Probability Preliminary Qualifying Exam

Solve any 3 of the following.

1. Consider an experiment consisting of successively selecting a point from the interval [0,1] (with uniform distribution) until the first time that the result is greater than $\frac{1}{2}$.

a). Construct the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ for this experiment.

b) Let Z be the result on the final step of the experiment (i.e. the step where we first see a value greater than $\frac{1}{2}$). Find the distribution of Z and evaluate E[Z] and Var(Z).

2. Let X and Y be two independent random variables each with an exponential distribution, i.e, $P(X > a) = e^{-a}$ and $P(Y > a) = e^{-a}$, a > 0. Find the probability density function of $Z = \frac{X}{X+Y}$.

3. Let X_1, X_2, \ldots be an infinite sequence of independent random variables such that for some sequence of real numbers $a_n \ge 0$, $n = 1, 2, \ldots$ we have

$$P\{X_n = a_n\} = p_n, \qquad P\{X_n = -a_n\} = p_n, \qquad P\{X_n = 0\} = 1 - 2p_n, \qquad 0 \le p_n \le \frac{1}{2}.$$

Give the necessary and sufficient condition(s) for the *P*-a.s. convergence of the series $\sum_{n} X_{n}$.

4. Let X be a random variable on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and assume that E[X] = a for some finite a.

a) Let \mathcal{G} be a sub- σ -algebra of \mathcal{F} and assume that X is independent of \mathcal{G} . Prove that $E[X|\mathcal{G}] = a$. b) Now let $\mathcal{F}_1, \mathcal{F}_2$ be two independent sub- σ -algebras of \mathcal{F} . Let $X_1 = E[X|\mathcal{F}_1]$ and calculate $E[X_1|\mathcal{F}_2]$.

5. Let X and Y be two independent $\mathcal{N}(0,1)$ random variables. Calculate:

$$E[2X + Y + 3|X - 3Y + 2 = a].$$