1. [10 points] Consider the probability space $([0,1], \mathcal{B}, d x)$, where \mathcal{B} is the Borel σ-algebra and $d x$ is the Lebesgue measure. Consider the random variable (a function on $[0,1]$): $X(\omega)=\max (\sin (2 \pi \omega), 0)$.
(a) Find $\sigma(X)$, i.e., the minimal σ-algebra generated by the r.v. $X(\cdot)$.
(b) For $Y(\omega)=[X(\omega)]^{2}$, calculate (one of the versions of) $E[Y \mid X]=E[Y \mid \sigma(X)]$.
(c) Find the distribution function for the r.v. $X(\omega)$ and its decomposition on a.c. and discrete parts.
2. [10 points] Let X_{1}, X_{2}, \cdots, be a sequence of I.I.D. random variables with pdf: $f(x)=e^{-x}, x>0$. Show that

$$
\lim \sup _{n \rightarrow \infty} \frac{X_{n}}{\ln n}=1 \quad \text { a.s. }
$$

3. [10 points] For any two random variables X and Y with the finite variance of X, show that

$$
\operatorname{Var}(X)=E[\operatorname{Var}(X \mid Y)]+\operatorname{Var}[E(X \mid Y)] .
$$

4. [10 points] Let X, Y, and Z be independent $N(0,1)$ r.v. Find

$$
E[(X+5 Y+1)(X+2 Y+Z+2) \mid X+5 Y=a, Y-3 Z=b]
$$

