Probability Qualifying Exam

Do any three of the four problems.

1. Consider tossing a fair die until the number 6 appears for the first time.

a) Construct the probability space.

b) Let X be the number of times that we saw an odd number (1,3, or 5) before we stopped. Find E[X].

2. a) State the two Borel-Cantelli Lemmas.

b) Let X_1, X_2, \ldots be iid random variables with pdf

 $f(x) = \alpha x^{-1-\alpha}, \quad x > 1,$

where $\alpha > 0$ is a parameter. Prove that, with probability 1,

$$\limsup_{n \to \infty} n^{-1/\alpha} X_n > 1.$$

3. Let $\{X_n\}$ be a sequence of iid random variables with pdf

$$f(x) = 1, \quad 0 < x < 1.$$

Let $M_n = \min\{X_1, X_2, \ldots, X_n\}$ be the minimum of the first *n* random variables. Show that

$$nM_n \to^d Y$$

for some random variable Y. What is the distribution of Y?

4. a) State the definition of the conditional expectation of a random variable X given a sub σ -field \mathcal{G} .

b) Let \mathcal{G} is a sub σ -field of \mathcal{F} and let X be a random variable on (Ω, \mathcal{F}, P) with $\mathbb{E}[X^2] < \infty$. The conditional variance of X given \mathcal{G} is defined by

$$\operatorname{Var}(X|\mathcal{G}) = \operatorname{E}\left[(X - \operatorname{E}[X|\mathcal{G}])^2 |\mathcal{G} \right].$$

Prove that

$$\operatorname{Var}(X) = \operatorname{E}[\operatorname{Var}(X|\mathcal{G})] + \operatorname{Var}[\operatorname{E}(X|\mathcal{G})].$$