Probability Exam

1. Consider the following experiment. First, we toss a fair coin. If we see heads we stop. Otherwise, we toss a fair die until the first time we see a six.
a) Construct the probability space.
b) Let T be the number of times we toss something (either the coin or the die). Find $\phi(z)=\mathrm{E}\left[z^{T}\right]$, which is the generating function of T, and find $\mathrm{E}[T]$.
2. Let X and Y be independent and identically distributed random variables, each having a uniform distribution on $[0,1]$. Find the probability density function (pdf) of the random variable $Z=X+2 Y$.
3. Let X_{1}, X_{2}, \ldots be iid random variables, whose distribution is absolute continuous with pdf

$$
f(x)=2 x e^{-x^{2}} 1_{[x>0]}
$$

Show that

$$
\limsup _{n \rightarrow \infty} \frac{X_{n}}{\sqrt{\log n}} \leq \sqrt{2}
$$

4. Let X and Y be random variables having a jointly Gaussian distribution. Assume that $\mathrm{E}[X]=\mathrm{E}[Y]=0, \mathrm{E}\left[X^{2}\right]=\mathrm{E}\left[Y^{2}\right]=1$, and $\mathrm{E}[X Y]=\rho$ for some $|\rho|<1$. Calculate

$$
\mathrm{E}[(X+1)(X+2 Y+1) \mid X]
$$

