- 1. [10 points] Let X be a random variable on the probability space (Ω, \mathcal{F}, P) and let Y = |X|. Assume that X has a standard normal distribution, i.e. $X \sim N(0, 1)$.
 - (a) We can write $\sigma(Y) = \{X^{-1}(B) : B \in \mathcal{A}\}$, where \mathcal{A} is a collection of Borel sets. Describe the sets in \mathcal{A} .

(b) Prove that P(X = Y|Y) = 0.5.

2. Let X and Y be *independent* random variables on the probability space (Ω, \mathcal{F}, P) . Assume that $E|X| < \infty$, $E|Y| < \infty$, and $E|XY| < \infty$. Let $\mathcal{F}_1 \subset \mathcal{F}$ is a sub- σ -field and assume that X is independent of \mathcal{F}_1 . Show that

 $\mathbf{E}[XY|\mathcal{F}_1] = \mathbf{E}[X]\mathbf{E}[Y|\mathcal{F}_1].$

3. [10 points] Let X_1, X_2, \ldots be iid random variables, whose distribution is absolute continuous with pdf

$$f(x) = 2xe^{-x^2}\mathbf{1}_{[x>0]}.$$

Show that

$$\limsup_{n \to \infty} \frac{X_n}{\sqrt{\log n}} \le \sqrt{2}.$$

4. [10 points] Let X_1, X_2, \ldots be a sequence of random variables, let c_1, c_2, \ldots be a sequence of positive numbers, and let $Y_n = X_n \mathbb{1}_{[|X_n| \le c_n]}$. Assume that $Y_n \to Y$ a.s. for some random variable Y. Show that if $\sum_{n=1}^{\infty} P(|X_n| > c_n) < \infty$, then $X_n \to Y$ a.s.