
COLORING GRAPHS WITH INTERVALS FOR PARALLEL COMPUTING

by

Dante Durrman

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Applied Mathematics

Charlotte

2024

Approved by:

Dr. Erik Saule

Dr. Gabor Hetyei

Dr. Evan Houston

Dr. Min Shin

ii

©2024
Dante Durrman

ALL RIGHTS RESERVED

iii

ABSTRACT

DANTE DURRMAN. Coloring graphs with intervals for parallel computing. (Under
the direction of DR. ERIK SAULE)

Graph coloring is commonly used to schedule computations on parallel systems.

Given a good estimation of the computational requirement for each task, one can

refine the model by adding a weight to each vertex. Instead of coloring each vertex

with a single color, the problem is to color each vertex with an interval of colors.

We study this problem for particular classes of graphs, namely stencil graphs. Sten-

cil graphs appear naturally in the parallelization of applications, where the location

of an object in a space affects the state of neighboring objects. Rectilinear decompo-

sitions of a space generate conflict graphs that are 9-pt stencils for 2D problems and

27-pt stencils for 3D problems.

We show that the 5-pt stencil and 7-pt stencil relaxations of the problem can be

solved in polynomial time. We prove that the decision problem on 27-pt stencil is

NP-Complete. We discuss approximation algorithms with a ratio of 2 for the 9-pt

stencil case, and 4 for the 27-pt stencil case. We identify two lower bounds for the

problem that are used to design heuristics. We evaluate the effectiveness of several

different algorithms experimentally on a set of real instances. Furthermore, these

algorithms are integrated into a real application to demonstrate the soundness of the

approach.

Executing graph algorithms in a parallel or distributed context is a challenging

problem. Solving race conditions with locks is usually prohibitively expensive and

some algorithms opt for a strategy that ignores the race condition altogether and

corrects later the derived solution if it is invalid. Alternatively, dataflow algorithms

solve the synchronization problem by executing the algorithm by following a partial

order on the graph. While removing the cost of locks or avoiding a checking phase

iv

improves performance, it is possible that the algorithm picks a partial order with long

chains, which limits its utility to parallel applications.

We investigate how distributed dataflow graph algorithms obtain a partial order

and how one could favor orders with shorter long chains. Most dataflow algorithms

obtain their order by having each vertex of the graph pick a uniformly random number

in [0, 1) and order the vertices based on that number. We believe that this type of

order could lead to long chains in graphs with dense regions such as small world

graphs. We design two alternative ways of generating the order to make it similar to

a largest degree first order. We study the behavior of these different algorithms on a

wide range of randomly generated RMAT graphs and on a set of real-world graphs.

We show that our ordering methods can significantly reduce the length of the longest

chain.

v

DEDICATION

Thank you to my mom who has supported me through my entire academic career

and allowed me to pursue this opportunity.

vi

TABLE OF CONTENTS

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS 1

CHAPTER 1: INTRODUCTION 1

1.1. Problem Statement 4

1.2. Document Structure 5

CHAPTER 2: PRELIMINARIES 7

2.1. Basic Definitions and Theorems 7

2.2. Related Works 11

CHAPTER 3: INTERVAL COLORING WITH STENCILS 14

3.1. Introduction 14

3.2. Interval Coloring Problem of Stencils 15

3.2.1. Problem Definition 15

3.3. Special Case Analysis 17

3.3.1. Cliques 17

3.3.2. Bipartite Graph 17

3.3.3. Odd Cycles 18

3.3.4. Lower bounds are not tight 21

3.4. NP-Completeness 22

3.5. Heuristics 27

3.5.1. Greedy Algorithms 27

vii

3.5.2. Bipartite Decomposition 29

3.6. Experiments 30

3.6.1. Experimental Setting 30

3.6.2. 2D Results 31

3.6.3. 3D Results 33

3.6.4. Optimal coloring based analysis 35

3.7. Coloring for Space Time Kernel Density Estimation 36

3.8. Conclusion 39

CHAPTER 4: DATAFLOW ALGORITHMS 43

4.1. Introduction 43

4.2. Problem Statement 44

4.2.1. Dataflow Algorithms 44

4.2.2. Combinatorial Optimization Model 45

4.3. Deriving better partial orders 47

4.3.1. Methods 47

4.3.2. Basic analysis 48

4.4. Study on Recursive Graph Model (RMAT) 49

4.4.1. Methodology 49

4.4.2. Initial Investigation 51

4.4.3. Exploring the RMAT Parameter Space 52

4.5. Real Graph Study 53

4.6. Conclusion 54

viii

CHAPTER 5: LONG PATHS IN ORIENTED GN,P GRAPHS 58

5.1. Introduction 58

5.2. Long Paths are Bounded by G(N) 59

5.3. Analysis of G(N) 62

5.4. Experimental Results 65

5.5. Conclusion 67

CHAPTER 6: CONCLUSION 68

6.1. Summary of Results 68

6.2. Open Questions 69

REFERENCES 70

ix

LIST OF TABLES

TABLE 4.1: Critical path length (95% confidence intervals) and ratios
of average critical path lengths across methods for different RMAT
parameters. (Bolded numbers highlight critical path length ratios
greater than 1.15.)

55

TABLE 4.2: Graph basic statistics, critical path length (95% confidence
intervals), and ratios of average critical path lengths across methods
for several real world graphs. (Bolded numbers highlight critical path
length ratios greater than 1.15.)

56

x

LIST OF FIGURES

FIGURE 2.1: OR Subgraph 10

FIGURE 3.1: Application leading to a 5× 4 9-pt stencil graph 15

FIGURE 3.2: Odd Cycle Instance and its Optimal Coloring 19

FIGURE 3.3: Optimal Coloring of 2 Neighboring Cycles 21

FIGURE 3.4: Instance Samples 32

FIGURE 3.5: 2D Results (All Instances) 33

FIGURE 3.6: Performance Profile for 2DS-IVC: maxcolor broken down
per dataset

34

FIGURE 3.7: 3D Results (All Instances) 36

FIGURE 3.8: Performance Profile on 3DS-IVC: maxcolor broken down
by dataset

37

FIGURE 3.9: Performance Profiles with ILP 41

FIGURE 3.10: Scatter plot of number of colors and execution time of
the STKDE application. Each scatter plot presents different coloring
algorithm. A linear regression line shows positive corelation between
number of colors and runtime in all 6 cases.

42

FIGURE 4.1: The execution time of dataflow algorithm depends on the
random number generation. Black edges highlight the order of the
dataflow, while green edges show the critical path. On a lucky draw,
the critical path of the algorithm contains only 2 vertices, while an
unlucky draw can have 16 vertices in its critical path.

45

FIGURE 4.2: Cumulative Density Function of the longest chain induced
by Uniform, Expnential and Linear on RMAT Graph with a =
0.10, b = 0.20, c = 0.50, d = 0.20 for different values of edge factor
ef . The different values of edge factor show almost identical patterns
for the length of the critical path.

49

xi

FIGURE 4.3: Cumulative Density Function of the longest chain induced
by Uniform, Expnential and Linear on RMAT Graph with a =
0.42, b = 0.19, c = 0.19, d = 0.02 for different values of edge factor
ef . The different values of edge factor show almost identical patterns
for the length of the critical path.

50

FIGURE 4.4: Cumulative Density Functions of longest chain on real-world
Graphs. All graphs (except ca-HepTh and roadNet-PA) show a major
difference in critical path length across methods: Exponential and
Linear have much shorter critical paths than Uniform.

57

FIGURE 5.1: Experimental Results for Long Paths in GN,P 65

CHAPTER 1: INTRODUCTION

Graphs are a fundamental tool in mathematics used to model processes found in

almost every domain of science and technology. Graphs are a collection of nodes and

edges, in which nodes are connected by edges. Nodes typically represent objects and

edges represent relationships between them. Graphs have numerous applications to

physical systems, social networks, and computational tasks.

Graphs are used to model transportation, in which cities are represented by nodes

and the roads connecting them are edges. They are used in engineering to build

and test automobiles and planes. Not only is the design of the vehicle modeled

by a collection of neighboring parts but also its relationships with the surrounding

environment. Facebook is a well-known social network social network, where people

and their friendships are represented as a graph. In biology, how proteins regulate

and control one another is expressed in a graph called a protein-protein interaction

network.

Developing the graph model of an application is often helpful to gain insight into

the problem but is usually not sufficient to solve most real-world problems. The

study of graphs is important because additional tools are needed to use these models

effectively. We use the maximum flow algorithm to identify potential traffic congestion

when designing roadways and other infrastructure. We also use the shortest path

algorithm to efficiently get from point A to point B. Computational fluid dynamics is

essential to ensure a plane will fly correctly before its built. Protein-protein interaction

networks and social networks are both studied for their community structure.

The cost of graph analysis significantly increases with the size and complexity of the

model. Complex models require substantial computational resources because many

2

state-of-the-art algorithms are severely non-linear, so the time it takes for analysis

greatly increases on large graphs. Therefore, it has become increasingly important to

optimize algorithmic complexity for large graphs because graph analysis has become

a staple of modern science and technology. In this paper we will present methods

that use graphs to improve parallel computing as well as parallel computing methods

to make graph analysis faster.

Parallel computing is the natural approach to improve the performance of algo-

rithms on large graphs. In recent years computers have not become faster sequen-

tially; however, transistors have become smaller, so more cores have been added to

CPUs. Dennard scaling is a formal explanation of this phenomena [1]. GPU comput-

ing has increased in popularity for this same reason - GPUs are designed to take as

many simple tasks as possible and complete them simultaneously. Overall, computing

performance has increased precisely because more tasks are completed in parallel.

Task graphs are data structures used to illustrate a sequence of tasks and their

dependencies. Each node is a task that needs to be completed, and each directed

edge represents what task needs to be completed before the other is started. It is

necessary to decide which processor will execute a given task and when the execution

of that task will start. The objective of task graph scheduling is often to minimize

the total runtime of a task graph on a given platform [2, 3].

Resource allocation attempts to minimize the average runtime of a given task using

the configuration of the machine. The system allocates the workload based on how

many resources are currently being used and how costly it is to communicate the

output of a task [4]. For example, when mass producing a car the question of resource

allocation would asks us, "What is the best way to setup my assembly line so that

cars are produced as quickly as possible?" These are formally known as the flow

shop problem [5] and open shop scheduling problem [6]. The fundamental difference

between resource allocation and task graph scheduling is that resource allocation

3

uses properties of the machines for optimization, whereas task graph scheduling uses

properties of the tasks.

Conflict graphs model tasks that cannot be completed at the same time [7]. This

model closely resembles the problem of classical graph coloring. The classical problem

of graph coloring assigns color to each vertex so that no adjacent vertices share the

same color, and the objective is to minimize the number of colors used. Coloring a

graph with intervals assigns an interval of consecutive colors to each vertex and has

the added restriction that no adjacent vertices can share any color in their respective

intervals.

The problem of scheduling tasks is fundamentally the same as coloring a graph

with intervals. Each task can be represented as a vertex and task precedence can

be represented as a directed edge. We can refine this model by adding a weight to

each vertex. This weight is proportional to the computational requirement for each

task, which determines how large an interval must be when coloring the graph. The

scheduling objective of minimizing runtime becomes minimizing the total number

of colors in the graph. Because all intervals must be consecutive, this objective is

similar to minimizing the largest color assigned to each vertex. Time in scheduling is

analogous to consecutive colors in interval coloring.

Executing graph algorithms in a parallel or distributed context is a challenging

problem because of race conditions. Race conditions are the result of a machine

executing tasks simultaneously that needed to be processed sequentially. And often

in graph algorithms, two neighbors can not be processed simultaneously. Solving race

conditions is expensive so many algorithms ignore them by checking the solution after

it has already been given. Alternatively, dataflow algorithms solve this problem by

using a partial order on the graph. Dataflow algorithms in this context can be posed

as a distributed interval coloring problem.

Classical graph coloring has an established history of theorems and problem vari-

4

ants, but most state-of-the-art algorithms are computationally expensive, and many

depend on exploiting the structure of a particular type of graph [8]. Although inter-

val coloring does not appear to have much existing literature, we believe that it is

a valuable tool to approach task graph scheduling and resource allocation and may

have other applications outside of parallel computing. Because interval coloring is

more complex than traditional graph coloring, it is very likely that this problem is

simply understudied.

1.1 Problem Statement

We are interested in the problem of interval coloring because it is relevant to

scheduling parallel applications. In this paper we explore the problem of interval

coloring from three different perspectives. First, we look at a particular case of in-

terval coloring for stencil graphs. Next, we search for good interval colorings for

distributed graphs. Lastly, we seek to generalize this result to random graph models.

Stencil graphs appear naturally in the parallelization of applications where the lo-

cation of an object in a space affects the state of neighboring objects. Rectilinear

decompositions of a space generate conflict graphs that are 9-pt stencils for 2D prob-

lems and 27-pt Stencils for 3D problems. We show that the 5-pt stencil and 7-pt

stencil relaxations of the problem can be solved in polynomial time.

We prove that the decision problem on 27-pt stencil is NP-Complete. We discussed

approximation algorithms with a ratio of 2 for the 9-pt stencil case, and 4 for the

27-pt stencil case. We identify two lower bounds for the problem that are used

to design heuristics. We evaluate the effectiveness of several different algorithms

experimentally on a set of real instances. Furthermore, these algorithms are integrated

into a real application to demonstrate the soundness of the approach. This work on

interval coloring stencil graphs was published in the 36th IEEE International Parallel

& Distributed Processing Symposium (IPDPS 2022) [9].

We also investigated how a distributed dataflow graph algorithm obtains a partial

5

order and how one could favor orders with shorter long chains. Most dataflow algo-

rithms obtain their order by having each vertex of the graph pick a uniformly random

number in [0, 1) and order the vertices based on that number. We believe that this

type of order could lead to long chains in graphs with dense regions such as small

world graph.

We design two alternative ways of generating an order similar to largest degree

first. We study the behavior of these different algorithms on a wide range of randomly

generated RMAT graphs and on a set of real-world graphs. We show in simulation

that our ordering methods can significantly reduce the length of the longest chain.

This work on dataflow algorithms was published in the 13th IEEE Workshop Parallel

/ Distributed Combinatorics and Optimization (PDCO 2023) [10].

Furthermore, we search for a precise explanation of the performance difference

found in both the RMAT and real-world experiments. We provide a formal proof for

GN,P graphs as a preliminary.

1.2 Document Structure

In Chapter 2, we provide essential tools to better understand the work that has

been completed. In Section 2.1, we review the concept of a valid k-coloring and the

definition of chromatic number. We characterize several special types of graphs and

reprove some elementary results associated with classical coloring. We establish basic

proof techniques using NP-Completeness as well as motivate the use of heuristics. In

Section 2.2, we develop the concept of coloring with intervals as a natural extension of

classical graph coloring. We review existing literature that better illustrates the sim-

ilar nature of scheduling, edge orientation, and coloring problems. We also motivate

developing better partial orders for dataflow algorithms.

In Chapter 3, we study the formal problem of coloring with interval graphs which

are 9-pt 2D stencils and 27-pt 3D stencils. We formally define the combinatorial

problem in Section 3.2. We study special cases in Section 3.3 where we show how to

6

color important particular graphs such as cliques, bipartite graphs, and odd cycles.

This analysis gives us lower bounds useful to analyse the stencil problem. We prove

in Section 3.4 that the problem of interval coloring of 27-pt 3D stencil with a small

number of colors is NP-Complete. Section 3.5 provides various greedy heuristics based

on the analysis of the problem. It also provides an approximation algorithm for the

problem with a ratio of 2 for the 9-pt stencil problem and of 4 for the 27-pt stencil

problem; and greedy post optimizations. All the methods are evaluated on some

instances from spatio-temporal analysis in Section 3.6. In Section 3.7, we integrate

our heuristics in a Space-Time Kernel Density Estimation application [11] and show

that the number of colors derived by the heuristics correlates with the runtime of the

application.

In Chapter 4, we present our study of dataflow algorithms. Section 4.2 explains

precisely how dataflow algorithms work and provides a model of the problem as a

graph coloring problem. Section 4.3 presents new ways to generate orderings for

dataflow algorithms and gives a theoretical argument for why they are sound. Sec-

tion 4.4 studies the behavior of the algorithms on random RMAT graphs and shows

that our methods perform usually better. Section 4.5 studies the behavior of these

algorithms on real-world graphs and shows that our methods perform usually better.

In Chapter 5, we study the probability of long paths in random graphs. We provide

a proof that as long as P = c1 logN
N

the probability of a long path in GN,P graphs goes

to 0 when N is sufficiently large. We also provide experimental results that reinforce

this claim in Section 5.4.

Chapter 6 contains some concluding remarks to the dissertation. We provide an

overview of the work that was completed and any open questions that remain.

CHAPTER 2: PRELIMINARIES

2.1 Basic Definitions and Theorems

Definition 2.1.1. Let G = {V,E} be a graph, such that V is the set of vertices and

E is the set of edges. We often use v to represent a vertex in V and (u, v) as an edge

in E.

Definition 2.1.2. A vertex v is said to be adjacent to a vertex u if (u, v) ∈ E.

Definition 2.1.3. A graph is undirected if every pairwise edge from u to v is the

same edge from v to u. A graph that is not undirected is said to be directed.

The notation of an edge (u, v) is intended to be an unordered tuple in the context

of undirected graphs and an ordered tuple in the context of directed graphs.

Definition 2.1.4. A graph is said to have a proper (or valid) k-coloring if there

exists a set of colors X = {c1, c2, ..., ck} so that {Xc1 , Xc2 , ..., Xck} is a partition of V

with the property that for every ci ∈ X if u and v are distinct vertices of Xci, then

(u, v) /∈ E.

Note: {Xc1 , Xc2 , ..., Xck} is a partition of V if
k⋃
i=1

Xci = V , and for every v ∈ V if

v ∈ Xci, then v /∈ Xcj for all j 6= i.

Definition 2.1.5. The chromatic number of G denoted χ(G) is the smallest value

of k for which G has a valid k-coloring.

Definition 2.1.6. U ⊂ V is independent if for every u ∈ U , u is not adjacent to

any other vertex in U .

Definition 2.1.7. We say that a graph is bipartite if V can be partitioned into 2

disjoint and independent subsets {U,W}, so that every vertex u ∈ U is adjacent to at

least one vertex w ∈ W .

8

Theorem 2.1.8. Bipartite graphs can be colored using only 2 colors.

Proof. The sets provided by the definition of bipartite {U,W} can be used as color

classes. These sets are disjoint by definition, so this coloring valid. Since there are

only 2 classes, the graph is 2-colorable.

Definition 2.1.9. A path is a sequence of edges required to traverse from one vertex

to another using only connected vertices.

Definition 2.1.10. We call a graph a cycle if there exists a path from any given

vertex back to itself without repeating other any vertices. The number of edges in this

path is the length of the cycle.

Theorem 2.1.11. Odd cycles are 3-colorable.

Proof. Let G be a cycle of length k, such that k is odd. Clearly, k = 1 and k = 3 are

3-colorable, so we can assume k ≥ 5. We will now show that a cycle of length k + 2

is 3-colorable by induction on k.

Now, suppose G is an odd cycle of length k + 2. Since k ≥ 5, we can take vertices

u and v, so they do not not share both of the same neighbors. Consider G \ {u, v}

by collapsing each of their respective edges. Remove u and the edges containing u,

and add an edge so that the neighbors of u will now be adjacent. Repeat this for

v. G \ {u, v} results in a cycle with 2 less edges. Since G \ {u, v} is an odd cycle of

length k, G \ {u, v} is 3-colorable by the induction hypothesis.

Let X is a valid 3-coloring for a cycle of length k. Remove an edge (p, q) anywhere

on G \ {u, v} and insert u between p and q, so that both p and q are adjacent to

u. Color u differently from both p and q. This is a valid 3-coloring. Repeat this

process when adding back v. The resulting graph is a cycle of length k + 2 with a

valid 3-coloring. Therefore, cycles of odd length are 3-colorable by induction.

Definition 2.1.12. U ⊂ V is clique if for every u ∈ U , u is adjacent to every other

vertex in U .

9

Theorem 2.1.13. A clique of size k requires k colors.

Proof. Let G be a clique of size k. Suppose for the sake of contradiction X is a valid

k− 1 coloring of G. By the Pigeonhole Principle, there exist 2 vertices with the same

color, say u and v. However, u and v are adjacent by definition of a clique. This is a

contradiction; therefore, X is not a valid k − 1 coloring of G.

Definition 2.1.14. The neighborhood of a vertex, n(v), is the set of all other vertices

adjacent to v. If u ∈ n(v), then u is called a neighbor of v.

Definition 2.1.15. The degree of a vertex, δ(v), is the number of neighbors of v.

The largest degree of any vertex in the graph is notated ∆(G).

Theorem 2.1.16. Graphs can be colored in ∆(G) + 1 colors.

Proof. Let G be a graph. We will prove G can be colored in ∆(G) + 1 colors by

constructing a greedy algorithm. Let v be an uncolored vertex. Since d(v) < ∆(G)+1,

there are at most ∆(G) used colors in the neighborhood of v. Therefore, there is a

color that has not already been used by any neighbor of v. Use that color for v.

Repeat this process until all vertices are colored.

Theorem 2.1.17. 3-coloring is NP-Complete by reduction to 3-SAT.

Proof. The proof is a Karp reduction that follows directly from Lemmas 2.1.18 and

2.1.19.

Lemma 2.1.18. 3-coloring ∈ NP.

Proof. Suppose we have a 3-coloring of a graph. For each edge (u, v) check if the

color of u is different from the color of v. Since we are checking at most E edges, the

validity of the coloring can be determined in complexity O(E).

Lemma 2.1.19. 3-SAT ∝ 3-coloring.

10

a

b

c

a V b

a V b V c

Figure 2.1: OR Subgraph

Proof. Let {x1, x2, ..., xn} be variables and {C1, C2, ..., Cm} be clauses of a 3−SAT

formula φ. Each clause is a 3-tuple of variables, such that Cj = (a ∨ b ∨ c) is True if

either a or b or c is True. Conversely, Cj = (a∨ b∨ c) is False if neither a nor b nor c

is True. We will construct G, so that G is 3-colorable if and only if φ is 3-satisfiable.

Let {T, F,B} be a clique of size 3. For each variable xi, add vertices vi and vi

to the graph with the following edges: (B, vi), (B, vi), and (vi, vi). If G is 3-colored

either vi or vi is colored the same as T . If vi is colored the same as T , then xi is

interpreted as True. If vi is colored the same as T , then xi is interpreted as False.

For each Cj = (a ∨ b ∨ c), construct a subgraph that has the following property:

the output node of the subgraph is colored the same as T when Cj is True and the

output node is colored the same as F when Cj is False. Figure 2.1 depicts a subgraph

with this property. If we connect the node that represents the output (a ∨ b ∨ c) to

both F and B. We get our desired construction.

We will now show that φ is 3-satisfiable implies G is 3-colorable. If xi is assigned

True, then color vi the same color as T and vi the same color as F . For each clause

our subgraph can be colored so that the output node is True.

We will now prove the converse that G is 3-colorable implies φ is 3-satisfiable. If vi

shares the same color as T , let xi be True. Let Cj = (a ∨ b ∨ c) be a clause. Suppose

a, b, and c are all False to reach a contradiction. Hence, the output node of the

corresponding subgraph must share the same color as F . However, the output node

11

is adjacent to both B and F . Since G is 3-colorable, the output must share the same

color as T . This is a contradiction, so either a or b or c must be True, which implies

Cj is True.

Therefore, G is 3-colorable if and only if φ is 3-satisfiable.

2.2 Related Works

The problem of interval coloring has a long-established history with multiple vari-

ants and classical applications. Bandwidth problems [12, 13], scheduling problems

[14], and timetabling problems [15] are just a few applications.

Since the complexity of the interval coloring problem for general graphs is known

to be NP-Hard [16], several authors have provided bounds on the generalized chro-

matic number [17]. However, these bounds are not useful in practical applications;

therefore, polynomial algorithms for special classes of graphs become desirable. Bi-

partite graphs, complete graphs, chordal graphs, interval graphs, stars, and trees have

already been investigated. However, 9-pt 2D stencil graph and 27-pt 3D stencil were

previously unexplored, as far as the authors know.

Greedy algorithms are a staple of heuristics to provide solutions to graph coloring

problems since graph coloring is NP-Complete [18]. For classic graph coloring prob-

lems greedy algorithms pick vertices of the graph in an arbitrary order and allocate

the lowest color that does not conflict with the neighbors that have already been

colored. A classic guarantee of greedy coloring is that they use at most ∆ + 1 colors

where ∆ is the maximum degree in the graph.

Some classic greedy algorithms use a particular ordering of the vertices which hope-

fully provide better colorings than arbitrary orders [19]. Popular orderings are Largest

First [20], and Smallest Last [21]. Some post optimization techniques have proven to

be particularly effective, such as recoloring [22].

Scheduling, edge orientation, and coloring problems are fundamentally related. In

12

a typical task graph scheduling problem [23], the order of tasks is known in ad-

vance and the problem is to decide when and where the tasks will run given a list

of dependency constraints. An interesting result is that list scheduling [24] always

guarantees to get an application executed on P processors quicker than
∑

v∈V w(v)

P
+

maxc∈allchains(G)

∑
v∈cw(v). The second term is the length of the longest chain in the

graph, which is optimized by minimizing the number of colors.

Another problem is the edge orientation problem. The Gallai-Hasse-Roy-Vitaver

theorem proved that the maximum path length in an oriented graph is always greater

than one plus the chromatic number of its unoriented counterpart (and equal for

the optimal orientation) [25]. On weighted graphs, most edge-orientation problems

attempt to minimize maximum weighted outdegree [26] as opposed to maximum path

length of an acyclic orientation. There are distributed algorithms to minimize the

number of colors for graphs with particular structures. For instance, if the edges can

be oriented so that every vertex has an outdegree less than or equal to 1, then the

Cole-Vishkin algorithm can be applied [27].

Even though the classic problem of coloring graph is polynomial for particular cat-

egories for graphs [28], it is NP-Complete for arbitrary graphs [16]. On arbitrary

graphs, the problem is even not polynomially approximable [29] and often the best

guarantee that can be made is that greedy algorithms can always achieve a coloring

using fewer than ∆ + 1 colors [19]. In practice, it has been reported that selecting

orderings of vertices can generate better colorings [21, 30, 20]. We leverage that intu-

ition in this particular work where we generate orderings using some graph property

to reduce the total number of colors.

Coloring graphs with intervals has received little consideration in the past. The

general NP-Completeness result holds on arbitrary graphs and the problem is often

studied from a radio spectrum allocation perspective [31]. Recently, we studied the

problem of coloring stencil graphs with interval and provided NP-completeness and

13

approximation results [9].

The complexity of dataflow algorithms for maximal independent set and match-

ing was shown to be polylogarithmic with high probability when processing random

graphs on PRAM machines [32]. However, they did not attempt to reduce the critical

path length by adjusting the randomized algorithm.

CHAPTER 3: INTERVAL COLORING WITH STENCILS

3.1 Introduction

In parallel computing, a central question is to decide when each task should be

run. There are two fundamental models to reason with this problem. The first is

the Parallel Task Graph model which encodes what the tasks are and the precedence

dependences between tasks. Though, in some applications, the order in which the

tasks are run can be changed, as long as some sets of tasks do not run concurrently.

To model this type of application, the tasks and their conflicts are represented as an

undirected graph in which vertices are tasks, and edges represent the non-concurrency

between two tasks. The classic optimization problem to make the execution more

efficient is a graph coloring problem, which is NP-Hard in the general case [16].

In the classic graph coloring problem, each vertex of the graph needs to be allocated

one color (an integer) so that each pair of neighboring vertices have different colors.

This model is appropriate when one does not have a good idea of the runtime for each

individual task, which happens frequently. Though in some applications we have a

precise idea of how much work is required by a particular task. In these cases, the

problem of scheduling the tasks is better modeled by giving each task not a single

color, but an interval of colors with length proportional to the length of the task.

This problem is to color the vertices of a graph with intervals. In the general case,

this problem is harder than the classic graph coloring problem and is also NP-Hard

even though it provides a more accurate model.

While the problem is NP-Hard on general graphs, certain types of applications are

only concerned about particular categories of graph. In this chapter, we study the

problem of coloring with intervals the vertices of stencil graphs. In particular, we are

15

interested in 9-pt 2D stencils and in 27-pt 3D stencils.

These problems appear in applications where objects are located in space and can

impact the state of nearby objects. Imagine an application in 2D space where the

impact of objects within a given radius follow the behavior of complex equations.

When making this application parallel, one may want to partition the space and have

each region of the space be a particular task. See Figure 3.1 for reference. The figure

depicts a grid of 5 × 4 tasks. The blue object will impact the three objects within

the radius of the blue circle. So when processing the region that contain the blue

object, one can not process any other region that may impact the same objects. If

the partition of the region is made to be rectilinear [33] and no partition is smaller

than twice the radius of impact, then a region can not be processed at the same

time as any of its 8 neighbors. The underlying graph of conflict is a 9-pt 2D stencil.

The nodes can be weighted with an estimation of the processing time of the region.

In the figure, the nodes are weighted by the number of objects in the region. This

type of structure can appear in various scientific codes, including n-body solvers, bird

flocking simulations [34], or visualization of spatio-temporal data [11].

1 2 2 1

2432

1 4 1 0

1110

0 1 0 1

Figure 3.1: Application leading to a 5× 4 9-pt stencil graph

3.2 Interval Coloring Problem of Stencils

3.2.1 Problem Definition

We define first the general problem of graph coloring vertices with intervals.

16

Definition 3.2.1 (Interval Vertex Coloring (IVC)). Let G = (V,E) be an undirected

graph and w : V → Z+ be a weight function that associates vertices of the graph to

positive (or null) weights.

An interval coloring of the vertices of G is a function start : V → Z+. We say

that vertex v is colored with the open interval [start(v), start(v) + w(v)). For the

coloring to be valid, neighboring vertices must have disjoint color intervals ∀(a, b) ∈

E, [start(a), start(a) + w(a)) ∩ [start(b), start(b) + w(b)) = ∅. A particular coloring

start of vertices is said to use maxcolor = maxv∈V start(v) + w(v) colors.

The optimization problem is to find a coloring start that minimizes maxcolor. We

will denote the optimal value of maxcolor as maxcolor∗.

We will slightly abuse the w notation to extend it to sets of vertices: for instance,

w(x, y, z) = w(x) + w(y) + w(z).

We are particularly interested in restrictions of the problems where the graph is a

9-pt 2D stencil or a 27-pt 3D stencil.

Definition 3.2.2 (2DS-IVC). An IVC problem where graph G is a 9-pt 2D stencil,

that is to say it is composed of X×Y vertices laid on a 2D grid such that two vertices

(i, j) and (i′, j′) are connected by an edge if and only if |i− i′| ≤ 1 and |j − j′| ≤ 1.

Definition 3.2.3 (3DS-IVC). An IVC problem where graph G is a 27-pt 3D stencil,

that is to say it is composed of X × Y × Z vertices laid on a 3D grid such that two

vertices (i, j, k) and (i′, j′, k′) are connected by an edge if and only if |i− i′| ≤ 1 and

|j − j′| ≤ 1 and |k − k′| ≤ 1.

Without loss of generality, we will assume that X > 1, Y > 1, and Z > 1 for

both 2DS-IVC and 3DS-IVC instances. If one of the dimensions was equal to 1 in

3DS-IVC, the instance can be thought as an instance of 2DS-IVC. And if one of the

dimension was equal to 1 in 2DS-IVC, the graph would be a chain which, as we will

see, is a polynomial case.

17

In general, vertices are indexed from 1; so the first task of 2DS-IVC is (1, 1) and

the last task is (X, Y).

3.3 Special Case Analysis

Since we are in particular interested in solving the 2DS-IVC and 3DS-IVC problems,

it is important to analyze graphs structures that can be embedded in a 9-pt or a 27-pt

stencil. Indeed, for any instance of IVC (and therefore of 2DS-IVC or 3DS-IVC), the

optimal coloring of any subgraph contained in the graph G (obtained for instance by

removing vertices or edges from G) is a lower bound of the optimal number of color

of G.

3.3.1 Cliques

Cliques are some of the easiest graphs to color. Because all vertices are connected

to all the other vertices, no vertices can share any color with any other vertices in

the graph. Therefore, if G = Kn is a clique of size n, it is optimal to color the

graph with maxcolor∗ =
∑

v∈V w(v) colors. One can easily build such a coloring by

listing vertices in any order and greedily allocating the color inteveral with the lowest

available start(v); with a complexity of Θ(V).

Cliques are particularly important for our stencil problems because 2DS-IVC con-

tains many K4 and 3DS-IVC contains many K8. So the sum of weight for each

block of 4 neighboring vertices is a lower bound of 2DS-IVC (∀0 ≤ i < X, 0 ≤ j <

Y,maxcolor∗ ≥ w(i, j) + w(i, j + 1) + w(i + 1, j) + w(i + 1, j + 1)) and the sum of

weight of each block of 8 neighboring vertices is a lower bound of 3DS-IVC (∀0 ≤ i <

X, 0 ≤ j < Y, 0 ≤ k < Z,maxcolor∗ ≥ w(i, j, k) +w(i, j+ 1, k) +w(i+ 1, j, k) +w(i+

1, j+ 1, k) +w(i, j, k+ 1) +w(i, j+ 1, k+ 1) +w(i+ 1, j, k+ 1) +w(i+ 1, j+ 1, k+ 1)).

3.3.2 Bipartite Graph

If the graph G is bipartite, that is to say if vertices can be partitioned in two sets

A and B such that all edges have one extremity in A and one extremity in B, then

18

the graph is easy to color with intervals. Each edge in the graph provides a trivial

lower bound for the number of colors maxcolor∗ ≥ w(i) + w(j),∀(i, j) ∈ E.

A simple algorithm achieves a coloring with maxcolor∗ = max(i,j)∈E w(i) + w(j).

If i ∈ A, color it with start(i) = 0 in the interval [0, w(i)). If j ∈ B, color it with

start(j) = maxcolor∗ − w(j) in the interval [maxcolor∗ − w(j),maxcolor∗). This

algorithm is correct because all edges are between a vertex of A and a vertex of B:

the color interval of the vertices are disjoint by definition of maxcolor∗.

The algorithm requires two linear passes over the graph: one to identify A and B

and compute maxcolor∗; and one to set the colors of all vertices. The algorithm has

a complexity of Θ(E).

Bipartite graphs are quite important to 2DS-IVC and 3DS-IVC because each 9-pt

stencil contains a 5-pt stencil which is bipartite. Similarly, each 27-pt stencil contains

a 7-pt stencil which is also bipartite. We will see that this property enables us to

build approximation algorithms for these problems. Also any chain and even cycles

embedded in the stencil is bipartite.

3.3.3 Odd Cycles

Graphs that are not bipartite contain at least one cycle of odd length. It turns

out that odd cycles can have optimal interval colorings that are strictly greater than

the largest weight of the any clique in the graph. Consider the odd cycle embedded

in a 2D stencil presented in Figure 3.2, the clique of largest weight is 25, but the

optimal coloring is 30. As such, understanding how to color odd cycles with intervals

will yield new lower bounds on optimal interval coloring of any graph, including 9-pt

stencils and 27-pt stencils.

Because in this case G a cycle, the neighbors of vertex x are denoted as x− 1 and

x+ 1; in other words, indices are understood modulo |V |.

Definition 3.3.1 (maxpair). Let maxpair be the maximum sum of any 2 consecutive

terms: maxpair = maxiw(i, i+ 1)

19

0 18 6 0
7 0 0 18
18 0 6 0
0 7 0 0

Figure 3.2: Odd Cycle Instance and its Optimal Coloring

Definition 3.3.2 (minchain3). Let minchain3 be the minimum sum of any 3 con-

secutive terms: minchain3 = miniw(i, i+ 1, i+ 2)

Theorem 3.3.3. If G is an odd cycle, we havemaxcolor∗ = max(maxpair,minchain3)

We prove this theorem by proving that this value of maxcolor∗ is feasible and is

also a lower bound on the number of colors in two seperate lemmas.

Lemma 3.3.4. If G is an odd cycle, there is an algorithm that yields max(maxpair,minchain3)

colors. In other words maxcolor∗ ≤ max(maxpair,minchain3)

Proof. Without loss of generality, the three consecutive vertices that give minchain3

are assumed to be 0, 1, and 2.

We color vertex 0 with start(0) = 0 (and therefore with interval [0, w(0))); we color

vertex 1 with start(1) = w(0) (and therefore with interval [w(0), w(0, 1))); and we

color vertex 2 with start(2) = max(maxpair,minchain3)−w(2) (and therefore with

interval [max(maxpair,minchain3)− w(2),max(maxpair,minchain3))).

For the remaining vertices x, if x is odd, we color it with start(x) = 0 (and therefore

with interval [0, w(x))); if x is even, we color it with start(x) = max(maxpair,minchain3)−

w(x) (and therefore with interval [max(maxpair,minchain3)−w(x),max(maxpair,minchain3))).

Obviously, this coloring uses exactly max(maxpair,minchain3) but we need to

argue that it is correct. By construction, vertices 0, 1, and 2 do not have intersecting

color intervals.

20

For all vertex x > 1, the color intervals of x and x+ 1 do not intersect because one

of the interval starts on 0 and the other ends on max(maxpair,minchain3) and the

length of [0,max(maxpair,minchain3)) is larger than w(x, x+1) by construction.

Lemma 3.3.5. If G is an odd cycle, maxcolor∗ ≥ max(maxpair,minchain3)

Proof. We can assume maxpair < minchain3. (If minchain3 ≤ maxpair, then

the lemma is obviously true since maxpair is a lower bound of number of colors on

any graph.) Let K = minchain3. The proof is by contradiction: Suppose for that

G can be colored in K − 1 colors and assume we have a valid coloring start. Let

i(x) = [start(x), start(x+ w(x)).

We will once again assume without loss of generality that w(0, 1, 2) = minchain3.

So we have w(0, 1, 2) ≤ w(x, x+ 1, x+ 2) for all x ∈ V .

We have i(0)∩i(2) 6= ∅ because the Pidgeonhole Principle: there are only w(0, 1, 2)−

1 = K − 1 colors available; and, because i is valid, we have i(0) ∩ i(1) = ∅ and

i(2) ∩ i(1) = ∅.

Since i(0) and i(2) intersect, but do not intersect with i(1), i(0) and i(2) must

be on the same side of i(1). Without loss of generality, we can assume that i(1) is

before i(0) and i(2). If it is not true, we can transform the coloring so that color c

becomes color k − 1 − c. And since 1 is only neighbor with 0 and 2, we can assume

that i(1) = [0, w(1)). We say that 1’s coloring is 0-aligned.

w(3) ≥ w(0) because w(1, 2, 3) ≥ w(0, 1, 2) since (0, 1, 2) is the minimum chain of

length 3. Hence, i(3) ∩ i(1) 6= ∅ since i(3) ∩ i(2) = ∅ and i(1) ∩ i(2) = ∅. Therefore,

i(1) and i(3) are on the same side of i(2) since i(1) is 0-aligned, we can assume WLOG

that i(2) = [K − 1− w(2), K − 1). we say that 2’s coloring is K − 1-aligned.

This argument is true for any chain of three vertices: ∀x, i(x) ∩ i(x+ 2) 6= ∅. The

same argument holds by induction. For all odd x, we have i(x) = [0, w(x)). And for all

even x we have i(x) = [K−1−w(x), K−1). We have i(n−1) = [K−1−w(n−1), K−1)

because n − 1 is even. The Pidgeonhole Principle implies that n − 1, 0, 1 has their

21

interval intersect. But since i(n − 1) and 1 do not intersect, and i(0) and i(1), then

i(n− 1) and i(0) must intersect. Hence, the solution is not valid.

Odd cycles provide a new lower bound on the optimal coloring of the 2DS-IVC and

3DS-IVC: the maximum minchain3 of any odd cycle embedded in the stencil. How-

ever, it does not appear to be easy to identify the odd cycle of maximum minchain3

in an instance of 2DS-IVC. There are an exponential number of odd cycles; so one

would need something of lower complexity than simply listing them.

3.3.4 Lower bounds are not tight

We now have two separate lower bounds applicable to our stencil graphs. Cliques

provide one lower bound and odd cycles provide the other one. We exhibit now (in

Figure 3.3) an instance whose optimal coloring uses stricly more color than either

lower bounds.

Figure 3.3: Optimal Coloring of 2 Neighboring Cycles

The instance features two odd cycles that have two of their respective vertices

22

neighbor each other. The maximum clique is 14 while the minchain3 of either of the

cycle is 14. Yet, the optimal coloring is 17. (We confirmed the optimal coloring with

an integer linear program.)

3.4 NP-Completeness

We will prove in this section that the decision version of the 3DS-IVC problem

is NP-Complete. The core of the proof is to show that the problem is harder than

Not-All-Equal 3-SAT.

An instance of Not-All-Equal 3-SAT (NAE-3SAT) is qualified by n binary variables

used in m groups of 3 variables. The instance is positive if there is an assignment of

true or false to each variable so that in each of the m groups at least one variable is

true and at least one is false. This variant of 3SAT is known to be NP-Complete [35].

NAE-3SAT has two of properties which makes it easier to use in many reductions:

1) there is no need for negation of a variable in the instance of NAE-3SAT like we

have in 3SAT; and 2) if an assignment solves the instance, then the negation of that

assignment also solves the instance.

Lemma 3.4.1. 3DS-IVC ∈ NP

Proof. A solution for 3DS-IVC is an interval of colors for each vertex. This can

be encoded as 2 integers, and they are easily bounded between 0 and
∑n

i=0 w(i),

where w(i) is the weight of the vertex i in 3DS-IVC. This sum can be encoded in a

polynomial number of bits. This is a trivial bound, but it does show the solution is

in polynomial space.

Given a solution for 3DS-IVC we can check to see if it is correct in polynomial

time. We just need to verify that no adjacent edges have overlapping scheduled

intervals. More precisely, we are checking, ∀(u, v) ∈ E, [start(u), start(u) + w(u)) ∩

[start(v), start(v) +w(v)) = ∅. Since |E| ≤ n(n−1)
2

is polynomial for arbitrary graphs.

Checking if two intervals intersect is in O(1). Hence, any solution for 3DS-IVC can

23

be verified in O(n2).

Therefore, 3DS-IVC ∈ NP.

Lemma 3.4.2. NAE-3SAT ∝ 3DS-IVC

Proof. Constructing an instance 3DS-IVC from an instance of NAE-3SAT

in polynomial time. Let v1, v2, ..., vn be variables that appear in the m clauses of

the NAE-3SAT problem, so that for each clause uj = (vj1 , vj2 , vj3), 1 ≤ j ≤ m at

least one variable is true and at least one variable is false. Without loss of generality,

assume the variables are ordered within the clauses 1 ≤ j1 < j2 < j3 ≤ n.

We construct now the corresponding instance of the 3DS-IVC problem to color

with maxcolor = 14 colors.

We generate a 3D cube of width 2n+ 10, height 9, and depth 2m. We use (x, y, z)

to denote our coordinate system in 3. The weight of each vertex in the 3D cube

is either a 0, 3, or 7. In other words, ∀(x, y, z), w(x, y, z) ∈ {0, 3, 7}. Any value not

specified in our construction is set to 0.

We call the following construction a tube generated by variable vi: ∀(x ≤ n, z ≤

2m),

w(2i− 1, 1, z) =

0, if z ≡ 1 (mod 2)

7, if z ≡ 0 (mod 2)

w(2i− 1, 2, z) =

7, if z ≡ 1 (mod 2)

0, if z ≡ 0 (mod 2)

We call layer 2j + 1 “the layer of clause j”. For each layer of clause j, we construct

the wire generated by variable xj1 .

w(2j1 − 1, y, 2j + 1) = 7(∀y, 2 ≤ y ≤ 7)

w(x, 8, 2j + 1) = 7(∀x, j1 + 1 ≤ x ≤ 2n+ 1)

24

Similarly, we construct the wire generated by variable xj2 .

w(2j2 − 1, y, 2j + 1) = 7(∀y, 2 ≤ y ≤ 5)

w(x, 6, 2j + 1) = 7(∀x, j2 + 1 ≤ x ≤ 2n+ 1)

Lastly, we construct the wire generated by variable xj2 .

w(2j3 − 1, y, 2j + 1) = 7(∀y, 2 ≤ y ≤ 3)

w(x, 4, 2j + 1) = 7(∀x, j3 + 1 ≤ x ≤ 2n+ 1)

Furthermore, in each odd layer, we explicity describe right hand side of the xy-plane

(that is to say for 2n+ 1 ≤ x ≤ 2n+ 10, for 1 ≤ y ≤ 9, and for z = 2j + 1):

W2j+1 =

0 7 7 0 0 0 0 0 0 0

7 0 0 7 0 0 0 7 7 0

0 0 0 7 0 0 3 0 0 7

7 7 0 0 7 3 3 0 0 7

0 0 7 0 0 0 0 7 0 7

7 0 0 7 0 0 7 0 0 7

0 7 0 0 7 7 0 0 0 7

0 0 7 0 0 0 0 0 7 0

0 0 0 7 7 7 7 7 0 0

(3.1)

Several desirable properties come from the careful construction of these tubes,

wires, and clauses.

The wires connect the tubes to the appropriate “3s” on the right hand side of the

clause’s layers. All wires have the same parity of length. Meaning, for every variable,

the path from the variable to the terminating 3 is congruent to 0 mod 2. All wires

25

have even length in our construction.

Because we are trying to solve the decision problem with maxcolor = 14 and each

7 is connected to another 7, each 7 must be scheduled from either [0, 7) or [7, 14). In

a chain of 7s, every other 7 must be scheduled to the same [0, 7) or [7, 14) because

adjacent 7s cannot overlap in scheduled intervals. In other words, all even 7s in a

chain must share the same “polarity” by construction. We call the color of (2i−1, 2, 1)

the polarity of variable vi. (If vi is true, (2i − 1, 2, 1) is colored with interval [0, 7),

and the 7s in the tube and wires of vi have positive polarity. If vi is false, (2i−1, 2, 1)

is colored with interval [7, 14), and the 7s in the tube and wires of vi have negative

polarity.)

In the triangle of 3s from the W2j+1, the 7s connected to the 3s cannot all share

the same polarity and be colorable in 14. Suppose without loss of generality that

all of the 7s directly adjacent to the 3s share the same polarity on the low-end of

the interval, namely [0, 7). All 7s are blocking [0, 7) and there are 9 different colors

required for all 3s, but we only have 7 colors left in the interval from [7, 14).

A positive instance of NAE-3SAT results in a positive instance of 3DS-

IVC.

If the instance of NAE-3SAT is positive, then there is a variable assignment that is

valid. We construct a solution of the created instance of 3DS-IVC out of the variable

assignments of a solution of NAE-3SAT.

If v1 is true, color the wire of v1 to give it positive polarity. If v1 is false, give the

wire of v1 negative polarity. This forces the coloring of all 7s in instance.

The only question left is “can we color the 3s?”. That answer has to be true because

we know the instance of NAE-3SAT is positive instance. Hence, for any clause that

clause is valid and the 3 variables in that clause are not all equal. So at least one

is true and at least one is false. Therefore all 7s in the clause object cannot have

the same polarity. Two of the 7s share same polarity, and one has opposite polarity.

26

Assume 2 positive and 1 negative (without loss of generality). The 3 that is connected

to the negative we will color [0, 2). And the other two 3s we color with [7, 9) and

[10, 12). That coloring is valid for that clause. we can color all 3s with a similar

process.

If the created instance of 3DS-IVC is positive, then the instance of

NAE3-SAT is also positive.

Since the instance of 3DS-IVC is positive, there is a valid coloring of the vertices

of the 27-pt stencil. We infer the values for NAE-3SAT by looking at the polarity of

the wire. If (2i− 1, 2, 1) is colored with interval [7, 14) then we set vi to false. If it is

colored with interval [0, 7) then we set vi to true.

If we were able to color the graph, then the triangle of 3s were colorable in 14

colors. And therefore for each clause, one of the three variables has a different value

than the other two. This makes the NAE-3SAT instance a positive instance.

Since the 3DS-IVC problem is in NP and is harder than NAE-3SAT which is an

NP-Complete problem, we have the following result.

Theorem 3.4.3. Deciding whether a 27-pt stencil can be colored with less than K

colors is NP-Complete.

Note that at this point, we do not know whether coloring a 9-pt stencil is an NP-

Complete problem or not. Fundamentally, the reduction for 3DS-IVC works because

the tube, wire, and triangle graph can be embedded in a 27-pt stencil. But that tube,

wire, and triangle graph is not planar, so it can not be embedded in a 9-pt stencil.

As such, the complexity of coloring the vertices of 9-pt stencil graphs with intervals

remains open.

27

3.5 Heuristics

3.5.1 Greedy Algorithms

For the problem of coloring with intervals, we design greedy algorithms. We pick

vertices one by one; When we pick vertex v, we give it the lowest color interval of

width w(v) that does not intersect with the color interval of one of the neighbors. To

find such an interval, we first sort the color interval of neighbors by the lower end

of the intervals. This enables to find the lowest color interval of length w(v) that

is available in a single pass over the neighbor colors intervals. This process has a

complexity of O(Γ(v) log Γ(v)) for vertex v. For the whole graph, the complexity of

greedy coloring is O(E logE).

This greedy coloring has some upper bound on the number of colors used, even

though it is higher than one would hope.

Lemma 3.5.1. Any greedy coloring will color vertex v with an interval that ends at

most with color
∑

j∈Γ(v) w(j) + (Γ(v) + 1)w(v)− Γ(v)

Proof. In the worst case, each neighbor uses different color intervals from one another,

preventing
∑

j∈Γ(v) w(j) colors from being used. When sorted, each of these color

interval could be separated from the previous one (or from color 0) by exactly w(v)−1

colors. This forces the greedy algorithm to color v with an interval which starts after

the one of all the neighbors at color
∑

j∈Γ(v)(w(j) + w(v)− 1).

By this analysis, we know that the worst case is achieved when the algorithm colors

the vertex of high weight after its neighbors have been colored with unfortunately

spaced intervals. This leads us to design two broad categories of order in which

to color vertices. Either you color early vertices/structures with high weights, or

you color vertices in an order where vertices are not colored after all its neighbors

(usually).

28

We describe first coloring in geometric patterns. The first one is to color vertices

line by line (and then plane by plane in 3DS-IVC): we call this algorithm Greedy Line-

by-Line (GLL). The second one does not favor a particular dimension and orders the

vertices using the recursive order Z-Order: we call this algorithm Greedy Z-Order

(GZO).

To color vertices based on the weight, the simplest ordering is simply to sort vertices

in the order of non-increasing weights. We call this algorithm Greedy Largest First

(GLF).

From the analysis of the problem, we know that some structure of the instances

are important, namely cliques and odd cycles. Since the clique of largest weight will

be the structure which is likely to set the total number of colors, we designed an

algorithm to color cliques first in non-increasing order of weight. Of course, there

are multiple vertices in a clique and they are colored in an arbitrary order. It is also

possible that some vertices of a clique have already been colored as part of a different

clique; in this case, we follow the greedy principle and leave them untouched. We call

this algorithm Greedy Largest Clique First (GKF).

Note that we could pick the vertices in the clique in a particular, smarter, order.

Since all the cliques in 2DS-IVC and 3DS-IVC are of constant size, we opt to try all

the permutations of the vertices in the clique and only retains the permutation that

leads to the best number of colors for that clique. This adds a 4! = 24 overhead in

the case of 2DS-IVC and a 8! = 40320 overhead for 3DS-IVC. Since checking all 8!

permutations per clique was too time consuming in our experiments, the algorithm

implemented in the 3D cases was slightly modified from its 2D counterpart. Instead

of examining all possible orders of a clique, we sorted the vertices inside the clique by

non-increasing weights. We call these algorithms Smart Greedy Largest Clique First

(SGK).

29

3.5.2 Bipartite Decomposition

The 9-pt 2D Stencil and 27-pt 3D Stencil graphs we are interested in are very similar

to bipartite graphs. We can use that property to design approximation algorithms for

the 2DS-IVC and 3DS-IVC problem. We will explain the construction on 2DS-IVC

and explain how the construction extends to other graph, including 3DS-IVC.

Here is how Bipartite Decomposition works. Consider individually each of the Y

rows the 2DS-IVC instance. Each row is a chain of vertices, which is a bipartite

graph and can be colored optimally using the algorithm presented in Section 3.3.2

in Θ(XY). Let c(x, y) be the lower end of the color interval associated with vertex

(x, y) in that coloring. And let RC = max c(x, y) + w(x, y) be the maximum color

used by any of the rows. RC ≤ maxcolor∗ is a lower bound of the optimal number

of colors of the instance since it is the optimal coloring of a subgraph of the original

instance.

Note that if we were to color vertex (x, y) with start(x, y) = c(x, y) then the

coloring would possibly be invalid since a vertex could share a color with one of its

neighbors in the row above or the row below. Bipartite Decomposition colors vertex

(x, y) with

start(x, y) = c(x, y),∀x, y, y ≡ 0[mod2]

start(x, y) = RC + c(x, y), ∀x, y, y ≡ 1[mod2]

This can be done in Θ(XY) which makes Bipartite Decomposition an algorithm in

Θ(XY).

That coloring is feasible since even rows are being colored using colors from [0, RC)

and odd rows are being colored using colors from [RC, 2RC). Furthermore, the

coloring uses at most 2RC colors. So, we have maxcolor ≤ 2RC ≤ 2maxcolor∗. In

other words, we obtain the following theorem.

Theorem 3.5.2. Bipartite Decomposition is a 2-approximation algorithm for 2DS-

30

IVC.

The construction of Bipartite Decomposition works because once each row r has

been colored, the row can be contracted into a single vertex of r of weight w(r) =

max c(x, r)+w(x, r), and the resulting graph of the rows is a chain, which is bipartite

itself. If one can decompose a graph G into p parts so that the contraction of G into

p vertices is bipartite, and if the each part can be colored using a ρ-approximation

algorithm, then Bipartite Decomposition can color G using at most (2ρ)(maxcolor∗)

colors.

In particular for 3DS-IVC, each layer of the graph can be colored with the 2-

approximation algorithm for 2DS-IVC. Then the graph of the layer is a chain, which

is bipartite.

Theorem 3.5.3. Bipartite Decomposition is a 4-approximation algorithm for 3DS-

IVC.

Bipartite Decomposition by how it colors the vertices is really designed to be an

approximation algorithm. It can lead to vertices using a high color interval without

having neighbors using the most of the lower colors. We introduce a post optimization

that recolors each vertex one at a time using a greedy principle. First, the vertices

are listed as members of a K4 (in 2D) or K8 (in 3D). Next, all K4 are sorted in

non-increasing order by the sum total of their weights. Lastly, the vertices are sorted

within their K4 by increasing order of the lowest value in their scheduled interval.

This produces an ordering of vertices that can be rescheduled one at a time. We call

this algorithm Bipartite Decomposition + Post (BDP).

3.6 Experiments

3.6.1 Experimental Setting

The algorithms are written in Python and are interpreted using CPython 3.9.4. The

machine that runs the code is equipped with an Intel i9-9900K and runs Windows 10.

31

When the experiments are run, no other workload runs on the machine at the same

time.

We obtained 4 datasets from the authors of [11]. Each dataset represents events

located in space and time giving us a point in a (lat, long, time) 3D space and is

used to compute a voxelized kernel density of events. Each dataset can be analyzed

under the light of different “bandwidth” which are distances within which an event

can impact a voxel. For 2DS-IVC we project the dataset on each of the 2D plane:

xy, xt, yt.

Each dataset is decomposed in a uniform 2D (or 3D for 3DS-IVC) grid composed

of X columns and Y rows (and Z layers for 3DS-IVC). The possible values of X and Y

are constrained by the bandwidth as the size of the region needs to be at least twice

larger than the bandwidth. We list all powers of 2 for X, and Y (and Z for 3DS-IVC)

as well as the largest value that can accomodate the bandwidth.

The first dataset isDengue and comes from cases of the Dengue fever that occured

in Cali, Colombia in 2010 and 2011. FluAnimal comes from the Animal Surveilllance

database of the Influenza Research Database and contains an entry for each confirmed

case of avian flu worldwide from 2001 to 2016. Pollen comes from geolocalized tweets

mentioning keywords such as Pollen and Allergy between February 2016 and April

2016 by US users. PollenUS is a restriction of the Pollen dataset to the contiguous

continental United States. Figure 3.4 presents a projection of each dataset on the xy

plane for the largest partitioning that makes sense for the bandwidth. In total, there

are 1587 instances of 3DS-IVC and 852 instances of 2DS-IVC.

3.6.2 2D Results

We used performance profiles to visualize the quality of heuristics. In these per-

formance profiles, tau is the ratio between the value of maxcolor produced by an

algorithm to the number of colors obtained by the best algorithm for that instance.

If the line for an algorithm goes through (tau, Proportion), then that algorithm is no

32

(a) Dengue (b) FluAnimal

(c) Pollen (d) PollenUS

Figure 3.4: Instance Samples

worse than tau times the best known solution on Proportion percent of the instances.

The runtime comparison and performance profile for 2D instances can be found in

Figures 3.5a and 3.5b, respectively. Performance profiles broken down by 2D dataset

are shown in Figure 3.6.

In general, BDP performed substantially better than all other algorithms. On

average, BDP obtained a solution within 1.03 times the lower bound of maximum

K4. BDP was 182% faster than SGK and required 1.69% less colors. BDP and SGK

yielded the highest percentage of solutions that can be proven optimal with 58.7%

and 63.3%, respectively. Although SGK obtained quality solutions, SGK was the

slowest algorithm by a significant margin. SGK was anywhere between 160% and

182% slower than all other heuristics.

33

0 10000 20000 30000 40000 50000 60000
nodes

0

1

2

3

4

tim
e

(s
)

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Z-Order
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First

(a) Runtime

1.0 1.2 1.4 1.6 1.8 2.0
tau

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Z-Order
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First

(b) Performance Profile: maxcolor

Figure 3.5: 2D Results (All Instances)

BDP obtained the best average maxcolor in all instances except FluAnimal. On

these instances, SGK performed 8% better than BDP in terms of maxcolor, whereas

BDP obtained a value for maxcolor similar to the other greedy algorithms. Overall

the algorithms performed vastly different when compared with the other instances.

This could be due to the fact that the instances of FluAnimal are very sparse. The

performance profile for this particular instance can be found in Figure 3.6b.

The post processing associated with BDP improved the performance of the Bipar-

tite Decomposition by 2.49%. Although this number may seem low, it was enough to

establish BDP as the dominant heuristic in almost all 2D cases, whereas the original

BD was merely average in performance. The post processing was 136% slower on av-

erage; however, this number may be skewed. In many cases, BD obtained a solution

faster than it could be measured. Thus, the wallclock used to measure time returned

a value of 0.

3.6.3 3D Results

The runtime comparison and performance profile for 3D instances can be found in

Figures 3.7a and 3.7b, respectively. Performance profiles broken down by 3D dataset

are shown in Figure 3.8.

34

1.0 1.2 1.4 1.6 1.8 2.0
tau

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Z-Order
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First

(a) Dengue

1.0 1.2 1.4 1.6 1.8 2.0
tau

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Z-Order
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First

(b) FluAnimal

1.0 1.2 1.4 1.6 1.8 2.0
tau

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Z-Order
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First

(c) Pollen

1.0 1.2 1.4 1.6 1.8 2.0
tau

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Z-Order
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First

(d) PollenUS

Figure 3.6: Performance Profile for 2DS-IVC: maxcolor broken down per dataset

35

GLF and SGK were the clear winners on 3D instances. SGK was marginally better

than GLF, yielding less than a 0.57% improvement in average maxcolor and finding

optimal solutions in 11.8% more instances. However, GLF was significantly faster.

GLF had a runtime 142% faster than SGK, 128% faster than BDP, and 120% faster

than GKF. SGK was the slowest algorithm by a sizeable factor. SGK was 25.3%

slower than BDP, 38.9% slower than GKF, and 154% slower than GLL.

BDP had a mediocre performance on 3D instances, whereas it was the clear favorite

on the 2D instances. In 3D, BDP obtained an average maxcolor with a higher than

average runtime. Furthermore, the different 3D instances seemed to have a greater

impact on algorithm performance than in the 2D cases.

Considering the addition of the z-axis, it is likely that vertices, which are consecu-

tive in the sequence of largest weights, will be located on different planes. If this is the

case, then the planes that separate them effectively function as layers of insulation.

This allows the set of colors initially assigned to the large weighted vertices to remain

0-aligned throughout the greedy algorithm. Consequently, a lower maxcolor can be

achieved because the remaining intervals can be tightly packed.

We would also expect to see the 2D results upheld in instances where consecutive

vertices in the sequence of largest weights appear on the same plane. The results seem

to reflect this argument: 18.1% of 3D instances BDP performs strictly better than

SGK in terms of maxcolor. We conclude that specific distributions of weights will be

advantageous to different algorithms. Hence, the construction of different instances

can explain the disparity between the 2D and 3D results.

3.6.4 Optimal coloring based analysis

In order to further analyze the performance of the heuristics, we designed a Mixed

Integer Linear Program (MILP) and solved optimally as many instanes as we could.

We solved the MILP using Gurobi and let the solver run for one day per instance on

a node of a computing cluster. Most of the instances were solved with a provably

36

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
nodes 1e6

0

5

10

15

20

25

tim
e

(s
)

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First

(a) Runtime

1.0 1.2 1.4 1.6 1.8 2.0
tau

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First

(b) Performance Profile: maxcolor

Figure 3.7: 3D Results (All Instances)

optimal solution within a day: Only 21 (2.46%) 2D instances and 269 (16.9%) 3D

instances were not solved.

We replotted performance profiles for both 2D and 3D instances that were solved

by the MILP in Figures 3.9a and 3.9b, respectively. These new figures are virtually

the same as the original performance profiles. This indicates that for most instances,

one of the heuristics had found an optimal solution or a near optimal solution.

Having optimal solutions also enable us to study the quality of the max clique lower

bound. The max clique lower bound was different than the optimal solution value in

only 57 (4.33%) of the 2D instances and 22 (2.65%) of the 3D instances. Furthermore,

in the instances where they differed, the difference was less than 0.01%.

It is important to remember that not all instances were solved optimally by the

MILP solver. Therefore, it is possible that these unsolved instances are more complex.

These unsolved instances may exhibit a greater difference between the max clique

lower bound and the optimal solution.

3.7 Coloring for Space Time Kernel Density Estimation

To validate the model and approach on a real application, we obtained the STKDE

code used by the authors of [11]. In this application, some events (points) are located

in a 3D space and the space is discretized in voxels. The computational load is

37

1.0 1.2 1.4 1.6 1.8 2.0
tau

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First

(a) Dengue

1.0 1.2 1.4 1.6 1.8 2.0
tau

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First

(b) FluAnimal

1.0 1.2 1.4 1.6 1.8 2.0
tau

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First

(c) Pollen

1.0 1.2 1.4 1.6 1.8 2.0
tau

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First

(d) PollenUS

Figure 3.8: Performance Profile on 3DS-IVC: maxcolor broken down by dataset

38

carried by the points which provide contribution to the voxel it is in and nearby

voxels within a particular radius called the bandwidth. A more precise description of

the application is given in [11].

The application has many modes of parallelization but we focus on the strategy

that partitions the points spatially in boxes no smaller than twice the bandwidth.

The points in a box are processed in a single (sequential) task and two neighboring

boxes can not be processed simultaneously.

The problem of finding the best ordering of the tasks boils down to the 3D 27-pt

stencil coloring problem that we consider in this manuscript where the weight of a task

is given by the number of points contained in that box. We modified the application

to call our coloring algorithm and then used OpenMP’s tasking construct to create

the parallel execution. The OpenMP tasks are created in order of increasing start

of their color interval with dependencies to the neighboring boxes. So this creates a

DAG of tasks managed by the OpenMP runtime which is a 27-pt stencil with edge

oriented in a fashion compatible with the coloring.

We took 6 of the instances and parameters that were reported to take more than 1

second of total runtime in sequential execution in [11]. We executed the application on

a machine equipped with an Intel Core i5-11600K which is a 6-core (12 hyperthreads)

processor and 32GB of memory. The machine runs Debian 11 with a Linux kernel in

version 5.10 and the code is compiled with GCC 10.2.1. Each code is run 5 times and

the reported times are averaged across the 5 run. We only report the computation

time and not the time to perform input/output, data preparation, and coloring.

Figure 3.10 shows the relation between the number of colors in the coloring and

the time the application took to compute. Every case shows a linear correlation

between colors and runtime, although that correlation is weak in two of the cases.

This confirms that modeling the application as a coloring problem on a stencil makes

sense.

39

Although on PollenUS-veryhighres-lowbw, the difference between the best and

the worst color is 38%, the difference in runtime is only 4%. This is because the

maximum color in the schedule does not directly relate to runtime. In fact, the

maximum number of colors indicate the length of the critical path in the graph of

tasks scheduled by the OpenMP runtime. And in that case despite the length of the

critical path decreased by 38%, that critical path represents only 5% of the total work

of the application.

The highest decrease in time happened on FluAnimal-highres-highbw-3d-16-16-32

where the best time is 27% lower than the worst time. The worst time is achieved by

the worst coloring which induces a critical path of 10% of the work.

It is also worth noting that we quantify the weight of the tasks in term of number

of points. But the runtime bottleneck of the application in the architecture is the

memory subsystem which is shared among the cores. So as long as enough cores are

working to saturate the memory subsystem, the performance may not suffer even if

a few cores are idle.

The BD and BDP coloring algorithms induce the same Parallel Task Graph in the

OpenMP runtime since the BDP coloring is just a compaction of the BD coloring.

But, in practice, the BD and BDP algorithms can yield different performance. We

believe that the root cause is that despite the underlying task graph is the same,

the tasks are given to the runtime in a different order. And that could impact the

scheduling decisions made by the OpenMP runtime.

3.8 Conclusion

We investigated the problem of interval vertex coloring of 9-pt and 27-pt stencil

graphs. We showed that the 5-pt stencil and 7-pt stencil relaxations of the problem

can be solved in polynomial time. We also proved that the decision problem on 27-pt

stencil is NP-Complete.

Furthermore, we proposed heuristics with very good performance in both the 2D

40

and 3D variants of the problem. The Bipartite Decomposition + Post (BDP) heuristic

is an approximation algorithm which performs exceptionally well in nearly all 2D

cases. In the 3D cases, the Smart Greedy Largest Clique First (SGK) algorithm

obtained the highest quality solution overall, but the Greedy Largest First (GLF)

algorithm achieved a similar quality of solution in a significantly shorter runtime.

Using an ILP, we were able to show that the heuristics with good performance are

optimal or near-optimal in many cases. We also integrated our heuristics in a real

stencil application showing that better coloring will improve runtime performance.

Some open problems remain. Is the problem of interval coloring 9-pt stencil graph

NP-Complete or polynomial? Can we design approximation algorithms for coloring

27-pt stencil with an approximation ratio better than 4?

41

1.0 1.2 1.4 1.6 1.8 2.0
tau

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Z-Order
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First
Integer Linear Programming

(a) 2D Instances

1.0 1.2 1.4 1.6 1.8 2.0
tau

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Bipartite Decomposition
Bipartite Decomposition + Post
Greedy Line by Line
Greedy Largest First
Greedy Largest Clique First
Smart Greedy Largest Clique First
Integer Linear Programming

(b) 3D Instances

Figure 3.9: Performance Profiles with ILP

42

Figure 3.10: Scatter plot of number of colors and execution time of the STKDE ap-
plication. Each scatter plot presents different coloring algorithm. A linear regression
line shows positive corelation between number of colors and runtime in all 6 cases.

CHAPTER 4: DATAFLOW ALGORITHMS

4.1 Introduction

Graphs are a key mathematical object of modern science as they are used to model

a variety of objects of studies including physical objects, roads, computer networks,

and social interactions. With the increase in complexity of studies that are performed,

the size of graphs that are used has increased. Consequently, computational costs of

analyses have increased and the machines we use to perform these calculations have

grown more parallel and more distributed.

Executing graphs on parallel and distributed machines is complicated because of

the irregularity of the memory access patterns. Simple solutions involve using some

form of a locking mechanism. However, the locking overhead usually dominates the

calculations. Some problems admit optimistic algorithms where race conditions are

ignored at first and the solution is later examined and fixed. It is possible that a

race condition happens in a way that leads to an incorrect solution [36, 37]. These

optimistic algorithms fundamentally require a later reconciliation phase, which can

be as costly as the algorithm itself.

A third category of dataflow graph algorithms rely on a partial order to the graph,

where vertices are processed in an order compatible with that partial order.

The most classic dataflow algorithms are Luby’s algorithm for Maximum Inde-

pendent Set [38] and the Jones-Plassmann algorithm for graph coloring [39]. How-

ever, many problems admit dataflow algorithms, such as maximum cardinality match-

ing [32]. These algorithms are particularly suitable for the setting where each vertex

is its own independent computational node. They are also easily written in think-

like-a-vertex programming models [40]. They have also been used on shared memory

44

systems, including the Cray XMT [32, 36].

A bottleneck to the execution of these algorithms is the longest chain of vertices

set by the partial order. Since the precise partial order often does not matter for

correctness, dataflow algorithms often use a random order. Random orders can be

generated in a distributed way and have been shown to yield desirable properties in

several types of graphs [38, 32]. In this chapter, we investigate alternative ways to

generate random orders that minimize the length of the longest chain of vertices in

the algorithm, minimizing its runtime.

4.2 Problem Statement

4.2.1 Dataflow Algorithms

All dataflow graph algorithms share a similar structure. We explain in detail how

Luby’s algorithm computes an Independent Set [38] as a distributed algorithm. Let

G = (V,E) be a graph. We denote the neighbors of vertex v by Γ(v), the degree of v

by δ(v) = |Γ(v)|, and the maximum degree in the graph by ∆ = max δ(v).

In Luby’s algorithm, each vertex v starts by picking a random number r(v) uni-

formly in [0, 1), which is assumed to be unique, and sends it to each of its neighbors.

Vertex v notes which of its neighbors u have the property that r(u) < r(v).

Vertex v marks its own state as unknown. It awaits a message from each of its

neighbors u if r(u) < r(v) which contains the state of neighbor u. If u’s state is

marked, v changes its state to unmarked.

After receiving messages from all neighbors u, if vertex v state is unknown, it

changes its state to marked. And finally v sends its state to all its neighbors u such

that r(u) > r(v). At the end of this process, all vertices in the marked state are a

maximal independent set (by inclusion).

Other dataflow algorithms are similar in structure. A random number is assigned

to each vertex. And each vertex executes an algorithm only after all of its neighbors

with a lower value have been executed.

45

1 4 2

5 3 6

(a) Lucky draw

1 2 3

6 5 4

(b) Unlucky draw

Figure 4.1: The execution time of dataflow algorithm depends on the random number
generation. Black edges highlight the order of the dataflow, while green edges show
the critical path. On a lucky draw, the critical path of the algorithm contains only 2
vertices, while an unlucky draw can have 16 vertices in its critical path.

In Luby’s algorithm, each vertex v executes an algorithm of complexity Θ(δ(v)),

linear in its number of neighbors. However, since each vertex has to wait for some of

its neighbors to complete, the entire process might not unfold in Θ(∆), proportionally

to the maximum degree of the graph. The time it takes for the algorithm to unfold

depends on the longest chain of communication induced by the algorithm, which

depends on the random numbers generated.

A grid graph is used as an example in Figure 4.1. In a lucky draw (Figure 4.1a),

random numbers are generated in a way that leads to lots of parallelism. The black

arrows show the direction of the communication in the graph. The green arrows show

the longest chain in the oriented graph. In this case, all chains are of two vertices

and an arbitrary one was highlighted.

In an unlucky draw (Figure 4.1b), the random numbers are generated in a way that

leads to no parallelism as the longest chain in the oriented graph visits every vertex

in the graph. Of course, both of these draws are extremely unlikely to happen.

4.2.2 Combinatorial Optimization Model

Ultimately, dataflow algorithms rely on the underlying coloring of a graph with

intervals. Let G = (V,E) be the graph that gets processed by the dataflow algorithm.

Let w be a weight function on vertices such that w(v) is the processing time of an

46

algorithm for vertex v. The dataflow algorithm is dependent upon two neighboring

vertices (x, y) ∈ E to not be executed simultaneously. It assumes they run at times

[start(x), start(x)+w(x)) and [start(y), start(y)+w(y)) such that these two intervals

are disjoint. This is the definition of a coloring of the graph with intervals of length

given by the weights of the vertices. The objective is to minimize the total number

of used colors, which is equivalent to minimizing the total runtime of the application.

How good the model is will largely be determined by how the weight function w is

set. On a computing machine with substantially larger latency than execution time

at each node, a good model will be achieved by setting all w to 1 and solving the

standard coloring problem. If the processing at each vertex is the primary cost of the

dataflow algorithm, then setting w(v) to the complexity of the vertex algorithm for

each vertex is the right call. For most algorithms, vertices will need to gather partial

information from their neighbors, do some processing, which is usually proportional

to the number of neighbors, and finally, communicate the partial information to the

neighbors. All operational costs will be proportional to the number of neighbors of a

vertex. Setting the weight to the degree of the vertex w(v) = δ(v) often makes the

most sense. We will make this assumption going forward even though the analysis

can be adapted to other weight functions.

The distributed dataflow algorithm solves that problem using a particular ordering

algorithm. But fundamentally, any coloring of the graph with intervals would be

sufficient to derive a correct execution of the dataflow algorithm. And better colorings

would lead to better runtimes for the execution.

In the context of a distributed graph, it makes sense to run a distributed coloring

algorithm: aggregating the graph to a single computing node to execute a one-node

algorithm would likely be prohibitively expensive compared to the rest of the dataflow

algorithm execution time.

47

4.3 Deriving better partial orders

4.3.1 Methods

Luby’s algorithm and most dataflow algorithms generate random numbers uni-

formly in [0, 1) to derive the order of vertices. This yields a partial order in a dis-

tributed setting so each vertex v performs only Θ(δ(v)) calculations and Θ(δ(v))

communications. The communication term is required for a vertex to know its place

in the order relative to its neighbors. At the level of the system, there are only Θ(E)

calculations and communications. We call Uniform this particular ordering algorithm.

While that algorithm has optimal cost to derive a partial order, it may not derive

the best order. In particular, this ordering does not leverage any properties of the

graph and its vertices. We know from literature that coloring heuristics can benefit

from considering vertex properties and local structure. In particular the Smallest

Last [21] and Largest First [20] orderings are know to be good for the classic coloring

problem [41]. Since Smallest Last is a dynamic ordering, it is costly to replicate in a

distributed setting. Instead, we focus on emulating Largest Degree First.

Instead of generating random numbers uniformly in [0, 1), we propose adjusting

random number generation based on the property of the vertex drawing the number.

In particular, we call Linear the algorithm where vertex v draws a number uniformly

in [0, δ(v)). This algorithm has the same complexity as Uniform but it generates

an ordering that will tend to put vertices with high degree towards the end of the

ordering.

However, a vertex v is guaranteed to be after all vertices u such that δ(u) = δ(v)−1

only with probability 1
δ(v)

(for an infinite number of such vertices u). Linear is a good

approximation of Largest First for vertices with dramatic difference in degrees. But it

is a poor approximation of that ordering for graph with very large maximum degrees

and many vertices of large degrees.

We suggest a third generation algorithm called Exponential where vertex v draws

48

a random number in [0, 2δ(v)). This algorithm still has the same communication and

computational cost with an additional benefit: the probability that a vertex v has a

random number r(v) greater than all vertices u such that δ(u) = δ(v) − 1 is greater

than 1
2
. Therefore, it is a better approximation of the Largest Degree First ordering.

4.3.2 Basic analysis

Regular graphs have the property that all vertices have the same degree. This

category of graphs encompasses many typical structures. Cliques, cycles, torus (2d,

3d, or arbitrary dimension) are all regular graphs. Because all vertices have the same

degree, all three algorithms behave in exactly the same way. Although each method

generates random numbers in different intervals, all vertices in that method generate

numbers in the same interval. Consequently, all three algorithms behave in the same

way.

Star graphs show why the methods work differently. Consider a star graph of V

vertices. The center vertex (hub) has a degree of V −1, while all other vertices (spokes)

have a degree of 1. There are only two possible solutions (excluding symmetries) that

can be generated by the distributed algorithm. Either the hub vertex is in between

two of the spokes, or it is not. It does not matter if the hub is before all spokes or

after all spokes. If the hub vertex is between the two spokes, the longest chain has 3

vertices; otherwise, it has 2 vertices.

Uniform will put the spoke vertex first with probability 1
V
, and will put it last will

probability 1
V
. As V → ∞, the algorithm will generate a path of 2 vertices with

probability 2
V

and a path of 3 vertices with probability V−2
V

.

On the other hand, Exponential will force all spoke vertices have random numbers

in [0, 2), while the hub vertex will be a random number in [0, 2V−1). The hub will have

a random number greater than 2 with probability 2V−1−2
2V−1 . In all cases, the longest

chain will be of 2 vertices with a probability greater than 2V−1−2
2V−1 , which goes to 1 as

V goes to infinity.

49

In the case of the Linear algorithm, the spokes have random numbers in [0, 1),

while the hub has a number taken in [0, V − 1). The hub has a random number

greater than 1 with probability V−2
V−1

. And so, the probability of having a path of 2

vertices tends to 1 as V approaches ∞.

200 300 400 500 600
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(a) ef = 4

400 600 800 1000 1200 1400
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(b) ef = 8

750 1000 1250 1500 1750 2000 2250 2500
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(c) ef = 12

1000 1500 2000 2500 3000 3500 4000
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(d) ef = 16

1500 2000 2500 3000 3500 4000 4500 5000 5500
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(e) ef = 20

3000 4000 5000 6000 7000
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(f) ef = 24

3000 4000 5000 6000 7000 8000 9000
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(g) ef = 28

4000 5000 6000 7000 8000 9000 10000 11000
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(h) ef = 32

Figure 4.2: Cumulative Density Function of the longest chain induced by Uniform,
Expnential and Linear on RMAT Graph with a = 0.10, b = 0.20, c = 0.50, d =
0.20 for different values of edge factor ef . The different values of edge factor show
almost identical patterns for the length of the critical path.

Although star graph are not commonly found in real-world applications, many

graphs, such as social networks, are similar to star graphs: they are structured like

onions with dense center regions and layers of ever lesser dense regions. We believe

that an algorithm like Exponential favors shorter paths in social networks because

once a path enters a denser region is entered it tends not to exit it.

4.4 Study on Recursive Graph Model (RMAT)

4.4.1 Methodology

RMAT graphs have 2n nodes. They are constructed by recursively splitting a square

matrix into 4 quadrants: a, b, c, d. Each quadrant has an associated probability that

a given edge will fall into that quadrant, so a+ b+ c+d = 1. Edges are generated one

at a time and placed in a quadrant following the given probabilities, and recursively

50

300 400 500 600 700
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(a) ef = 4

1000 1200 1400 1600 1800
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(b) ef = 8

1800 2000 2200 2400 2600 2800 3000 3200 3400
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(c) ef = 12

3000 3500 4000 4500 5000
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(d) ef = 16

4000 4500 5000 5500 6000 6500 7000
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(e) ef = 20

5500 6000 6500 7000 7500 8000 8500 9000
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(f) ef = 24

7500 8000 8500 9000 9500 10000 10500 11000
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(g) ef = 28

9000 10000 11000 12000 13000
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(h) ef = 32

Figure 4.3: Cumulative Density Function of the longest chain induced by Uniform,
Expnential and Linear on RMAT Graph with a = 0.42, b = 0.19, c = 0.19, d =
0.02 for different values of edge factor ef . The different values of edge factor show
almost identical patterns for the length of the critical path.

until the edge is placed in a 1 × 1 sub matrix. The number of edges in a graph is

usually controlled by setting an edge factor ef which will generate ef ∗ 2n edges.

RMAT graphs have several desired properties of many real graphs. They have a

power-law degree distribution that resembles real graphs in several applications. They

also exhibit a community structure and have a small diameter [42]. RMAT graphs

are the 2 × 2 special case of Kronecker graph [43]. Note that RMAT is a directed

graph model, however we need an undirected graph, so the matrix is symmetrized

after generation.

All the studies that we conduct on RMAT graphs make the same assumption. We

assume that our graph is derived from an underlying RMAT distribution, and we

try to ascertain whether Uniform, Linear, or Exponential would obtain a shorter

longest chain. Since RMAT is a probabilistic model and these methods themselves

are randomized, statistical evidence is required. For an RMAT parameter set and

an algorithm, we estimate the probability density function by sampling 1000 RMAT

graphs generated by these parameters, and for each graph that was generated, by

51

sampling 100 executions of each ordering algorithm. This gives us 100k values of

longest path length for each ordering for a particular set of parameters.

In general, we present the sampled Cumulative Density Function (CDF) of the

longest chain and the confidence intervals for the expected length of the longest chain.

We validated the significance of the difference in the expected length of longest chains

between two orderings with a pairwise two-population z-test. The p-value was always

substantially lower than 0.05 which indicates that all results presented on RMAT

graphs are statistically significant.

4.4.2 Initial Investigation

As there seem to be no real consensus on what RMAT parameters to use to bench-

mark algorithms, we started our exploration by considering two sets of RMAT param-

eters that appear frequently in the literature. We have four initial questions. Does

the ordering method make a difference? Does one of the methods lead to shorter

path? How does edge factor impact the results? Do the parameters a, b, c, and d

make a difference?

We used parameters (0.10, 0.20, 0.50, 0.20) and (0.42, 0.19, 0.19, 0.02). We varied

the edge factor between 4 and 32. We present the Cumulative Density Function of

the length of the longest path in Figures 4.2 and 4.3.

The statistic tests showed that the distribution are statistically significantly differ-

ent. The difference on the RMAT parameters (0.1, 0.2, 0.5, 0.2) was fairly important.

It seems that for all edge factors, Linear leads to shorter longest paths than Uniform

and Exponential leads to shorter longest paths than both of them. However, the

difference on the RMAT parameters (0.42, 0.19, 0.19, 0.02) was very small. (Even

though it was statistically significant.)

The edge factor seems to have little impact on the relative performance of each

method. The difference between orderings appears to be more pronounced for larger

edge factor; however, the trends remained the same.

52

4.4.3 Exploring the RMAT Parameter Space

Our initial investigation revealed that the a, b, c, and d parameters are important,

while edge factor did not appear to be important. Exponential seems to lead to

shorter path than Linear; and Uniform seems leads to longer path. The question is

whether the parameters we used were odd cases or whether the trends hold for any

RMAT graph.

In this section, we explore the RMAT parameter space in a systematic fashion. We

generated a set of 65 different parameters on graphs of with 29 vertices and fixed the

edge factor to 16. We selected values of a in the range [.3, .8] regularly. Subsequently,

other parameters were selected as a fraction of the remaining number of edges. The

remaining cases were seperated into b > c and b = c. The precise values of a, b, c, d

that we used are included in Table 4.1.

Table 4.1 also provides the confidence interval of the average length of the longest

chain for all three orderings. It also provides the ratio of the average longest chain

path between Uniform and Exponential, between Uniform and Linear, and between

Linear and Exponential. We highlighted in bold the ratios that are greater than

1.15.

Since none of the ratios were smaller than 1 and all results were statistically signifi-

cant, it does seem that on RMAT graphs, Exponential is better than Linear, which

is itself better than Uniform. Exponential leads to path less than half the length

of Uniform path on average with RMAT parameters (0.30, 0.49, 0.08, 0.13). Over-

all, Exponential obtained a path at least 15% better than Uniform on 17 different

RMAT parameters.

While it is unclear how the different parameters control for the difference in path

length, it appears that smaller values of the a parameter seem to favor the Exponential

ordering.

53

4.5 Real Graph Study

While it is encouraging that the Exponential ordering leads to shorter longest path

on RMAT graphs, it does not necessarily hold that the result will be the same given

graph extracted from real-world applications. We tested several real-world graphs

from the Stanford Network Analysis Project (SNAP): CA-HepPh, Email-Enron, p2p-

Gnutella04, roadNet-PA, soc-Epinions1, soc-pokec-relationships, web-Google, and

WikiTalk. A summary of the properties of these graphs are given in Table 4.2. All

these graphs have small world properties, except the graph of the roads of Pennsyl-

vania, which is almost a regular graph. We included that graph as a control.

We present the summary statistics of the orderings in Table 4.2 and the Cumulative

Density Function of the length of the longest path in Figure 4.4.

All the results are statistically significant. On two graphs, Exponential does not

lead to the smallest longest chain in average: ca-HepTh and roadNet-PA. Although

the difference in distribution is fairly small and the average length only differs by less

than 2%.

On the other graphs, Exponential leads to longest chains shorter than Uniform

by more than 7% in average, and by more than 15% on 4 of the graphs. Surprisingly,

the average longest chain generated by Uniform is almost 4.5 times longer than the

average longest chain generated by Exponential. Linear overall, sits in between

Uniform and Exponential.

While we expected to see Exponential lead to much shorter longest chains than

Uniform, it is not clear yet to why ca-HepPh does not follow the same trend. We

hypothesize that ca-HepPh has one large cluster of vertices which is mostly completely

connected. And as such, behaves in practice similarly to a clique.

54

4.6 Conclusion

In this chapter, we investigated the performance of distributed dataflow graph

algorithms. We modeled the problem of optimizing the critical path of the partial

order used by the algorithm using a formulation as a coloring problem with intervals

of colors. We proposed two alternative ways to derive a partial order, Exponential

and Linear. These methods rely on local properties of the vertices, which enable

these orderings to run with no additional cost.

We investigated the efficacy of these algorithms on a large number of RMAT graphs.

We showed that Exponential outperforms the state of the art on all tested RMAT

parameters. We also tested the Exponential algorithm on 8 real-world graphs and

showed it never loses more than 2% to state of the art and reduce the longest chain

by more than 20% on 4 of these graphs.

We would like to understand more precisely why Exponential is better than state

of the art; we believe that investigating the behavior of the algorithm relative to the

k-core decomposition of the graph might yield more insight. Finally, we also want

to experimentally measure how the reduction in longest chain decrease the practical

runtime of these dataflow algorithms.

55

Table 4.1: Critical path length (95% confidence intervals) and ratios of average crit-
ical path lengths across methods for different RMAT parameters. (Bolded numbers
highlight critical path length ratios greater than 1.15.)

a b c d Uniform CI Exponential CI Linear CI U/E U/L L/E
0.30 0.28 0.28 0.14 [2944; 2947] [2623; 2625] [2850; 2853] 1.123 1.033 1.087
0.40 0.24 0.24 0.12 [4950; 4953] [4680; 4683] [4859; 4862] 1.058 1.019 1.038
0.50 0.20 0.20 0.10 [6968; 6971] [6643; 6647] [6845; 6848] 1.049 1.018 1.030
0.60 0.16 0.16 0.08 [8353; 8357] [7949; 7952] [8175; 8178] 1.051 1.022 1.028
0.70 0.12 0.12 0.06 [9211; 9214] [8738; 8740] [8987; 8990] 1.054 1.025 1.029
0.30 0.28 0.17 0.25 [2111; 2113] [2064; 2066] [2103; 2105] 1.023 1.004 1.019
0.30 0.28 0.25 0.17 [2633; 2635] [2437; 2439] [2583; 2585] 1.080 1.019 1.060
0.30 0.28 0.34 0.08 [3782; 3785] [3112; 3115] [3510; 3513] 1.215 1.077 1.128
0.30 0.35 0.14 0.21 [2625; 2627] [2047; 2049] [2402; 2404] 1.282 1.093 1.173
0.30 0.35 0.21 0.14 [3064; 3067] [2464; 2467] [2825; 2827] 1.243 1.085 1.146
0.30 0.35 0.28 0.07 [3959; 3962] [3221; 3225] [3644; 3647] 1.229 1.086 1.131
0.30 0.42 0.11 0.17 [3632; 3635] [2181; 2183] [2880; 2883] 1.665 1.261 1.321
0.30 0.42 0.17 0.11 [3821; 3824] [2433; 2436] [3061; 3064] 1.570 1.248 1.258
0.30 0.42 0.22 0.06 [4343; 4346] [3110; 3113] [3685; 3688] 1.396 1.178 1.185
0.30 0.49 0.08 0.13 [4852; 4855] [2245; 2249] [3437; 3441] 2.160 1.411 1.530
0.30 0.49 0.13 0.08 [4775; 4778] [2505; 2508] [3325; 3330] 1.906 1.435 1.328
0.30 0.49 0.17 0.04 [5052; 5056] [3151; 3155] [3883; 3887] 1.603 1.301 1.232
0.40 0.24 0.14 0.22 [3246; 3249] [3185; 3188] [3242; 3245] 1.019 1.001 1.018
0.40 0.24 0.22 0.14 [4571; 4574] [4377; 4380] [4509; 4512] 1.044 1.014 1.030
0.40 0.24 0.29 0.07 [5946; 5950] [5500; 5504] [5759; 5763] 1.081 1.032 1.047
0.40 0.30 0.12 0.18 [4026; 4029] [3457; 3460] [3811; 3814] 1.165 1.056 1.102
0.40 0.30 0.18 0.12 [5003; 5006] [4551; 4555] [4821; 4825] 1.099 1.038 1.059
0.40 0.30 0.24 0.06 [6141; 6144] [5652; 5656] [5932; 5935] 1.086 1.035 1.049
0.40 0.36 0.10 0.14 [4903; 4906] [3767; 3771] [4333; 4336] 1.301 1.132 1.150
0.40 0.36 0.14 0.10 [5506; 5509] [4637; 4641] [5071; 5075] 1.187 1.086 1.094
0.40 0.36 0.19 0.05 [6383; 6387] [5684; 5688] [6045; 6049] 1.123 1.056 1.063
0.40 0.42 0.07 0.11 [5667; 5670] [3901; 3906] [4639; 4643] 1.452 1.221 1.189
0.40 0.42 0.11 0.07 [6196; 6199] [4927; 4932] [5478; 5483] 1.257 1.131 1.112
0.40 0.42 0.14 0.04 [6670; 6674] [5681; 5685] [6132; 6136] 1.174 1.088 1.079
0.50 0.20 0.12 0.18 [5009; 5012] [4881; 4884] [4981; 4984] 1.026 1.006 1.020
0.50 0.20 0.18 0.12 [6489; 6492] [6213; 6216] [6399; 6402] 1.044 1.014 1.030
0.50 0.20 0.24 0.06 [7813; 7816] [7365; 7368] [7616; 7620] 1.061 1.026 1.034
0.50 0.25 0.10 0.15 [5687; 5690] [5230; 5234] [5515; 5519] 1.087 1.031 1.054
0.50 0.25 0.15 0.10 [6920; 6924] [6500; 6504] [6748; 6751] 1.065 1.026 1.038
0.50 0.25 0.20 0.05 [7984; 7987] [7503; 7507] [7766; 7770] 1.064 1.028 1.035
0.50 0.30 0.08 0.12 [6294; 6297] [5524; 5528] [5943; 5946] 1.139 1.059 1.076
0.50 0.30 0.12 0.08 [7263; 7267] [6644; 6648] [6969; 6972] 1.093 1.042 1.049
0.50 0.30 0.16 0.04 [8073; 8076] [7495; 7499] [7786; 7789] 1.077 1.037 1.039
0.50 0.35 0.06 0.09 [6812; 6815] [5778; 5781] [6278; 6281] 1.179 1.085 1.087
0.50 0.35 0.09 0.06 [7537; 7540] [6729; 6732] [7108; 7111] 1.120 1.060 1.056
0.50 0.35 0.12 0.03 [8135; 8138] [7420; 7423] [7754; 7757] 1.096 1.049 1.045
0.60 0.16 0.10 0.14 [6491; 6495] [6204; 6208] [6406; 6409] 1.046 1.013 1.032
0.60 0.16 0.14 0.10 [7774; 7777] [7418; 7422] [7631; 7635] 1.048 1.019 1.029
0.60 0.16 0.19 0.05 [9077; 9080] [8613; 8616] [8843; 8846] 1.054 1.026 1.027
0.60 0.20 0.08 0.12 [6942; 6945] [6427; 6431] [6741; 6745] 1.080 1.030 1.049
0.60 0.20 0.12 0.08 [8257; 8260] [7803; 7806] [8044; 8048] 1.058 1.026 1.031
0.60 0.20 0.16 0.04 [9253; 9256] [8754; 8757] [8997; 9000] 1.057 1.028 1.028
0.60 0.24 0.06 0.10 [7261; 7264] [6516; 6519] [6926; 6929] 1.114 1.048 1.063
0.60 0.24 0.10 0.06 [8597; 8600] [8041; 8044] [8308; 8311] 1.069 1.035 1.033
0.60 0.24 0.13 0.03 [9283; 9286] [8731; 8734] [8987; 8990] 1.063 1.033 1.029
0.60 0.28 0.05 0.07 [7829; 7832] [6958; 6962] [7380; 7383] 1.125 1.061 1.061
0.60 0.28 0.07 0.05 [8537; 8540] [7838; 7841] [8157; 8160] 1.089 1.047 1.041
0.60 0.28 0.10 0.02 [9249; 9252] [8631; 8634] [8900; 8903] 1.072 1.039 1.031
0.70 0.12 0.07 0.11 [7229; 7232] [6852; 6856] [7101; 7105] 1.055 1.018 1.036
0.70 0.12 0.11 0.07 [8854; 8857] [8424; 8427] [8659; 8662] 1.051 1.023 1.028
0.70 0.12 0.14 0.04 [9813; 9816] [9197; 9200] [9514; 9517] 1.067 1.031 1.034
0.70 0.15 0.06 0.09 [7797; 7800] [7252; 7255] [7573; 7576] 1.075 1.030 1.044
0.70 0.15 0.09 0.06 [9093; 9096] [8589; 8592] [8850; 8853] 1.059 1.027 1.030
0.70 0.15 0.12 0.03 [10032; 10035] [9347; 9350] [9694; 9696] 1.073 1.035 1.037
0.70 0.18 0.05 0.07 [8267; 8270] [7587; 7591] [7941; 7945] 1.090 1.041 1.047
0.70 0.18 0.07 0.05 [9183; 9186] [8599; 8602] [8876; 8879] 1.068 1.035 1.032
0.70 0.18 0.10 0.02 [10074; 10076] [9370; 9372] [9700; 9702] 1.075 1.039 1.035
0.70 0.21 0.04 0.05 [8667; 8669] [7899; 7902] [8263; 8266] 1.097 1.049 1.046
0.70 0.21 0.05 0.04 [9168; 9171] [8503; 8506] [8798; 8800] 1.078 1.042 1.035
0.70 0.21 0.07 0.02 [9844; 9846] [9198; 9200] [9470; 9472] 1.070 1.039 1.030

56

Table 4.2: Graph basic statistics, critical path length (95% confidence intervals), and
ratios of average critical path lengths across methods for several real world graphs.
(Bolded numbers highlight critical path length ratios greater than 1.15.)

Max Clustering
Name Vertices Edges Degree Coefficient Diameter Uniform CI Exponential CI Linear CI U/E U/L L/E
CA-HepPh 89,209 118,521 491 0.6115 13 [1030; 1036] [1040; 1045] [1032; 1037] 0.991 0.999 0.992
Email-Enron 36,692 183,831 1,383 0.4970 11 [43437; 43720] [38836; 38982] [40688; 41002] 1.120 1.067 1.050
p2p-Gnutella04 10,879 39,994 103 0.0062 9 [911; 925] [568; 575] [728; 740] 1.606 1.251 1.284
roadNet-PA 1,090,920 1,541,898 9 0.0465 786 [49; 49] [49; 50] [48; 49] 0.990 1.010 0.980
soc-Epinions1 75,888 405,740 3,044 0.1378 14 [94793; 95270] [88297; 88593] [89488; 90034] 1.074 1.059 1.015
soc-pokec-relationships 1,632,804 22,301,964 14,854 0.1094 11 [118924; 119528] [96958; 97239] [100836; 101775] 1.228 1.177 1.043
web-Google 916,428 4,322,051 6,332 0.5143 21 [80466; 81618] [18166; 18192] [20577; 21084] 4.458 3.891 1.146
WikiTalk 2,394,385 4,659,565 100,029 0.0526 9 [1352414; 1357165] [1101248; 1103043] [1145942; 1151894] 1.229 1.179 1.042

57

1050 1100 1150 1200 1250 1300
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(a) ca-HepPh

36000 38000 40000 42000 44000 46000 48000
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(b) email-Enron

500 600 700 800 900 1000 1100 1200
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(c) p2p-Gnutella04

45 50 55 60 65
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(d) roadNet-PA

80000 85000 90000 95000 100000 105000
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(e) soc-Epinions1

90000 100000 110000 120000 130000
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(f) soc-pokec

20000 40000 60000 80000 100000
Critical Path Length

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(g) web-Google

1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
Critical Path Length 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
um

ul
at

iv
e

D
en

si
ty

 F
un

ct
io

n

Uniform
Linear
Exponential

(h) wiki-Talk

Figure 4.4: Cumulative Density Functions of longest chain on real-world Graphs. All
graphs (except ca-HepTh and roadNet-PA) show a major difference in critical path
length across methods: Exponential and Linear have much shorter critical paths
than Uniform.

CHAPTER 5: LONG PATHS IN ORIENTED GN,P GRAPHS

5.1 Introduction

After completing the heuristics experiment on RMAT graphs, we wanted a more

precise explanation for the difference in performance of exponential and uniform.

We also wanted to pursue an exact method for calculating the longest chain in these

types of graphs. Since these methods were not immediately obvious to us, we searched

through copious amounts of literature to see if this problem was already attempted

by other researchers.

Almost all literature we found was specific to GN,P graphs – these results in-

cluded bounds for chromatic numbers, counting Hamiltonian paths, characterizing

subgraphs, and determining circuit complexity [44]. The most relevant result we

found provided a lower bound for long paths in GN,P graphs. Krivelevich determined

that if p = c
n
and c ∈ O(log n) is sufficiently large, then G has a path length at least

(1− 6 log c
c

) [45]. Their proof method exploits properties specific to the GN,P model in

order to apply a DFS algorithm on vertices with high degree. However, this result is

limited to unweighted, undirected GN,P graphs and only provides a lower bound on

the longest.

Other researchers have studied problem of edge-orientation from a slightly different

perspective – Yen asks the question, "Given an undirected graph with constraints on

edge weights, what is a directed graph that minimizes cost?" [46]. For our purposes,

we do not need to find the orientation that yields the longest weighted path, but the

longest path induced by orienting the edges from low to high ranking vertices. Hassin

and Megiddo proposed an algorithm for finding an edge-orientation that does not

increase the shortest-path between the members of a set of vertex pairs. Once again,

59

these interests differ from ours and finding these "ideal" orientations was proven to

be NP-Complete when the input set of vertex pairs was greater than 2 [47].

We quickly discovered that our problem was largely unexplored and an existing

solution did not exist, so we approached the problem of edge orientation for GN,P

graphs. We looked to develop a framework that would allow us to pursue our original

goal in the future. Therefore, in the remaining sections of this chapter, we provide

a proof that probability of a long path in a GN,P graph goes to 0 as N → ∞ if

δ ∈ logN .

In Section 5.2, we bound the probability of the existence for an individual path

by a function F . We also bound the existence of any long path by a function G(N)

which is expressed using F . In Section 5.3, we show that G(N) goes to 0 when N

approaches ∞, demonstrating that long paths have a low probability of existence.

In Section 5.4, we provide experimental results that reinforce the proof techniques

used in the previous sections. Furthermore, we share some concluding remarks to

this chapter in Section 5.5.

5.2 Long Paths are Bounded by G(N)

Theorem 5.2.1. In GN,P graphs with a uniformly random total order, as long as

P = c1 logN
N

, w.h.p there is no path L, such that L ∈ ω(logN) for sufficiently large N .

Definition 5.2.2. E(L,N, P) is an event, such that G contains a path of size exactly

L.

Definition 5.2.3. Ei(L,N, P) is an event that contains the sub-paths [(vi, 1) AND

(1, x) of size L − 1] OR [(vi, 2) AND (2, x) of size L − 1] OR [(vi, 3) AND (3, x) of

size L− 1] OR ...

Remark 5.2.4. The probability of having a path of size L is the probability of the

event E for large L. We need to show that the sum over all L goes to 0 as N goes to∞.

This is a slightly stronger condition than P(E0(L,N, P)) goes to 0 as N approaches

60

∞.

Lemma 5.2.5. P(E(L,N, P)) ≤
∑N

i=1 P(E0(L,N − i, P))

Proof. We have E(L,N, P) =
⋃N
i=0 Ei(L,N, P) by construction of E. By countable

subadditivity P(E(L,N, P)) ≤
∑N

i=0 P(Ei(L,N, P)).

We now show P(Ei(L,N, P)) = P(E0(L,N − i, P)). Recall, edges only go from low

index to high index, so no vertices with index between 0 and i−1 are part of the path

in the Ei(L,N, P) event. Since all edges are equiprobable, simply remove v0 from the

graph and relabel the vertex with the lowest remaining index to v0. Clearly, we have

a graph that preserves our path of size L with N − i vertices.

We have P(E0(L,N, P) ≤
∑N

i=1 P(Edge(0, i))P(Ei(L− 1, N, P) by definition of E0

and countable subadditivity. Since P(Ei(L− 1, N, P)) = P(E0(L− 1, N − i, P)), we

have P(E0(L,N, P) ≤
∑N

i=1 P ∗ P(E0(L− 1, N − i, P)). We now define a function to

analyze this expression.

Definition 5.2.6. F(L,N,P) =
∑N

i=1 P ∗ F (L − 1, N − i, P) with base case F (L >

0, N = 0, P) = 0 and F (L = 1, N > 0, P) = 1.

Proposition 5.2.7. P(E0(L,N, P)) ≤ F (L,N, P)

Definition 5.2.8. G(N) =
∑

L>c2 logN

∑
M≤N F (L,M, c1 logN

N
)

Lemma 5.2.9. If G(N) goes to 0 as N approaches ∞, then the probability of a long

path event also goes to 0.

Proof.

LongPathEvent =
⋃

L>c2 logN

E(L,N, P) (5.1)

=
⋃

L>c2 logN

N−1⋃
i=0

Ei(L,N, P) (5.2)

P(LongPathEvent) ≤
∑

L>c2 logN

∑
M≤N

F (L,M,P) (5.3)

61

Lemma 5.2.10. G(N) =
∑

L>c2 logN t(L,N), such that t(L,N) =
(
c1 logN
N

)L−1 (N+1
L

)
Proof. Let H(L,N) =

∑N
i=1H(L − 1, N − i), such that H(L > 0, N = 0) = 0

and H(L = 1, N > 0) = 1. We will prove that H(L,N) =
(
N
L−1

)
by induction on

L. The base case is trivial: H(L = 1, N > 0) = 1 =
(
N
0

)
. We now assume that

H(L,N) =
(
N
L−1

)
. We will now show H(L + 1, N) =

(
N
L

)
to complete the proof by

induction on L.

H(L+ 1, N) =
N∑
i=1

H(L,N − i) =
N∑
i=1

(
N − i
L− 1

)
=

N−1∑
i=L−1

(
i

L− 1

)
=

(
N

L

)
(5.4)

Let v = [v0, ..., vN−1], vi ∈ {0, 1} be a vector that encodes the vertices taken by

a path, such that vi = 1 if the path uses N = vi. Clearly, v has (L − 1) 1s and

(N − L+ 1) 0s. Hence,
(
N
L−1

)
counts how many vectors have exactly (L− 1) 1s.

F (L,N, P) =
N∑
i=1

P ∗ F (L− 1, N − i, P) (5.5)

= PL−1

N∑
i=1

H(L− 1, N − i) (5.6)

= PL−1H(L,N) (5.7)

= PL−1

(
N

L− 1

)
(5.8)

Therefore,

G(N) =
∑

L>c2 logN

∑
M≤N

PL−1

(
N

L− 1

)
=

∑
L>c2 logN

PL−1

(
N + 1

L

)
=

∑
L>c2 logN

t(L,N)

(5.9)

62

5.3 Analysis of G(N)

Lemma 5.3.1. G(N) is dominated by first term, such that G(N) ≤ Bt(c2 lg(N), N).

Proof. We need to show that t(L + 1, N) ≤ 1
c
t(L,N) for L > c2 logN and c > 1,

which implies 1
1− 1

c

is constant. For L > N
2
both terms decrease, so we only care about

c2 logN < L < N
2
.

t(L+ 1, N) =

(
c1 logN

N

)L(
N + 1

L+ 1

)
(5.10)

=

(
c1 logN

N

)L−1(
c1 logN

N

)(
N − (L+ 1) + 1

L+ 1

)(
N + 1

L

)
(5.11)

=

(
c1 logN

N

)(
N − L
L+ 1

)
t(L,N) (5.12)

If (c1 logN
N

)(N−L
L+1

) < B < 1, then (c1 logN
N

)(N−L) < B(L+1). If B(L+1) > c1 logN ,

then (c1 logN)− (c1 logN(L+1)
N

) < B(L+ 1). This is sufficient. Hence, B > c1 logN
L+1

. We

have L > c2 lg(N), so B > c1 logN
c2 logN+1

. For B = c1
c2
, the lemma is true if c2 > c1.

Lemma 5.3.2. limN→∞ t
′(N) = 0.

Proof. Recall that t(L,N) = c1 log2(N)
N

L−1(N+1
L

)
. Hence, t′(N) = c1 log2(N)

N

c2 log2(N)−1(N+1
c2 log2(N)

)
.

It is sufficient to show limN→∞
t′(N)
t′(2N)

≥ constant > 1.

63

t′(N)

t′(2N)
=

c1 log2(N)
N

c2 log2(N)−1(N+1
c2 log2(N)

)
c1 log2(N)+c1

2N

c2 log2(N)−1+c2(2N+1
c2 log2(N)+c2

) (5.13)

=
(2N)c2 log2(N)−1+c2

N c2 log2(N)−1

(c1 log2(N))c2 log2(N)−1

(c1 log2(N) + c1)c2 log2(N)−1+c2

(
N+1

c2 log2(N)

)(
2N+1

c2 log2(N)+c2

) (5.14)

= 2c2 log2(N)−1(2N)c2
(

c1 log2(N)

c1 log2(N) + c1

)c2 log2(N)−1(
1

c1 log2(N) + c1

)c2 (
N+1

c2 log2(N)

)(
2N+1

c2 log2(N)+c2

)
(5.15)

= (2N)c2
(

1

c1 log2(N) + c1

)c2 (log2(N)

log2(N) + 1

)c2 log2(N)−1

2c2 log2(N)−1

(
N+1

c2 log2(N)

)(
2N+1

c2 log2(N)+c2

)
(5.16)

=

(
2N

c1 log2(N) + c1

)c2 (2 log2(N)

log2(N) + 1

)c2 log2(N)−1
(

N+1
c2 log2(N)

)(
2N+1

c2 log2(N)+c2

) (5.17)

For k ∈ o(n), we can use the following approximation derived from Sterling’s

formula:
(
n
k

)
∼
(
ne
k

)k
(2πk)−1/2e

(
− k2

2n
(1+o(1))

)
. We first study the ratio

(N+1
c2 log2(N))

(2N+1
c2 log2(N)+c2

)
in

the light of that approximation.

64

(
N+1

c2 log2(N)

)(
2N+1

c2 log2(N)+c2

) =

(
(N+1)e
c2 log2(N)

)c2 log2(N)

(2π(c2 log2(N))−
1
2 e

(
− (c2 log2(N))2

2(N+1)
(1+o(1))

)
(

(2N+1)e
c2 log2(N)+c2

)c2 log2(N)+c2
(2π(c2 log2(N) + c2))−

1
2 e

(
− (c2 log2(N)+c2)

2

2(2N+1)
(1+o(1))

)

(5.18)

=
ec2 log2N

ec2 log2N+c2

e

(
− (c2 log2(N))2

2(N+1)
(1+o(1))

)

e

(
− (c2 log2(N)+c2)

2

2(2N+1)
(1+o(1))

)
(

2π(c2 log2(N) + c2)

2π(c2 log2(N))

) 1
2

× (N + 1)c2 log2(N)

(2N + 1)c2 log2(N)+c2

(c2 log2(N) + c2)c2 log2(N)+c2

(c2 log2(N))c2 log2(N)
(5.19)

=

(
1

ec2

)(
e

(c2 log2(N)+c2)
2

2N+1
− (c2 log2(N))2

N+1

)
(N + 1)c2 log2(N)

(2N + 1)c2 log2(N)+c2

× (c2 log2(N) + c2)c2 log2(N)+c2+ 1
2

(c2 log2(N))c2 log2(N)+ 1
2

(5.20)

=

(
1

ec2

)(
e

(c2 log2(N)+c2)
2

2N+1
− (c2 log2(N))2

N+1

)(
c2 log2(N) + c2

2N + 1

)c2
×
(
N + 1

2N + 1

)c2 log2(N)(
log2(N) + 1

log2(N)

)c2 log2(N)+ 1
2

(5.21)

Hence we have,

t′(N)

t′(2N)
=

(
2N

2N + 1

)c2 (c2(log2(N) + 1)

c1(log2(N) + 1)

)c2 (2(N + 1) log2(N)(log2(N) + 1)

(2N + 1) log2(N)(log2(N) + 1)

)c2 log2(N)

×
(

log2(N) + 1

2 log2(N)

)(
log2(N) + 1

log2(N)

) 1
2
(

1

ec2

)(
e

(c2 log2(N)+c2)
2

2N+1
− (c2 log2(N))2

N+1

)
(5.22)

=

(
2N

2N + 1

)c2 (c2

c1

)c2 (2(N + 1)

2N + 1

)c2 log2(N)(
1

2

)(
log2(N) + 1

log2(N)

) 3
2

×
(

1

ec2

)(
e

(c2 log2(N)+c2)
2

2N+1
− (c2 log2(N))2

N+1

)
(5.23)

=

(
1

2

)(
c2

e · c1

)c2 (2N

2N + 1

)c2 (2N + 2

2N + 1

)c2 log2(N)

×
(

log2(N) + 1

log2(N)

) 3
2
(
e

(c2 log2(N)+c2)
2

2N+1
− (c2 log2(N))2

N+1

)
(5.24)

65

0 2000 4000 6000 8000
N

10 32

10 27

10 22

10 17

10 12

10 7

10 2

103

F(
N)

(a) c1 = 0.7; c2 ∈ [1.6, 7.0]

0 2000 4000 6000 8000
N

10 38

10 32

10 26

10 20

10 14

10 8

10 2

104

F(
N)

(b) c1 = 1.1; c2 ∈ [3.0, 9.4]

0 2000 4000 6000 8000
N

10 63

10 54

10 45

10 36

10 27

10 18

10 9

100

F(
N)

(c) c1 = 2.0; c2 ∈ [5.0, 16.0]

0 2000 4000 6000 8000
N

10 145

10 125

10 105

10 85

10 65

10 45

10 25

10 5

F(
N)

(d) c1 = 5.0; c2 ∈ [12.0, 37.6]

Figure 5.1: Experimental Results for Long Paths in GN,P

Therefore,

lim
N→∞

t′(N)

t′(2N)
=

(
1

2

)
·
(

c2

e · c1

)c2
· 1 · 1 · 1 · 1 =

(
1

2

)(
c2

e · c1

)c2
(5.25)

Any choice of c1, c2, such that
(

c2
e·c1

)c2
> 2 yields a constant limit for t′(N)

t′(2N)
greater

than 1.

5.4 Experimental Results

We gathered experimental results to further validate the methods we developed in

previous sections. We analyzed the behavior of the function F (L,N, P) by sampling

66

the c1, c2 parameter space. Figure 5.1 includes a selection of the parameters used in

our experiment. Each subfigure uses a different c1 and each line represents a different

c2. Each line shows the value of F at each N in the range with the associated values

for c1, c2.

It is important to recall a few important details from the proof to ensure that the

figures do not appear odd at first glance. We prove that F goes to 0 as N becomes

sufficiently large; however, this does not mean that the function is strictly decreasing.

In Figure 5.1a on the bottom line c2 = 7.0, F is increasing on the interval from

(4000, 4500), yet F is already approaching 0 for larger N .

The behavior of F appears to be determined by the value of
(

c2
e·c1

)c2
from Equa-

tion 5.25. If
(

c2
e·c1

)c2
> 2, we use a solid line to illustrate that F should be approaching

0 as N gets sufficiently large. If
(

c2
e·c1

)c2
≤ 2, then F may not be approaching 0 by the

largest N run by our experiment, so we use a dotted line to illustrate F . F usually

starts approaching 0 more quickly when
(

c2
e·c1

)c2
is much larger than 2.

Lemma 5.2.9 dictates that F is a bound on the probability of a long path event not

the probability of the event itself, which is why some values of F may be greater than

1. F may also be increasing for small n because we only require F to be decreasing

after c2 logN . We use an approximation for
(
n
k

)
in Lemma 5.3.2 that is only valid

when k is roughly in o(n). Hence, our result may not hold when n is small because

c2 log n could be almost as large as N . Similarly, we assume that δ ∈ O(log n), so if

c1 is large and n is small, then c1 log n can potentially be as large as n.

This experiment required a substantial amount of computational resources, so jobs

were completed using the cluster at the University of North Carolina at Charlotte.

Even so, for large values of N , the experiment was likely to time out or throw an out

of memory exception. Therefore, we do not have any data for when N > 10, 000.

67

5.5 Conclusion

In this chapter, we proved that there are no long paths in GN,P graphs after N is

sufficiently large. We also presented experimental results as an additional basis for

our claims. These experiments helped develop our intuition for this problem while

searching for an exact solution.

We looked exclusively at GN,P graphs; however, it is possible to use other graph

models. This extension is non-trivial because several methods discussed in this chap-

ter take advantage of properties unique to GN,P graphs.

In Lemma 5.2.5, we relabel each vertex based on the total order of the graph.

Each edge in a GN,P is equiprobable, so we are free to reorder each vertex without

changing the result. This is not true for RMAT graphs because the probability of an

edge between each pair of vertices depends on their order. Our result is only valid for

uniform edge orientations for a similar reason. Recall that the Exponential method

from Section 4.3 is an ordering, such that each vertex v draws a random number in

[0; 2δ(v)). Since vertices are ordered as a function of degree, we are unable to reorder

them without changing the total order.

In future work, we would like to address these limitations by extending our argu-

ment to support additional graph models and edge orientations.

CHAPTER 6: CONCLUSION

6.1 Summary of Results

We started this dissertation by approaching the problem of interval coloring for

stencil graphs. We were interested in stencil graphs because they can be used to

represent load balancing spatial applications in parallel computing. We solved sub-

problems on cliques, bipartite graphs, and odd cycles. We proved interval coloring of

3D 27-pt stencil is NP-Complete. We designed heuristics, including 2-approximation

for 2D 9-pt stencil, 4-approximation for 3D 27-pt stencil, greedy with post optimiza-

tion. We evaluated these heuristics and confirmed model validity on a real-world

application.

We became interested in dataflow algorithms as a result of our work on interval

coloring. We provided a model for dataflow algorithms as a distributed graph color-

ing problem. We presented new ways to generate partial orderings and provided a

theoretical argument for why they are sound. We studied the behavior of algorithms

using different partial orders on both randomly generated RMAT graphs and graphs

from real-world applications. We provided an argument using statistical evidence to

show that our methods perform usually better.

We searched for a formal proof to explain the performance discrepancy of the

different methods used in the RMAT and real-world experiment. We discovered that

the construction of RMAT graphs was inherently problematic to existing methods of

random graph analysis. Hence, we looked to GN,P graphs for inspiration. We were

able to show that given modest conditions on edge probability, the likelihood of a

long path goes to 0 once N becomes sufficiently large.

69

6.2 Open Questions

We are interested in deploying our interval coloring solution on a graph processing

software but that work remains to be completed. We do not know if there are other

types of applications not modeled by stencil graphs that can benefit from interval

coloring. Additionally, we would like to know if there are any other types of graphs

that have an exploitable structure similar to grids.

We looked at dataflow algorithms from the perspective of graph coloring; however,

there are other types of applications such as bipartite matching. We would be inter-

ested in guaranteed quality of matching that has a good critical path runtime. We

looked at the deployment of Luby’s Algorithm in particular, but it should be possible

to extend our application to include Jones-Plassman. Furthermore, we would like to

know if there are there multi-stage properties that would enhance the accuracy of

our result. The primary advantage of dataflow algorithms is that they can be pro-

cessed massively in parallel. Adding sequential operations would necessarily increase

runtime, but it may be advantageous for solution quality.

We only consider unweighted paths in our work on random graphs, so we would

like to pursue the problem for weighted paths. We would like to support for different

graph models and edge orientations as well.

70

REFERENCES

[1] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous, and A. LeBlanc,
“Design of ion-implanted mosfet’s with very small physical dimensions,” IEEE
Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[2] Y. Robert, Task Graph Scheduling, pp. 2013–2025. Boston, MA: Springer US,
2011.

[3] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed
task graphs to multiprocessors,” ACM Comput. Surv., vol. 31, p. 406â471, dec
1999.

[4] W. Wang and L. Ying, “Resource allocation for data-parallel computing in net-
works with data locality,” in 2016 54th Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), pp. 933–939, 2016.

[5] B. A and A. X. M, “A simple model to optimize general flow-shop scheduling
problems with known break down time and weights of jobs,” Procedia Engi-
neering, vol. 38, pp. 191–196, 2012. INTERNATIONAL CONFERENCE ON
MODELLING OPTIMIZATION AND COMPUTING.

[6] T. Gonzalez and S. Sahni, “Open shop scheduling to minimize finish time,” J.
ACM, vol. 23, p. 665â679, oct 1976.

[7] L. KuÄera, “Parallel computation and conflicts in memory access,” Information
Processing Letters, vol. 14, no. 2, pp. 93–96, 1982.

[8] P. A. Golovach, M. Johnson, D. Paulusma, and J. Song, “A survey on the com-
putational complexity of colouring graphs with forbidden subgraphs,” CoRR,
vol. abs/1407.1482, 2014.

[9] D. Durrman and E. Saule, “Coloring the vertices of 9-pt and 27-pt stencils with
intervals,” in Proc. Of IPDPS, May 2022.

[10] D. Durrman and E. Saule, “Optimizing the critical path of distributed dataflow
graph algorithms,” in Proc. Of IPDPSW; PDCO, May 2023.

[11] E. Saule, D. Panchananam, A. Hohl, W. Tang, and E. Delmelle, “Parallel space-
time kernel density estimation,” in Proceedings of ICPP 2017, 2017.

[12] D. Kratsch, “Finding the minimum bandwidth of an interval graph,” Information
and Computation, vol. 74, no. 2, pp. 140–158, 1987.

[13] M. Bouchard, M. ÄangaloviÄ, and A. Hertz, “On a reduction of the interval col-
oring problem to a series of bandwidth coloring problems,” Journal of Scheduling,
vol. 13, pp. 583–595, 12 2010.

71

[14] Z. Shao, Z. Li, B. Wang, S. Wang, and X. Zhang, “Interval edge-coloring: A
model of curriculum scheduling,” AKCE International Journal of Graphs and
Combinatorics, vol. 17, no. 3, pp. 725–729, 2020.

[15] M. Cangalovic and J. A. M. Schreuder, “Exact colouring algorithm for weighted
graphs applied to timetabling problems with lectures of different lengths,” Euro-
pean Journal of Operational Research, vol. 51, no. 2, pp. 248–258, 1991.

[16] M. R. Garey and D. S. Johnson, Computers and Intractability. Freeman, San
Francisco, 1979.

[17] D. de Werra and A. Hertz, “Consecutive colorings of graphs,” Zeitschrift für
Operations Research, vol. 32, pp. 1–8, Jan 1988.

[18] D. W. Matula, “A min-max theorem for graphs with application to graph color-
ing,” SIAM Review, vol. 10, pp. 481–482, 1968.

[19] A. H. Gebremedhin, F. Manne, and A. Pothen, “What color is your jacobian?
Graph coloring for computing derivatives,” SIAM Review, vol. 47, no. 4, pp. 629–
705, 2005.

[20] D. J. A. Welsh and M. B. Powell, “An upper bound for the chromatic number
of a graph and its application to timetabling problems,” The Computer Journal,
vol. 10, pp. 85–86, 1967.

[21] D. W. Matula and L. L. Beck, “Smallest-last ordering and clustering and graph
coloring algorithms,” Jounal of the ACM, vol. 30, pp. 417–427, July 1983.

[22] J. C. Culberson, “Iterated greedy graph coloring and the difficulty landscape,”
Tech. Rep. TR 92-07, University of Alberta, June 1992.

[23] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed
task graphs to multiprocessors,” ACM Comput. Surv., vol. 31, pp. 406–471, Dec.
1999.

[24] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM Journal on
Applied Mathematics, vol. 17, pp. 416–429, Mar. 1969.

[25] D. B. West, Introduction to Graph Theory. Prentice-Hall, 1996.

[26] Y. Asahiro, J. Jansson, E. Miyano, and et al., “Approximation algorithms for
the graph orientation minimizing the maximum weighted outdegree,” J Comb
Optim, vol. 22, pp. 78–96, 2011.

[27] R. Cole and U. Vishkin, “Deterministic coin tossing with applications to optimal
parallel list ranking,” Information and Control, vol. 70, no. 1, pp. 32–53, 1986.

[28] K. Appel and W. Haken, “Every planar map is four-colorable, ii: Reducibility,”
Illinois J. Math., no. 21, pp. 491–567, 1977.

72

[29] D. Zuckerman, “Linear degree extractors and the inapproximability of max clique
and chromatic number,” Theory of Computing, vol. 3, pp. 103–128, 2007.

[30] D. Brélaz, “New methods to color the vertices of a graph,” Commun. ACM,
vol. 22, pp. 251–256, April 1979.

[31] D. Orden, J. M. Gimenez-Guzman, I. Marsa-Maestre, and E. De la Hoz, “Spec-
trum graph coloring and applications to wi-fi channel assignment,” Symmetry,
vol. 10, no. 3, 2018.

[32] G. E. Blelloch, J. T. Fineman, and J. Shun, “Greedy sequential maximal inde-
pendent set and matching are parallel on average,” in Proceedings of the Twenty-
Fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures,
SPAA ’12, (New York, NY, USA), p. 308â317, Association for Computing Ma-
chinery, 2012.

[33] D. Nicol, “Rectilinear partitioning of irregular data parallel computations,” Jour-
nal of Parallel and Distributed Computing, vol. 23, pp. 119–134, 1994.

[34] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,”
SIGGRAPH Computer Graphics, vol. 21, p. 25â34, Aug. 1987.

[35] B. M. E. Moret, “Planar NAE3SAT is in P,” SIGACT News, vol. 19, p. 51â54,
June 1988.

[36] U. V. Çatalyürek, J. Feo, A. H. Gebremedhin, M. Halappanavar, and A. Pothen,
“Graph coloring algorithms for multi-core and massively multithreaded architec-
tures,” Parallel Comput., vol. 38, p. 576â594, oct 2012.

[37] A. E. Sarıyüce, E. Saule, and U. V. Catalyurek, “Scalable hybrid implementation
of graph coloring using MPI and OpenMP,” in 26th International Symposium
on Parallel and Distributed Processing, Workshops and PhD Forum (IPDPSW),
Workshop on Parallel Computing and Optimization (PCO), May 2012.

[38] M. Luby, “A simple parallel algorithm for the maximal independent set problem,”
SIAM Journal on Computing, vol. 15, no. 4, pp. 1036–1053, 1986.

[39] M. T. Jones and P. E. Plassmann, “A parallel graph coloring heuristic,” SIAM
Journal on Scientific Computing, vol. 14, no. 3, pp. 654–669, 1993.

[40] R. R. McCune, T. Weninger, and G. Madey, “Thinking like a vertex: A survey
of vertex-centric frameworks for large-scale distributed graph processing,” ACM
Comput. Surv., vol. 48, oct 2015.

[41] A. E. Sarıyüce, E. Saule, and U. V. Catalyurek, “Improving graph coloring on dis-
tributed memory parallel computers,” in 18th Annual International Conference
on High Performance Computing, 2011.

73

[42] C. F. Deepayan Chakrabarti, Yiping Zhany, “R-mat: A recursive model for graph
mining,” in Proc. of SIAM International Conference on Data Mining (SDM),
2004.

[43] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani,
“Kronecker graphs: an approach to modeling networks,” Journal of Machine
Learning Research, vol. 11, pp. 985–1042, 2010.

[44] N. Alon and J. Spencer, The Probabilistic Method. Wiley Series in Discrete
Mathematics and Optimization, Wiley, 2015.

[45] A. Frieze and M. Karoński, Introduction to Random Graphs. Introduction to
Random Graphs, Cambridge University Press, 2016.

[46] W. C.-K. Yen, “The edge-orientation problem and some of its variants on
weighted graphs,” Information Sciences, vol. 176, no. 19, pp. 2791–2816, 2006.

[47] R. Hassin and N. Megiddo, “On orientations and shortest paths,” Linear Algebra
and its Applications, vol. 114-115, pp. 589–602, 1989. Special Issue Dedicated to
Alan J. Hoffman.

