0

such that ‖Ψ̇θ0(θ− θ0)‖ ≥ c1‖θ− θ0‖ for any θ in Rd× linq(BV1[0, τ ]) by Lemma 6.16

in Kosorok (2008). Notice that there exists a positive constant c2 such that

∥∥∥∥∥Ψ̇θ0,n(θ − θ0)

‖θ − θ0‖

∥∥∥∥∥ =

∥∥∥∥Ψ̇θ0,n

(
θ − θ0

‖θ − θ0‖

)∥∥∥∥ =

∥∥∥∥Ψ̇θ0

(
θ − θ0

‖θ − θ0‖

)
+ op(1)

∥∥∥∥ ≥ c1 + op(1) ≥ c2,

as n → ∞ for any θ in Rd × linq(BV1[0, τ ]). Thus, ‖Ψ̇θ0,n(θ − θ0)‖ ≥ c2‖θ − θ0‖ as

n→∞ for any θ in Rd × linq(BV1[0, τ ]). Hence, Ψ̇θ0,n is invertible for larger enough

n. In brief, we verified the three conditions, i.e., Ψn(θ) is Fréchet-differentiable at θ0,

Ψ̇θ,n depends continuously on θ in Bδ(β0, A0) and Ψ̇θ0,n is invertible for larger enough

n. The implicit function theorem yields that for a sufficiently small δ > 0, the map

Ψn(θ) is one-to-one from Bδ(β0, A0) onto a neighborhood of zero for large n.

Finally, we notice that {Φ(β0, A0)[h] : h ∈ BV1[0, τ ]} is a Donsker class because

{Φ(β0, A0)[h] : h ∈ BV1[0, τ ]} ⊂ {Φ(β,A)[h] : (β,A) ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]}.

Hence, PnΦ(β0, A0)[h] − PΦ(β0, A0)[h] = op(1), or equivalently, Ψn(θ0) − Ψ(θ0) =
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op(1). The martingale properties and double expectations yield

Ψ(θ0) = PΦ(β0, A0)[h] = P

 Φ1(β0, A0)

Φ2(β0, A0)[h]

 = 0.

Therefore, Ψn(θ0) = op(1). For an arbitrary small δ > 0 and large n, by the implicit

function theorem (Schwartz, 1969), there exists θ̂ = (β̂, Â) with (‖β̂ − β0‖d + ‖Â −

A0‖H) < δ and Ψn(θ̂) = PnΦ(β̂, Â)[h] = 0 for any h ∈ BV1[0, τ ]. This proves the

consistency of θ̂ = (β̂, Â).

A.2 Proof of Asymptotic Normality

Theorem A.2. Under the conditions 1− 5,
√
n(β̂ − β0, Â−A0) converges weakly to

a zero-mean Gaussian process in the metric space Rd × linq(BV1[0, τ ]).

Proof. We appeal to verify the conditions in Theorem 3.3.1 and Lemma 3.3.5 of

van der Vaart and Wellner (1996b). Write

GnΦ(θ)[h] = n1/2 {PnΦ(θ)[h]− PΦ(θ)[h]}

= n1/2 {Ψn(θ)[h]−Ψ(θ)[h]} ,

where Ψn(θ)[h] = PnΦ(θ)[h] and Ψ(θ)[h] = PΦ(θ)[h]. We prove the asymptotic

normality of the proposed ES estimator by the following four steps:

(1) Show that GnΦ(θ0)[h] = n1/2 {Ψn(θ0)[h]−Ψ(θ0)[h]} converges in distribution

to a tight random element W in Rd × linq(BV1[0, τ ]).

Under Conditions 1− 4, we have

sup
h∈BV1[0,τ ]

‖Ψ(θ0)[h]‖ <∞.

Because {Φ(θ0)[h] : h ∈ BV1[0, τ ]} is a Donsker class, GnΦ(θ0)[h] converges weakly

to a Gaussian process W in Rd × linq(BV1[0, τ ]).
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(2) Verify Ψ(θ) is Fréchet differentiable as a function of θ at θ = θ0.

The Fréchet-differentiablility of Ψ(θ) can be checked directly. In particular, the

Fréchet derivative Ψ̇θ0(θ − θ0) can be easily computed based on the weaker form

Ψ̇θ0(θ − θ0) =
dΨ(θ0 + η(θ − θ0))

dη

∣∣∣∣
η=0

=

C11(β − β0) + C12(A− A0)

C21(β − β0) + C22(A− A0)

 ,

where each of the components is given in (A.5). The detailed calculations are shown

in Web Appendix C.3.

(3) To verify the condition (3.3.4) in van der Vaart and Wellner (1996b), it’s suffi-

cient to verify the conditions in Lemma 3.3.5 of van der Vaart and Wellner (1996b).

From Conditions 1− 4 and the results derived in the proof of Theorem 1, we have

shown that {Φ(θ)[h] : θ ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]} and {Φ(θ0)[h] : h ∈ BV1[0, τ ]}

both are Donsker classes. Thus,

{Φ(θ)[h]− Φ(θ0)[h] : θ ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]}

is also a Donsker class for some δ > 0. In view of the dominated convergence theorem,

to show

sup
h∈BV1[0,τ ]

P{Φ(θ)[h]− Φ(θ0)[h]}2 → 0,

as θ → θ0, it is valid to show that Φ(θ)[h] converges to Φ(θ0)[h] pointwise, uniformly in

h. This condition is satisfied because h(t) has bounded total variation over [0, τ ] and

Φ(θ)[h] is a continuous function over θ under Conditions 1− 4. Because θ̂ converges

to θ0 almost surely, it follows from Lemma 3.3.5 of van der Vaart and Wellner (1996b)

that

‖Gn(Φ(θ̂)− Φ(θ0))‖ = op∗(1 + n1/2‖θ̂ − θ0‖), (A.6)
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where op∗(1) denotes converging to zero in outer probability.

(4) Equation (A.6) can be written as

n1/2(Ψn −Ψ)(θ̂)− n1/2(Ψn −Ψ)(θ0) = op∗(1 + n1/2‖θ̂ − θ0‖).

By the definition of θ0 and θ̂, Ψ(θ0) = 0 and Ψn(θ̂) = 0. It follows from Theorem

3.3.1 of van der Vaart and Wellner (1996b) that

n1/2Ψ̇θ0(θ̂ − θ0) = −n1/2(Ψn −Ψ)(θ0) + op∗(1).

Finally, Condition 5 and the continuous mapping theorem give

n1/2(θ̂ − θ0) −Ψ̇−1
θ0

W.

A.3 The Fréchet Derivative Map

This subsection provides details on the calculation of the Fréchet derivative of

Ψ(θ) = PΦ(β,A). The Fréchet derivative of PΦ(β,A) at (β0, A0) is given by the

map

(β − β0, A− A0)→

C11 C12

C21 C22


β − β0

A− A0

 ,
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where

C11(β − β0) = B1(β − β0),

C12(A− A0) =

∫ τ

0

B2(t)d(A− A0),

C21(β − β0)[h] = B3[h](β − β0),

C22(A− A0)[h] =

∫ τ

0

B4[h](t)d(A− A0).

Specifically,

B1 =
∂PΦ1(β,A)

∂β

∣∣∣∣
β=β0,A=A0

= −E
[
g(τ, β0, A0)

∫ τ

0

Y (t)eβ
>
0 Z(t)Z(t)Z>(t)X>(t)dA0(t)

]
− E

[
{φ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

{∫ τ

0

Y (t)eβ
>
0 Z(t)Z(t)X>(t)dA0(t)

}⊗
2
]
.

Note that

∂g(τ ; β,A+ ηA∗)

∂η

∣∣∣∣
η=0

= {φ′(ρ(τ ; β,A+ ηA∗))−∆ψ′(ρ(τ ; β,A+ ηA∗))} ρ(τ ; β,A∗)

∣∣∣∣
η=0

= {φ′(ρ(τ ; β,A))−∆ψ′(ρ(τ ; β,A))} ρ(τ ; β,A∗),

where φ′(·) and ψ′(·) are the first derivative of φ(·) and ψ(·), respectively. Then,

∂Φ1(β,A+ ηA∗)

∂η

∣∣∣∣
η=0

=−
∫ τ

0

Y (t)eβ
>Z(t)∂g(τ ; β,A+ ηA∗)

∂η
Z(t)X>(t)d(A+ ηA∗)(t)

∣∣∣∣
η=0

−
∫ τ

0

Y (t)eβ
>Z(t)g(τ ; β,A+ ηA∗)Z(t)X>(t)dA∗(t)

∣∣∣∣
η=0

=− {φ′(ρ(τ ; β,A))−∆ψ′(ρ(τ ; β,A))}
∫ τ

0

Y (t)eβ
>Z(t)Z(t)X>(t)dA(t)

×
∫ τ

0

Y (t)eβ
>Z(t)X>(t)dA∗(t)

− g(τ ; β,A)

∫ τ

0

Y (t)eβ
>Z(t)Z(t)X>(t)dA∗(t).
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Thus, we can obtain

∂PΦ1(β,A+ ηA∗)

∂η

∣∣∣∣
η=0,A∗=A−A0,β=β0,A=A0

= −E
[
{φ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

∫ τ

0

Y (t)eβ
>
0 Z(t)Z(t)X>(t)dA0(t)

×
∫ τ

0

Y (t)eβ
>
0 Z(t)X>(t)d(A− A0)(t)

]
− E

[
g(τ ; β0, A0)

∫ τ

0

Y (t)eβ
>
0 Z(t)Z(t)X>(t)d(A− A0)(t)

]
.

Hence,

B2(t) =− E
[
{φ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

∫ τ

0

Y (t)eβ
>
0 Z(t)Z(t)X>(t)dA0(t)

×Y (t)eβ
>
0 Z(t)X>(t)

]
− E

{
g(τ ; β0, A0)Y (t)eβ

>
0 Z(t)Z(t)X>(t)

}
.

Similarly,

B3[h] =
∂PΦ2(β,A)[h]

∂β

∣∣∣∣
β=β0,A=A0

= −E
[
{φ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

∫ τ

0

h(t)Y (t)eβ
>
0 Z(t)X(t)X>(t)dA0(t)

×
∫ τ

0

Y (t)eβ
>
0 Z(t)Z>(t)X>(t)dA0(t)

]
− E

[
g(τ ; β0, A0)

∫ τ

0

h(t)Y (t)eβ
>
0 Z(t)X(t)Z>(t)X>(t)dA0(t)

]
.
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Lastly,

∂Φ2(β,A+ ηA∗)[h]

∂η

∣∣∣∣
η=0

= −
∫ τ

0

h(t)Y (t)eβ
>Z(t)∂g(τ ; β,A+ ηA∗)

∂η
X(t)X>(t)d(A+ ηA∗)(t)

∣∣∣∣
η=0

−
∫ τ

0

h(t)Y (t)eβ
>Z(t)g(τ ; β,A+ ηA∗)X(t)X>(t)dA∗(t)

∣∣∣∣
η=0

= −{φ′(ρ(τ ; β,A))−∆ψ′(ρ(τ ; β,A))}
∫ τ

0

h(t)Y (t)eβ
>Z(t)X(t)X>(t)dA(t)

×
∫ τ

0

Y (t)eβ
>Z(t)X>(t)dA∗(t)

− g(τ ; β,A)

∫ τ

0

h(t)Y (t)eβ
>Z(t)X(t)X>(t)dA∗(t).

Hence,

∂PΦ2(β,A+ ηA∗)[h]

∂η

∣∣∣∣
η=0,A∗=A−A0,β=β0,A=A0

=

∫ τ

0

B4[h](t)d(A− A0)(t),

where

B4[h](t) =− E
[
{φ′(ρ(τ ; β0, A0))−∆ψ′(ρ(τ ; β0, A0))}

×
{∫ τ

0

h(t)Y (t)eβ
>
0 Z(t)X(t)X>(t)dA0(t)

}
Y (t)eβ

>
0 Z(t)X>(t)

]
− E

{
h(t)Y (t)eβ

>
0 Z(t)g(τ ; β0, A0)X(t)X>(t)

}
.
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APPENDIX B: PROOF OF THEOREMS IN CHAPTER 4

We establish the asymptotic properties of the proposed estimators under the fol-

lowing regularity conditions:

Condition 1 With probability one, the vectors X(t) and Z(t) are uniformly bounded

with uniformly bounded total variation over [0, τ ].

Condition 2 Let B be a compact set of Rd and BV [0, τ ] be the class of functions

with bound variation over [0, τ ]. The true parameter (β0, A0) belongs to B×BV q[0, τ ]

with β0 an interior point of B and A0(t) = (A01(t), . . . , A0q(t))
> is continuously dif-

ferentiable over [0, τ ] with A0(0) = 0. Here, BV q[0, τ ] denotes the product space

BV [0, τ ]× · · · ×BV [0, τ ].

Condition 3 For ∆ = 0, the number of monitoring times, K, is positive, and

E(K) < ∞. In addition, there exists some constant c > 0 such that P (Uj+1 − Uj ≥

c|K,X,Z) = 1 (j = 1, . . . , K − 1).

Condition 4 The transformation function G is thrice continuously differentiable on

[0,∞) with G(0) = 0, G′(x) > 0 and G(∞) =∞.

Condition 5 If there exists a vector η and a deterministic function η0(t) such that

η0(t) + η>X(t) = 0 with probability one, then η = 0 and η0(t) = 0.

Condition 6 The map Ψ̇θ0 defined in (B.11) is invertible, where θ0 = (β0, A0).

B.1 Proof of Consistency

Theorem B.1. Under Conditions 1−6, the proposed ES estimator (β̂, Â) is strongly

consistent to (β0, A0).

Proof. Let ρ0(t; θ) =
∫ t

0
eβ
>Z(s)X>(s)dA(s) and ρ1(t; θ) =

∫ t
0
eβ
>Z(s)Z(s)X>(s)dA(s).

In addition, let g1(·) = G′(·)−G′′(·)/G′(·). Note that the posterior mean of the latent
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Poisson random variable W at any t ∈ [0, τ ] can be written as

∆I(T = t) + (1−∆)I(L < t ≤ R)I(R <∞)H1(L,R; θ) exp{β>Z(t)}X>(t)dA(t),

where

H1(L,R; θ) =
exp[−G{ρ0(L; θ)}]G′{ρ0(L; θ)}

exp[−G{ρ0(L; θ)}]− exp[−G{ρ0(R; θ)}]I(R <∞)
,

and the posterior mean of ξ can be written as

Ê(ξ) = ∆g1{ρ0(T ; θ)}+ (1−∆)H2(L,R; θ),

where

H2(L,R; θ) =
exp[−G{ρ0(L; θ)}]G′{ρ0(L; θ)} − exp[−G{ρ0(R; θ)}]G′{ρ0(R; θ)}I(R <∞)

exp[−G{ρ0(L; θ)}]− exp[−G{ρ0(R; θ)}]I(R <∞)
.

Let P and Pn denote the true probability measure and empirical measure, respec-

tively. The proposed ES estimator θ̂ = (β̂, Â) is essentially a Z-estimator solving the

following observed-data estimating equation

PnΦ(θ)(t) ≡ Pn

 Φ1(θ)

Φ2(θ)(t)

 = 0 for all t ∈ [0, τ ], (B.1)

where

Φ1(θ) = ∆Z(T )−∆g1{ρ0(T ; θ)}
∫ τ

0

I(t ≤ R∗)eβ
>Z(t)Z(t)X>(t)dA(t)

+ (1−∆)H1(L,R; θ)

∫ τ

0

I(L < t ≤ R)I(R <∞)eβ
>Z(t)Z(t)X>(t)dA(t)

− (1−∆)H2(L,R; θ)

∫ τ

0

I(t ≤ R∗)eβ
>Z(t)Z(t)X>(t)dA(t),

(B.2)
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and

Φ2(θ)(t) = ∆X(t)I(t = T )−∆g1{ρ0(T ; θ)}I(t ≤ R∗)eβ
>Z(t)X(t)X>(t)dA(t)

+ (1−∆)H1(L,R; θ)I(L < t ≤ R)I(R <∞)eβ
>Z(t)X(t)X>(t)dA(t)

− (1−∆)H2(L,R; θ)I(t ≤ R∗)eβ
>Z(t)X(t)X>(t)dA(t).

(B.3)

There are infinite number of estimating equations in (B.1). To resolve this, we con-

sider

Φ2(θ)(t) = ∆h(T )X(T )−∆g1{ρ0(T ; θ)}
∫ τ

0

I(t ≤ R∗)h(t)eβ
>Z(t)X(t)X>(t)dA(t)

+ (1−∆)H1(L,R; θ)

∫ τ

0

I(L < t ≤ R)I(R <∞)h(t)eβ
>Z(t)X(t)X>(t)dA(t)

− (1−∆)H2(L,R; θ)

∫ τ

0

I(t ≤ R∗)h(t)eβ
>Z(t)X(t)X>(t)dA(t).

(B.4)

where h is a function in BV1[0, τ ]. Here, BV1[0, τ ] denotes the set of all functions

of bounded total variation over [0, τ ], with bound equal to 1. Hence, the collection

of equations Φ2(θ)(t) = 0 for every t ∈ [0, τ ] in (B.3) is equivalent to a collection of

equations

Φ2(θ)[h] = 0 for every h ∈ BV1[0, τ ].

From (B.4), we see that each h ∈ BV1[0, τ ] indexes a particular real-valued estimating

equation. Since h belongs to BV1[0, τ ], the size of all such functions is infinite. For

Z-estimators, similar techniques were utilized in van der Vaart and Wellner (1996b,

Section 3.3.1), Hu (2014, Chapter 3), Gao et al. (2017) and among others. Thus, the
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proposed ES estimator θ̂ is equivalent to the solution of the estimating equation

PnΦ(θ)[h] ≡ Pn

 Φ1(θ)

Φ2(θ)[h]

 = 0 for every h ∈ BV1[0, τ ].

Now we introduce the parameter space that we consider. The parameter of in-

terest is θ = (β,A), where β ∈ Rd and A = (A1, . . . , Aq) consists of q infinite-

dimensional cumulative regression functions. For each j (j = 1, . . . , q), we let Aj[h] =∫
h(t)dAj(t) for h ∈ BV1[0, τ ], of which the norm for Aj is defined as ‖Aj‖ρ =

sup‖h‖BV ≤1 |
∫
h(t)dAj(t)| with ‖ · ‖BV being the bounded variation norm. It is easy

to note that Aj is contained in the Banach space lin(BV1[0, τ ]). Here, lin(BV1[0, τ ])

denotes the closed linear span for linear functionals of BV1[0, τ ]. Let

A[h] =

∫
h(t)dA(t) =

(∫
h(t)dA1(t), . . . ,

∫
h(t)dAq(t)

)
for h ∈ BV1[0, τ ].

Hence, A = (A1, . . . , Aq) is contained in the Banach space linq(BV1[0, τ ]), where

linq(BV1[0, τ ]) stands for the product space lin(BV1[0, τ ])× · · · × lin(BV1[0, τ ]). The

norm for A is defined as the summation of the norm of each component, i.e., ‖A‖H =∑q
j=1 ‖Aj‖ρ. Finally, the norm for θ is defined as ‖θ‖V = ‖β‖d + ‖A‖H, where ‖ · ‖d

is the Euclidean norm: ‖β‖d =
√∑d

j=1 β
2
j .

With the parameter space introduced, it is easy to note that the function PnΦ(β,A)[h]

is a map from Rd × linq(BV1[0, τ ]) to Rd × linq(BV1[0, τ ]). Let Bδ(θ0) = {θ =

(β,A) : ‖β − β0‖d + ‖A − A0‖H < δ}, where δ > 0. For any θ in Bδ(θ0), we write

Ψ(θ)[h] = PΦ(θ)[h] and Ψn(θ)[h] = PnΦ(θ)[h]. Note that Ψ(θ)[h] and Ψn(θ)[h] de-

pend on h. To suppress notations, we write Ψ(θ) and Ψn(θ) for Ψ(θ)[h] and Ψn(θ)[h],

respectively, when there is no confusion. We prove the local consistency of θ̂ = (β̂, Â)

by verifying the three conditions in Theorem 1.20 (the implicit function theorem)

(Schwartz, 1969). These conditions are (1)Ψn(θ)[h] is Fréchet-differentiable in Bδ(θ0)
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with some δ > 0; (2) the corresponding Fréchet derivative map depends continuously

on θ in Bδ(θ0); (3) this map evaluated at θ0 is a bounded linear map with a bounded

linear inverse. We verified the first two conditions in Lemma 2 and the third condition

in Lemma 3 in Web Appendix C.4.

By Lemma 1, the class {Φ(θ)[h] : θ ∈ Bδ(θ0), h ∈ BV1[0, τ ]} is a Donsker class for

some δ > 0. The class {Φ(θ0)[h] : h ∈ BV1[0, τ ]} is also Donsker via Theorem 2.10.1

in van der Vaart and Wellner (1996b) because the latter class is a subset of the former

class. By Donsker properties,

PnΦ(θ0)[h]− PΦ(θ0)[h] = op(1),

or equivalently, Ψn(θ0) − Ψ(θ0) = op(1). In addition, Ψ(θ0) = PΦ(θ0)[h] = 0 can

be easily checked by double expectation properties. Therefore, Ψn(θ0) = op(1). By

Lemma 2 and 3, we verified the three conditions of the implicit function theorem

(Schwartz, 1969), and hence it yields that Ψn(θ) is a one-to-one map from Bδ(θ0)

onto a neighborhood of zero for large n and sufficiently small δ > 0. As a result,

for an arbitrary small δ > 0 and large n, there exists θ̂ = (β̂, Â) with (‖β̂ − β0‖d +

‖Â − A0‖H) < δ and Ψn(θ̂) = PnΦ(θ̂)[h] = 0 for any h ∈ BV1[0, τ ]. This proves the

consistency of θ̂ = (β̂, Â).

B.2 Proof of Asymptotic Normality

Theorem B.2. Under Conditions 1 − 6,
√
n(β̂ − β0, Â − A0) converges weakly to a

zero-mean Gaussian process in the metric space Rd × linq(BV1[0, τ ]).

Proof. We establish the asymptotic normality of θ̂ = (β̂, Â) by applying Theorem

3.3.1 and Lemma 3.3.5 of van der Vaart and Wellner (1996b) because the proposed

ES estimator θ̂ is essentially a Z-estimator.

Let GnΦ(θ)[h] = n1/2 {Ψn(θ)[h]−Ψ(θ)[h]}, where Ψn(θ)[h] = PnΦ(θ)[h] and
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Ψ(θ)[h] = PΦ(θ)[h]. We begin by showing that GnΦ(θ0)[h] converges in distribution

to a tight random element W in the metric space Rd × linq(BV1[0, τ ]). By Lemma 1,

the class {Φ(θ)[h] : θ ∈ Bδ(θ0), h ∈ BV1[0, τ ]} is P-Donkser. It follows that the class

{Φ(θ0)[h] : h ∈ BV1[0, τ ]}, as a subset of a Donsker class, is also Donsker (van der

Vaart and Wellner, 1996b, Theorem 2.10.1). We note that the function Φ(θ)[h] in-

volves the terms g1{ρ0(T ; θ)}, H1(L,R; θ) and H2(L,R; θ), of which the denominators

are all bounded away from 0 as argued in Lemma 1. Then, under Conditions 1 − 5,

we have

sup
h∈BV1[0,τ ]

‖Ψ(θ0)[h]‖ <∞.

Hence, GnΦ(θ0)[h] = n1/2 {Ψn(θ)[h]−Ψ(θ)[h]} converges weakly to a zero-mean

Gaussian process W in the metric space Rd × linq(BV1[0, τ ]).

By Lemma 2, the Fréchet-differentiablility of Ψ(θ) at θ = θ0 can be checked

straightforwardly. In particular, we consider one-dimensional submodels η → θ0 +

η(θ − θ0) and calculate the Fréchet derivative Ψ̇θ0(θ − θ0) based on the weaker form

Ψ̇θ0(θ − θ0) =
dΨ(θ0 + η(θ − θ0))

dη

∣∣∣∣
η=0

=

Ψ̇11(β − β0) + Ψ̇12(A− A0)

Ψ̇21(β − β0) + Ψ̇22(A− A0)

 ,

where Ψ̇θ0 is a map from Rd × linq(BV1[0, τ ]) to Rd × linq(BV1[0, τ ]), which can

be identified by maps Ψ̇11 : Rd → Rd, Ψ̇12 : linq(BV1[0, τ ]) → Rd, Ψ̇21 : Rd →

linq(BV1[0, τ ]) and Ψ̇22 : linq(BV1[0, τ ]) → linq(BV1[0, τ ]). See Lemma 2 for detailed

calculations and expressions of the aforementioned terms. In addition, Condition 6

confirms the invertiblilty of Ψ̇θ0 .

Next, we verify condition (3.3.4) of Theorem 3.3.1 (van der Vaart and Wellner,

1996b), which is sufficient to verify the conditions in Lemma 3.3.5 of van der Vaart

and Wellner (1996b). Since the classes {Φ(θ)[h] : θ ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]} and

{Φ(θ0)[h] : h ∈ BV1[0, τ ]} are both Donsker classes, the class {Φ(θ)[h] − Φ(θ0)[h] :
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θ ∈ Bδ(β0, A0), h ∈ BV1[0, τ ]} is also P-Donsker for some δ > 0 because the sum

of two bounded Donsker classes is still a Donsker class (van der Vaart and Wellner,

1996b, Example 2.10.7). Under Conditions 1 − 5, it easy to note that Φ(θ)[h] is a

continuous function over θ. In addition, h(t) has bounded total variation over [0, τ ].

Hence, Φ(θ)[h] converges to Φ(θ0)[h] pointwise and uniformly in h. By dominated

convergence theorem,

sup
h∈BV1[0,τ ]

P{Φ(θ)[h]− Φ(θ0)[h]}2 → 0,

as θ → θ0 (van der Vaart and Wellner, 1996b, p. 317). The consistency of θ̂ has been

shown in Theorem 3.1, i.e., θ̂ converges to θ0 almost surely. Hence, applying Lemma

3.3.5 (van der Vaart and Wellner, 1996b), we have

‖Gn(Φ(θ̂)− Φ(θ0))‖ = op∗(1 + n1/2‖θ̂ − θ0‖), (B.5)

where op∗(1) denotes converging to zero in outer probability. Note that the equation

(A.6) can be written as

n1/2(Ψn −Ψ)(θ̂)− n1/2(Ψn −Ψ)(θ0) = op∗(1 + n1/2‖θ̂ − θ0‖).

In brief, we have showed that (1) GnΦ(θ0)[h] converges in distribution to a tight

random elementW ; (2) the continuous invertibility of the operator Ψ̇θ0 ; (3) condition

(3.3.2) of Theorem 3.3.1 (van der Vaart and Wellner, 1996b); (4) Ψ(θ0) = 0 and

Ψn(θ̂) = 0. The last statement is a trivial result by the definitions of θ0 and θ̂.

According to Theorem 3.3.1 of van der Vaart and Wellner (1996b), we obtain

n1/2Ψ̇θ0(θ̂ − θ0) = −n1/2(Ψn −Ψ)(θ0) + op∗(1).
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Finally, the continuous mapping theorem and Condition 6 imply

n1/2(θ̂ − θ0) −Ψ̇−1
θ0
W .

This proves the asymptotic normality of θ̂.

B.3 Asymptotic properties of the weighted bootstrap variance estimator

The following theorem gives the asymptotic properties of the weighted bootstrap

estimator, and hence validates the bootstrap procedure.

Theorem B.3. Under Condition 1 − 6, the conditional distribution of
√
n(θ̃ − θ̂)

given the data converges weakly to the asymptotic distribution of
√
n(θ̂ − θ0)

Proof. Let e1, . . . , en be positive i.i.d random variables with a standard exponential

distribution. Hence, µ = P (e1) = 1 < ∞, σ2 = var(e1) = 1 < ∞ and ‖e1‖ < ∞,

where ‖e1‖ =
∫∞

0

√
P (|e1 > x|)dx. The last inequality is satisfied because the (2 + ε)

moment of a standard exponential distribution exists for any ε > 0 (Kosorok, 2008,

p.20). In addition, we assume that e1, . . . , en are independent of the observed data

{∆i,∆iTi, (1−∆i)Li, (1−∆i)Ri, Xi, Zi}.

Let ẽi = ei/ē, where ē = n−1
∑n

i=1 ei. Let P̃nf = n−1
∑n

i=1 ẽif(Oi) denote the

weighted bootstrapped empirical process for any measurable function f . Let Ψ̃n be

Ψn but with Pn replaced by P̃n and θ̃ = (β̃, Ã) be the weighted bootstrap estimator

that solves Ψ̃n(θ) = 0. Let Ψ̃(θ) = P

(
ẽ · Φ(θ)[h]

)
, where ẽ be a generic version

of ẽ1. By Lemma 1, the class of functions {Φ(θ)[h] : θ ∈ Bδ(θ0), h ∈ BV1[0, τ ]} is P-

Donsker for some fixed δ > 0. So is the class {ẽ · Φ(θ)[h] : θ ∈ Bδ(θ0), h ∈ BV1[0, τ ]}

via the multiplier central limit theorem (Kosorok, 2008, Theorem 10.1). We also note

that P
(
ẽ · Φ(θ)[h]

)
= P

(
Φ(θ)[h]

)
, which implies that Ψ̃(θ) = Ψ(θ). Trivially, the

consistency of θ̃ holds by similar arguments in Theorem 3.1.



103

The weighted bootstrap empirical process is defined as

G̃nΦ(θ)[h] = n1/2
{
P̃nΦ(θ)[h]− PnΦ(θ)[h]

}
.

By the Taylor series expansion, we have

0 = P̃nΦ(θ̃)[h]− P̃nΦ(θ̂)[h] + P̃nΦ(θ̂)[h]− PnΦ(θ̂)[h]

=

(
∂P̃nΦ(θ)[h]

∂θ

∣∣∣∣
θ=θ̂

)
(θ̃ − θ̂) + (P̃n − Pn)Φ(θ̂)[h] + op(‖θ̃ − θ0‖+ ‖θ̂ − θ0‖)

(B.6)

By Theorem 2.6 of Kosorok (2008), the conditional distribution of (P̃n − Pn)Φ(θ̂)[h]

given the data is asymptotically equivalent to the distribution of (Pn − P )Φ(θ̂)[h]

by the fact that µ = σ2 = 1 with a sequence of i.i.d standard exponential random

variables. Hence, (B.6) can be written as

n1/2Ψ̇θ0(θ̃ − θ̂) = −n1/2(P̃n − Pn)Φ(θ̂)[h] + op(1)

= −n1/2(Pn − P )Φ(θ̂)[h] + op(1)

= −n1/2GnΦ(θ0)[h] + op(1)

Then, Condition 6 and the continuous mapping theorem give

n1/2(θ̃ − θ̂) −Ψ̇−1
θ0
W .

We conclude that n1/2(θ̃ − θ̂) converges to a zero-mean Gaussian process. Moreover,

n1/2(θ̃ − θ̂) and n1/2(θ̂ − θ0) have the same asymptotic distribution.

Remark B.1. Let P̂n denote the standard bootstrap empirical distribution and θ̂∗

be the standard bootstrap estimator that solves P̂nΦ(θ)[h] = 0. Following the same
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argument in Theorem B.3, it can be shown that under Conditions 1− 6,

n1/2(θ̂∗ − θ̂) −Ψ̇−1
θ0
W .

This result validates the standard bootstrap procedure. We omit the detailed proof. As

evidenced by our simulation studies and real data application, if the data is balanced,

both bootstrap variance estimators can accurately reflect the true variation. However,

when the data is imbalanced, the weighted bootstrap variance estimator works better

than the standard one.

B.4 Some useful Lemmas

Lemma 1. Under Conditions 1− 5, the class of functions

{Φ(θ)[h] : θ ∈ Bδ(θ0), h ∈ BV1[0, τ ]}

is P-Donsker for some fixed δ > 0.

Proof. We begin by rewriting (B.2) and (B.4) as follows

Φ1(θ) = ∆Z(T )−∆g1{ρ0(T ; θ)}ρ1(T ; θ)

+ (1−∆)H1(L,R; θ)I(R <∞) {ρ1(R; θ)− ρ1(L; θ)}

− (1−∆)H2(L,R; θ)ρ1(R∗; θ)

(B.7)

and

Φ2(θ)[h] = ∆h(T )X(T )−∆g1{ρ0(T ; θ)}
∫ τ

0

I(t ≤ T )h(t)eβ
>Z(t)X(t)X>(t)dA(t)

+ (1−∆)H1(L,R; θ)

∫ τ

0

I(L < t ≤ R)I(R <∞)h(t)eβ
>Z(t)X(t)X>(t)dA(t)

− (1−∆)H2(L,R; θ)

∫ τ

0

I(t ≤ R∗)h(t)eβ
>Z(t)X(t)X>(t)dA(t).

(B.8)
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To show that the class {Φ(θ)[h] : θ ∈ Bδ(θ0), h ∈ BV1[0, τ ]} is P-Donsker for some

δ > 0 , we need to show that each component is Donsker. Then the desired conclusion

follows by the Donsker preservation properties (Kosorok, 2008, Corollary 9.32), i.e.,

the summation and multiplication of P-Donsker classes are also P-Donsker classes.

By Condition 1, X(t) and Z(t) are uniformly bounded with uniformly bounded

total variations over [0, τ ]. Trivially, the classes {X(t) : t ∈ [0, τ ]} and {Z(t) : t ∈

[0, τ ]} are Donsker by Theorem 2.7.5 (van der Vaart and Wellner, 1996b) and Example

19.11 (van der Vaart, 1998). The classes {X(T )} and {Z(T )} are also Donsker classes

because they are subsets of some Donsker classes. The classes {∆} and {1−∆} are

both P-Donsker because they are bounded and square-integrable (van der Vaart, 1998,

p.270). Condition 2 indicates that the class {β ∈ B} is a Donsker class, and so is

{β>Z(t) : t ∈ [0, τ ], β ∈ B} as the product of two bounded Donsker classes is also a

Donsker class. The class {eβ>Z(t), β ∈ B, t ∈ [0, τ ]} is P-Donsker since exponentiation

is Lipschitz continuous on compacts. Note that

ρ0(T ; θ) =

∫ T

0

eβ
>Z(s)X>(s)dA(s) =

q∑
j=1

∫ T

0

eβ
>Z(s)Xj(s)dAj(s).

Under Condition 2, each Aj(t) (j = 1, . . . , q) has bounded total variation over [0, τ ].

By Theorem 7.2.4 in Dudley (2002), we can find two nondecreasing functions Aj1(t)

and Aj2(t) such that Aj(t) = Aj1(t)− Aj2(t). Thus,

∫ T

0

eβ
>Z(s)Xj(s)dAj(s) =

∫ T

0

eβ
>Z(s)Xj(s)dAj1(s)−

∫ T

0

eβ
>Z(s)Xj(s)dAj2(s).

Following Zeng et al. (2016), the class {
∫ T

0
eβ
>Z(s)Xj(s)dAj1(s) : θ ∈ Bδ(θ0)} is a

Donsker class because it is a convex hull of functions {I(T ≥ s) exp{β>Z(s)}Xj(s)}.

Likewise, the class {
∫ T

0
eβ
>Z(s)Xj(s)dAj2(s) : θ ∈ Bδ(θ0)} is P-Donsker. Hence, the

class {
∫ T

0
eβ
>Z(s)Xj(s)dAj(s) : θ ∈ Bδ(θ0)} is P-Donsker because the sum of bounded

Donsker classes are also Donsker. It follows that the class {∆ρ0(T ; θ) : θ ∈ Bδ(θ0)} is
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a Donsker class. Similarly, the following classes

{(1−∆)ρ0(L; θ) : θ ∈ Bδ(θ0)} =

{
(1−∆)

∫ L

0

eβ
>Z(s)X>(s)dA(s) : θ ∈ Bδ(θ0)

}
{(1−∆)ρ0(R; θ) : θ ∈ Bδ(θ0)} =

{
(1−∆)

∫ R

0

eβ
>Z(s)X>(s)dA(s) : θ ∈ Bδ(θ0)

}
{∆ρ1(T ; θ) : θ ∈ Bδ(θ0)} =

{
∆

∫ T

0

eβ
>Z(s)Z(s)X>(s)dA(s) : θ ∈ Bδ(θ0)

}
{(1−∆)ρ1(L; θ) : θ ∈ Bδ(θ0)} =

{
(1−∆)

∫ L

0

eβ
>Z(s)Z(s)X>(s)dA(s) : θ ∈ Bδ(θ0)

}
{(1−∆)ρ1(R; θ) : θ ∈ Bδ(θ0)} =

{
(1−∆)

∫ R

0

eβ
>Z(s)Z(s)X>(s)dA(s) : θ ∈ Bδ(θ0)

}
{(1−∆)ρ1(R∗; θ) : θ ∈ Bδ(θ0)} =

{
(1−∆)

∫ R∗

0

eβ
>Z(s)Z(s)X>(s)dA(s) : θ ∈ Bδ(θ0)

}

are all Donsker classes. By Condition 4, G(x) is thrice continuously differentiable on

[0,∞) and G′(x) > 0 for any x ∈ [0,∞), then the following functions

g1[ρ0(T ; θ)] = G′{ρ0(T ; θ)} − G′′{ρ0(T ; θ)}
G′{ρ0(T ; θ)}

exp[−G{ρ0(L; θ)}]G′{(ρ0(L; θ)}

exp[−G{ρ0(R; θ)}]G′{(ρ0(R; θ)}I(R <∞)

are all bounded for any θ ∈ Bδ(θ0). Notice that the denominators of

H1(L,R; θ) =
exp[−G{ρ0(L; θ)}]G′{ρ0(L; θ)}

exp[−G{ρ0(L; θ)}]− exp[−G{ρ0(R; θ)}]I(R <∞)
,

and

H2(L,R; θ) =
exp[−G{ρ0(L; θ)}]G′{ρ0(L; θ)} − exp[−G{ρ0(R; θ)}]G′{ρ0(R; θ)}I(R <∞)

exp[−G{ρ0(L; θ)}]− exp[−G{ρ0(R; θ)}]I(R <∞)
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are

exp[−G{ρ0(L; θ)}]− exp[−G{ρ0(R; θ)}]I(R <∞),

which is bounded away from zero under Conditions 3 − 4. Since any continuously

differentiable function is locally Lipschitz, the classes {∆g1{ρ0(T ; θ)} : θ ∈ Bδ(θ0)},

{(1 − ∆)H1(L,R; θ) : θ ∈ Bδ(θ0)} and {(1 − ∆)H2(L,R; θ) : θ ∈ Bδ(θ0)} are all

Donsker classes due to the preservation of the Donsker property under Lipschitz-

continuous transformations by Theorem 9.31 (Kosorok, 2008).

The class {h : h ∈ BV1[0, τ ]} is a Donsker class, according to Theorem 2.7.5

(van der Vaart and Wellner, 1996b) and Example 19.11 (van der Vaart, 1998). Thus,

the class {h(T ) : h ∈ BV1[0, τ ]} as a class of functions of T is also P-Donsker. Now

we only need to show the class

{∫ (·)

0

h(t)eβ
>Z(t)X(t)X>(t)dA(t) : θ ∈ Bδ(θ0), h ∈ BV1[0, τ ]

}
,

is a Donsker class. This follows because the class of functions with an upper bound of

their total variations is Donsker by Example 19.11 and Theorem 19.5 of van der Vaart

(1998) under Conditions 1 − 5. To this end, we conclude that under Conditions 1 − 5,

the class of function {Φ(θ)[h] : θ ∈ Bδ(θ0), h ∈ BV1[0, τ ]} is P-Donsker for some δ > 0

because the sums and products of bounded Donsker classes are Donsker classes.

Lemma 2. Under Conditions 1 − 5, the map Ψ : Rd × linq(BV1[0, τ ]) → Rd ×

linq(BV1[0, τ ]) is Fréchet-differentiable at θ = θ0, with a derivative

Ψ̇θ0(θ − θ0) =

Ψ̇11 Ψ̇12

Ψ̇21 Ψ̇22


β − β0

A− A0

 =

Ψ̇11(β − β0) + Ψ̇12(A− A0)

Ψ̇21(β − β0) + Ψ̇22(A− A0)

 , (B.9)
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where

Ψ̇11(β − β0) = B1(β − β0),

Ψ̇12(A− A0) =

∫ τ

0

B2(t)d(A− A0),

Ψ̇21(β − β0)[h] = B3[h](β − β0),

Ψ̇22(A− A0)[h] =

∫ τ

0

B4[h](t)d(A− A0).

(B.10)

The expressions of B1, B2(t), B3[h] and B4[h](t) are given in (B.15), (B.16), (B.17)

and (B.18), respectively, in Web Appendix C.5. The map Ψn has the same properties

and similar Fréchet derivative map at θ = θ0, denoted as Ψ̇θ0,n by replacing the

expectations E in the terms B1, B2(t), B3[h] and B4[h](t) with the empirical measure

Pn. Furthermore, both Ψ̇θ and Ψ̇θ,n depend continuously on θ.

Proof. The Fréchet derivative of Ψ(θ) at θ = θ0 can be derived using (B.7) and (B.8).

Consider the one-dimensional submodels η → θ0 + η(θ − θ0). The Fréchet derivative

Ψ̇θ0(θ − θ0) can be computed based on the weaker form

Ψ̇θ0(θ − θ0) =
dΨ(θ0 + η(θ − θ0))

dη

∣∣∣∣
η=0

=

Ψ̇11(β − β0) + Ψ̇12(A− A0)

Ψ̇21(β − β0) + Ψ̇22(A− A0)

 , (B.11)

where Ψ̇11, Ψ̇12, Ψ̇21 and Ψ̇22 are maps such that

Ψ̇11 : Rd −→ Rd

Ψ̇12 : linq(BV1[0, τ ]) −→ Rd

Ψ̇21 : Rd −→ linq(BV1[0, τ ])

Ψ̇22 : linq(BV1[0, τ ]) −→ linq(BV1[0, τ ]).

The detailed calculations are provided in Web Appendix C.5. It can be shown that

||Ψ(θ) − Ψ(θ0) − Ψ̇θ0(θ − θ0)|| = o(||θ − θ0||) as θ → θ0. Hence, Ψ(θ) is Fréchet-
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differentiable at θ0. The Fréchet derivative of Ψn(θ) = PnΦ(θ)[h] with respect to θ at

θ = θ0, denoted as Ψ̇θ0,n, can be derived closely. In particular, we replace Ψ with Ψn

in (A.4) and the expectations E in the terms B1, B2(t), B3[h] and B4[h](t) with the

empirical measure Pn to obtain Ψ̇θ0,n. Then one can show that ‖Ψn(θ) −Ψn(θ0) −

Ψ̇θ0,n(θ− θ0)‖ = o(‖θ− θ0‖) as θ → θ0. Hence, Ψn(θ) is also Fréchet-differentiable at

θ0. Clearly, both maps Ψ̇θ and Ψ̇θ,n depend continuously on θ in Bδ(θ0).

Lemma 3. Under Conditions 1− 6, the map Ψ̇θ0,n is invertible for larger enough n.

Proof. The expressions of Ψ̇θ are given in Lemma 2 and Web Appdenix C.5, see

(B.9), (B.10), (B.11), (B.13), and (B.14). Following the similar steps as in the proof

of Lemma 1, we can show that

Ψ̇θ(θ
∗)[h]− Ψ̇θ,n(θ∗)[h] = op(1) (B.12)

uniformly in (θ, θ∗, h) in Bδ(β0, A0)×Rd×linq(BV1[0, τ ])×BV1[0, τ ] for some δ > 0. By

Condition 6, we know that the map Ψ̇θ0 is invertible. Following Part (i) of Lemma 6.16

in Kosorok (2008), there exists a constant c1 > 0 such that ‖Ψ̇θ0(θ−θ0)‖ ≥ c1‖θ−θ0‖

for all θ in Rd × linq(BV1[0, τ ]). Combining this with (B.12), there exists a positive

constant c2 such that

∥∥∥∥∥Ψ̇θ0,n(θ − θ0)

‖θ − θ0‖

∥∥∥∥∥ =

∥∥∥∥Ψ̇θ0,n

(
θ − θ0

‖θ − θ0‖

)∥∥∥∥ =

∥∥∥∥Ψ̇θ0

(
θ − θ0

‖θ − θ0‖

)
+ op(1)

∥∥∥∥ ≥ c1 + op(1) ≥ c2,

as n → ∞ for any θ in Rd × linq(BV1[0, τ ]). Thus, ‖Ψ̇θ0,n(θ − θ0)‖ ≥ c2‖θ − θ0‖ as

n → ∞ for any θ in Rd × linq(BV1[0, τ ]). By applying Lemma 6.16 (Kosorok, 2008)

again, Ψ̇θ0,n is invertible for larger enough n.
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B.5 The Fréchet Derivative Map

We provide the calculations of the Fréchet derivative of Ψ(θ) = PΦ(β,A) in this

subsection. The Fréchet derivative of Ψ(θ) at θ0 is given by the map

(β − β0, A− A0)→

Ψ̇11 Ψ̇12

Ψ̇21 Ψ̇22


β − β0

A− A0

 , (B.13)

where

Ψ̇11(β − β0) = B1(β − β0),

Ψ̇12(A− A0) =

∫ τ

0

B2(t)d(A− A0),

Ψ̇21(β − β0)[h] = B3[h](β − β0),

Ψ̇22(A− A0)[h] =

∫ τ

0

B4[h](t)d(A− A0).

(B.14)

To simplify the notations, let g2(x) = exp{−G(x)} and g3(x) = exp{−G(x)}G′(x).

Then we can write

H1(L,R; θ) =
g3{ρ0(L; θ)}

g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)

and

H2(L,R; θ) =
g3{ρ0(L; θ)} − g3{ρ0(R; θ)}I(R <∞)

g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)
.

We note that g′2(x) = −g3(x) and g′3(x) = exp{−G(x)}[G′′(x) − {G′(x)}2]. In addi-

tion, since g1(x) = G′(x)−G′′(x)/G′(x), we have that g′1(x) = G′′(x)−G(3)(x)/G′(x)+

{G′′(x)/G′(x)}2, where G(3)(x) is the thrice derivative of G(x) with respect to x. Let

a
⊗

2 = aa> for any column vector a. Since β belongs to the Euclidean space Rd, B1
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can be easily obtained by taking the derivative of PΦ1(θ) with respect to β, i.e.,

B1 =
∂PΦ1(θ)

∂β>

∣∣∣∣
θ=θ0

= −E
[
∆g1{ρ0(T ; θ0)}

∫ T

0

eβ
>
0 Z(t){Z(t)}

⊗
2X>(t)dA0(t) + ∆g′1{ρ0(T ; θ0)}{ρ1(T ; θ0)}

⊗
2

]
+ E

[
(1−∆)

{∫ τ

0

I(L < t ≤ R)I(R <∞)eβ
>
0 Z(t)Z(t)X>(t)dA0(t)

}
M>

1 (L,R; θ0)

]
+ E

[
(1−∆)H1(L,R; θ0)

∫ τ

0

I(L < t ≤ R)I(R <∞)eβ
>
0 Z(t){Z(t)}

⊗
2X>(t)dA0(t)

]
− E

[
(1−∆)

{∫ τ

0

I(t ≤ R∗)eβ
>
0 Z(t)Z(t)X>(t)dA0(t)

}
M>

2 (L,R; θ0)

]
− E

[
(1−∆)H2(L,R; θ0)

∫ τ

0

I(t ≤ R∗)eβ
>
0 Z(t){Z(t)}

⊗
2X>(t)dA0(t)

]
,

(B.15)

where

M>
1 (L,R; θ) =

∂H1(L,R; θ)

∂β>

=
g′3{ρ0(L; θ)}ρ>1 (L; θ)

g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)

+
g3{ρ0(L; θ)}

[
g3{ρ0(L; θ)}ρ>1 (L; θ)− g3{ρ0(R; θ)}ρ>1 (R; θ)I(R <∞)

][
g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)

]2 ,

with ρ>1 (t; θ) =
∫ t

0
eβ
>Z(s)Z>(s)X>(s)dA(s), and

M>
2 (L,R; θ) =

∂H2(L,R; θ)

∂β>
=
g′3{ρ0(L; θ)}ρ>1 (L; θ)− g′3{ρ0(R; θ)}ρ>1 (R; θ)I(R <∞)

g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)

+
g3{ρ0(L; θ)} − g3{ρ0(R; θ)}I(R <∞)

[g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)]2

×
[
g3{ρ0(L; θ)}ρ>1 (L; θ)− g3{ρ0(R; θ)}ρ>1 (R; θ)I(R <∞)

]
.

Note that
∂ρ0(t; β,A+ ηA∗)

∂η

∣∣∣∣
η=0

= ρ0(t; β,A∗).
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Hence,

∂H1(L,R; β,A+ ηA∗)

∂η

∣∣∣∣
η=0

=
g′3{ρ0(L; θ)}ρ0(L; β,A∗)

g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)

+
g3{ρ0(L; θ)} [g3{ρ0(L; θ)}ρ0(L; β,A∗)− g3{ρ0(R; θ)}ρ0(R; β,A∗)I(R <∞)]

[g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)]2

= M3(L,R; θ)ρ0(L; β,A∗)−M4(L,R; θ)ρ0(R; β,A∗),

where

M3(L,R; θ) =
g′3{ρ0(L; θ)}

g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)

+
[g3{ρ0(L; θ)}]2

[g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)]2
,

and

M4(L,R; θ) =
g3{ρ0(L; θ)}g3{ρ0(R; θ)}I(R <∞)

[g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)]2
.

Using the same technique, we obtain

∂H2(L,R; β,A+ ηA∗)

∂η

∣∣∣∣
η=0

=
g′3{ρ0(L; θ)}ρ0(L; β,A∗)− g′3{ρ0(R; θ)}ρ0(R; β,A∗)I(R <∞)

g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)

+
[g3{ρ0(L; θ)} − g3{ρ0(R; θ)}I(R <∞)] g3{ρ0(L; θ)}ρ0(L; β,A∗)

[g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)]2

− [g3{ρ0(L; θ)} − g3{ρ0(R; θ)}I(R <∞)] g3{ρ0(R; θ)}ρ0(R; β,A∗)I(R <∞)

[g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)]2

= {M3(L,R; θ)−M4(L,R; θ)} ρ0(L; β,A∗)−M5(L,R; θ)ρ0(R; β,A∗),

where

M5(L,R; θ) =
g′3{ρ0(R; θ)}I(R <∞)

g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)

+
[g3{ρ0(L; θ)} − g3{ρ0(R; θ)}I(R <∞)] g3{ρ0(R; θ)}I(R <∞)

[g2{ρ0(L; θ)} − g2{ρ0(R; θ)}I(R <∞)]2
.
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Then,

∂Φ1(β,A+ ηA∗)

∂η

∣∣∣∣
η=0

= −∆g′1{ρ0(T ; θ)}ρ1(T ; θ)

∫ τ

0

I(t ≤ T )eβ
>Z(t)X>(t)dA∗(t)

−∆g1{ρ0(T ; θ)}
∫ τ

0

I(t ≤ T )eβ
>Z(t)Z(t)X>(t)dA∗(t)

+ (1−∆)I(R <∞) {ρ1(L; θ)− ρ1(R; θ)}M3(L,R; θ)ρ0(L; β,A∗)

− (1−∆)I(R <∞) {ρ1(L; θ)− ρ1(R; θ)}M4(L,R; θ)ρ0(R; β,A∗)

+ (1−∆)H1(L,R; θ)

∫ τ

0

I(L < t ≤ R)I(R <∞)eβ
>Z(t)Z(t)X>(t)dA∗(t)

− (1−∆)ρ1(R∗; θ) {M3(L,R; θ)−M4(L,R; θ)} ρ0(L; β,A∗)

+ (1−∆)ρ1(R∗; θ)M5(L,R; θ)ρ0(R; β,A∗)

− (1−∆)H2(L,R; θ)

∫ τ

0

I(t ≤ R∗)eβ
>Z(t)Z(t)X>(t)dA∗(t).

Hence,

B2(t) =− E
[
∆g′1{ρ0(T ; θ0)}ρ1(T ; θ0)I(t ≤ T )eβ

>
0 Z(t)X>(t)

]
− E

[
∆g1{ρ0(T ; θ0)}I(t ≤ T )eβ

>
0 Z(t)Z(t)X>(t)

]
+ E

[
(1−∆)I(R <∞) {ρ1(L; θ0)− ρ1(R; θ0)}M3(L,R; θ0)I(t ≤ L)eβ

>
0 Z(t)X>(t)

]
− E

[
(1−∆)I(R <∞) {ρ1(L; θ0)− ρ1(R; θ0)}M4(L,R; θ0)I(t ≤ R)eβ

>
0 Z(t)X>(t)

]
+ E

[
(1−∆)H1(L,R; θ0)I(L < t ≤ R)I(R <∞)eβ

>
0 Z(t)Z(t)X>(t)

]
− E

[
(1−∆)ρ1(R∗; θ0) {M3(L,R; θ0)−M4(L,R; θ0)} I(t ≤ L)eβ

>
0 Z(t)X>(t)

]
+ E

[
(1−∆)ρ1(R∗; θ0)M5(L,R; θ0)I(t ≤ R)eβ

>
0 Z(t)X>(t)

]
− E

[
(1−∆)H2(L,R; θ0)I(t ≤ R∗)eβ

>
0 Z(t)Z(t)X>(t)

]
.

(B.16)
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Moreover, we calculate

B3[h]

=
∂PΦ2(θ)[h]

∂β>

∣∣∣∣
θ=θ0

= −E
[
∆g1[ρ0(T ; θ0)]

∫ T

0

h(t)eβ
>
0 Z(t)X(t)Z>(t)X>(t)dA0(t)

]
− E

[
∆g′1{ρ0(T ; θ0)}

{∫ T

0

h(t)eβ
>
0 Z(t)X(t)X>(t)dA0(t)

}
ρ>1 (T ; θ0)

]
+ E

[
(1−∆)

{∫ τ

0

I(L < t ≤ R)I(R <∞)h(t)eβ
>
0 Z(t)X(t)X>(t)dA0(t)

}
M>

1 (L,R; θ0)

]
+ E

[
(1−∆)H1(L,R; θ0)

∫ τ

0

I(L < t ≤ R)I(R <∞)h(t)eβ
>
0 Z(t)X(t)Z>(t)X>(t)dA0(t)

]
− E

[
(1−∆)

{∫ τ

0

I(t ≤ R∗)h(t)eβ
>
0 Z(s)X(t)X>(t)dA0(t)

}
M>

2 (L,R; θ0)

]
− E

[
(1−∆)H2(L,R; θ0)

∫ τ

0

I(t ≤ R∗)h(t)eβ
>
0 Z(s)X(t)Z>(t)X>(t)dA0(t)

]
.

(B.17)

Define ρ3(t; θ)[h] =
∫ t

0
h(s)eβ

>Z(s)X(s)X>(s)dA(s). Then, we obtain

∂Φ2(β,A+ ηA∗)[h]

∂η

∣∣∣∣
η=0

= −∆g′1{ρ0(T ; θ)}ρ3(T ; θ)[h]

∫ τ

0

I(t ≤ T )eβ
>Z(t)X>(t)dA∗(t)

−∆g1{ρ0(T ; θ)}
∫ τ

0

I(t ≤ T )h(t)eβ
>Z(t)X(t)X>(t)dA∗(t)

+ (1−∆)I(R <∞) {ρ3(R; θ)[h]− ρ3(L; θ)[h]}M3(L,R; θ)ρ0(L; β,A∗)

− (1−∆)I(R <∞) {ρ3(R; θ)[h]− ρ3(L; θ)[h]}M4(L,R; θ)ρ0(R; β,A∗)

+ (1−∆)H1(L,R; θ)

∫ τ

0

I(L < t ≤ R)I(R <∞)h(t)eβ
>Z(t)X(t)X>(t)dA∗(t)

− (1−∆)ρ3(R∗; θ)[h] {M3(L,R; θ)−M4(L,R; θ)} ρ0(L; β,A∗)

+ (1−∆)ρ3(R∗; θ)[h]M5(L,R; θ)ρ0(R; β,A∗)

− (1−∆)H2(L,R; θ)

∫ τ

0

I(t ≤ R∗)h(t)eβ
>Z(t)X(t)X>(t)dA∗(t).
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Hence,

∂PΦ2(β,A+ ηA∗)[h]

∂η

∣∣∣∣
η=0,A∗=A−A0,θ=θ0

=

∫ τ

0

B4[h](t)d(A− A0)(t),

where

B4[h](t)

= −E
[
∆g′1{ρ0(T ; θ0)}ρ3(T ; θ0)[h]I(t ≤ T )eβ

>
0 Z(t)X>(t)

]
− E

[
∆g1{ρ0(T ; θ0)}I(t ≤ T )h(t)eβ

>
0 Z(t)X(t)X>(t)

]
+ E

[
(1−∆)I(R <∞) {ρ3(R; θ0)[h]− ρ3(L; θ0)[h]}M3(L,R; θ0)I(t ≤ L)eβ

>
0 Z(t)X>(t)

]
− E

[
(1−∆)I(R <∞) {ρ3(R; θ0)[h]− ρ3(L; θ0)[h]}M4(L,R; θ0)I(t ≤ R)eβ

>
0 Z(t)X>(t)

]
+ E

[
(1−∆)I(R <∞)H1(L,R; θ0)I(L < t ≤ R)h(t)eβ

>
0 Z(t)X(t)X>(t)

]
− E

[
(1−∆)ρ3(R∗; θ0)[h] {M3(L,R; θ0)−M4(L,R; θ0)} I(t ≤ L)eβ

>
0 Z(t)X>(t)

]
+ E

[
(1−∆)ρ3(R∗; θ0)[h]M5(L,R; θ0)I(t ≤ R)eβ

>
0 Z(t)X>(t)

]
− E

[
(1−∆)H2(L,R; θ0)I(t ≤ R∗)h(t)eβ

>
0 Z(t)X(t)X>(t)

]
.

(B.18)


