Probability Preliminary Qualifying Exam

Solve any 3 of the following.

1. Consider an experiment consisting of successively selecting a point from the interval $[0,1]$ (with uniform distribution) until the first time that the result is greater than $\frac{1}{2}$.
a). Construct the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ for this experiment.
b) Let Z be the result on the final step of the experiment (i.e. the step where we first see a value greater than $\frac{1}{2}$). Find the distribution of Z and evaluate $\mathrm{E}[Z]$ and $\operatorname{Var}(Z)$.
2. Let X and Y be two independent random variables each with an exponential distribution, i.e, $P(X>a)=e^{-a}$ and $P(Y>a)=e^{-a}, a>0$. Find the probability density function of $Z=\frac{X}{X+Y}$.
3. Let X_{1}, X_{2}, \ldots be an infinite sequence of independent random variables such that for some sequence of real numbers $a_{n} \geq 0, n=1,2, \ldots$ we have

$$
P\left\{X_{n}=a_{n}\right\}=p_{n}, \quad P\left\{X_{n}=-a_{n}\right\}=p_{n}, \quad P\left\{X_{n}=0\right\}=1-2 p_{n}, \quad 0 \leq p_{n} \leq \frac{1}{2}
$$

Give the necessary and sufficient condition(s) for the P-a.s. convergence of the series $\sum_{n} X_{n}$.
4. Let X be a random variable on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and assume that $E[X]=a$ for some finite a.
a) Let \mathcal{G} be a sub- σ-algebra of \mathcal{F} and assume that X is independent of \mathcal{G}. Prove that $\mathrm{E}[X \mid \mathcal{G}]=a$.
b) Now let $\mathcal{F}_{1}, \mathcal{F}_{2}$ be two independent sub- σ-algebras of \mathcal{F}. Let $X_{1}=E\left[X \mid \mathcal{F}_{1}\right]$ and calculate $E\left[X_{1} \mid \mathcal{F}_{2}\right]$.
5. Let X and Y be two independent $\mathcal{N}(0,1)$ random variables. Calculate:

$$
\mathrm{E}[2 X+Y+3 \mid X-3 Y+2=a]
$$

