1. [10 points] Consider tossing a fair die until the number 6 appears for the first time.
(a) Construct the probability space.
(b) Let X be the number of times that we saw an odd number (1,3 , or 5) before we stopped. Find $\mathrm{E}[X]$.
2. [10 points] Let $\left\{X_{n}\right\}$ be a sequence of iid random variables with a uniform distribution on $[0,1]$. Let $M_{n}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$. Show that there exists a deterministic sequence $\left\{a_{n}\right\}$ in \mathbb{R} such that the sequence of random variables $\left\{Z_{n}\right\}$ given by $Z_{n}=$ $a_{n}\left(1-M_{n}\right)$ has a limiting (nondegenerate) distribution and find this distribution.
3. [10 points] Let Y_{1}, Y_{2}, \ldots be independent random variables such that

$$
P\left(Y_{n}=2^{n}\right)=P\left(Y_{n}=-2^{n}\right)=\frac{1}{3 n^{\alpha}}
$$

and

$$
P\left(Y_{n}=0\right)=1-\frac{2}{3 n^{\alpha}}
$$

Prove that the series $\sum_{n=1}^{\infty} Y_{n}$ converges P-a.s. for $\alpha>1$ and diverges P-a.s. for $\alpha \leq 1$.
4. [10 points] Let X, Y, and Z be independent $N(0,1)$ random variables. Calculate

$$
\mathrm{E}\left[(1+Z)(X+Y+1)^{2}(Y+1) \mid X+Y\right]
$$

