1. [10 points] Let Y_{1}, Y_{2}, \cdots be a sequence of iid random variables following an exponential distribution with parameter $\lambda>0$. This means that $P\left(Y_{1}>t\right)=e^{-t \lambda}, t>0$. Let $S_{n}=\sum_{k=1}^{n} k Y_{k}$.
(a) Find the mean and variance of S_{n}.
(b) Prove that there exists a real number A such that

$$
\frac{S_{n}}{n^{2}} \xrightarrow{p} A
$$

and find A.
2. Let X_{1}, X_{2}, \cdots be a sequence of iid random variables. A sequence of real numbers $\left\{a_{n}\right\}$ is called an upper function for $\left\{X_{n}\right\}$ if P-a.s. we have only finitely many events $\left[X_{n}>a_{n}\right]$. A sequence of real numbers $\left\{\tilde{a}_{n}\right\}$ is called a lower function for $\left\{X_{n}\right\}$ if P-a.s. we have infinitely many events $\left[X_{n}>\tilde{a}_{n}\right]$. Assume that $\left\{X_{n}\right\}$ have the Cauchy distribution with density

$$
p(x)=\frac{1}{\pi\left(1+x^{2}\right)} .
$$

Use the Borell-Cantelli Lemmas to prove that a sequence of real numbers $\left\{a_{n}\right\}$ with $a_{n} \rightarrow \infty$ is an upper function if and only if $\sum_{n=1}^{\infty} \frac{1}{a_{n}}<\infty$ and that it is a lower function if and only if $\sum_{n=1}^{\infty} \frac{1}{a_{n}}=\infty$.
3. [10 points] Let X and Y be independent random variables and let $\phi: \mathbb{R}^{2} \mapsto \mathbb{R}$ be a Borel function with $\mathrm{E}|\phi(X, Y)|<\infty$. Let $g(x)=\mathrm{E}[\phi(x, Y)]$. Prove that

$$
\mathrm{E}[\phi(X, Y) \mid X]=g(X) \text { a.s. }
$$

4. [10 points] Let (Ω, \mathcal{F}, P) be a probability space, and let $X, X_{1}, X_{2}, X_{3}, \cdots$ be random variables on this space. Assume that, with probability 1, we have $X_{1} \leq X_{2} \leq X_{3} \leq \ldots$ and $X_{n} \leq X$ for every $n=1,2, \cdots$. Prove that if $X_{n} \xrightarrow{p} X$, then $X_{n} \rightarrow X$ with probability 1 .
