Probability Qualifying Exam

Do any three of the four problems.

1. Consider tossing a fair die until the number 6 appears for the first time.
a) Construct the probability space.
b) Let X be the number of times that we saw an odd number (1,3 , or 5) before we stopped. Find $\mathrm{E}[X]$.
2. a) State the two Borel-Cantelli Lemmas.
b) Let X_{1}, X_{2}, \ldots be iid random variables with pdf

$$
f(x)=\alpha x^{-1-\alpha}, \quad x>1
$$

where $\alpha>0$ is a parameter. Prove that, with probability 1,

$$
\limsup _{n \rightarrow \infty} n^{-1 / \alpha} X_{n}>1
$$

3. Let $\left\{X_{n}\right\}$ be a sequence of iid random variables with pdf

$$
f(x)=1, \quad 0<x<1
$$

Let $M_{n}=\min \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be the minimum of the first n random variables. Show that

$$
n M_{n} \rightarrow^{d} Y
$$

for some random variable Y. What is the distribution of Y ?
4. a) State the definition of the conditional expectation of a random variable X given a sub σ-field \mathcal{G}.
b) Let \mathcal{G} is a sub σ-field of \mathcal{F} and let X be a random variable on (Ω, \mathcal{F}, P) with $\mathrm{E}\left[X^{2}\right]<\infty$. The conditional variance of X given \mathcal{G} is defined by

$$
\operatorname{Var}(X \mid \mathcal{G})=\mathrm{E}\left[(X-\mathrm{E}[X \mid \mathcal{G}])^{2} \mid \mathcal{G}\right]
$$

Prove that

$$
\operatorname{Var}(X)=\mathrm{E}[\operatorname{Var}(X \mid \mathcal{G})]+\operatorname{Var}[\mathrm{E}(X \mid \mathcal{G})]
$$

