- 1. [10 points] Let Y_1, Y_2, \cdots be a sequence of iid random variables following an exponential distribution with parameter $\lambda > 0$. This means that $P(Y_1 > t) = e^{-t\lambda}, t > 0$. Let $S_n = \sum_{k=1}^n k Y_k$.
 - (a) Find the mean and variance of S_n .
 - (b) Prove that there exists a real number A such that

$$\frac{S_n}{n^2} \xrightarrow{p} A$$

and find A.

2. Let X_1, X_2, \cdots be a sequence of iid random variables. A sequence of real numbers $\{a_n\}$ is called an upper function for $\{X_n\}$ if *P*-a.s. we have only finitely many events $[X_n > a_n]$. A sequence of real numbers $\{\tilde{a}_n\}$ is called a lower function for $\{X_n\}$ if *P*-a.s. we have infinitely many events $[X_n > \tilde{a}_n]$. Assume that $\{X_n\}$ have the Cauchy distribution with density

$$p(x) = \frac{1}{\pi(1+x^2)}.$$

Use the Borell–Cantelli Lemmas to prove that a sequence of real numbers $\{a_n\}$ with $a_n \to \infty$ is an upper function if and only if $\sum_{n=1}^{\infty} \frac{1}{a_n} < \infty$ and that it is a lower function if and only if $\sum_{n=1}^{\infty} \frac{1}{a_n} = \infty$.

3. [10 points] Let X and Y be independent random variables and let $\phi : \mathbb{R}^2 \to \mathbb{R}$ be a Borel function with $E|\phi(X,Y)| < \infty$. Let $g(x) = E[\phi(x,Y)]$. Prove that

$$E[\phi(X,Y)|X] = g(X) \ a.s.$$

4. [10 points] Let (Ω, \mathcal{F}, P) be a probability space, and let X, X_1, X_2, X_3, \cdots be random variables on this space. Assume that, with probability 1, we have $X_1 \leq X_2 \leq X_3 \leq \cdots$ and $X_n \leq X$ for every $n = 1, 2, \cdots$. Prove that if $X_n \xrightarrow{p} X$, then $X_n \to X$ with probability 1.