Probability Preliminary Qualifying Exam

1. Consider an experiment consisting of successively selecting a point from the interval $[0,1]$ (with uniform distribution) until the first time that the result is greater than $\frac{1}{3}$.
a) Construct the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ for this experiment.
b) Let τ be the number of steps in the experiment (i.e. τ is the step where we first see a value greater than $\frac{1}{3}$). Find the generating function of τ.
c) Find the probability that, on the last step, we get a value greater than $\frac{1}{2}$.
2. Let X and Y be two independent random variables each with a Cauchy distribution, i.e, they both have a joint probability density function (pdf) of the form

$$
f(x)=\frac{1}{\pi\left(1+x^{2}\right)}
$$

Find the joint pdf for the random variables $Z_{1}=2 \max \{X, Y\}$ and $Z_{2}=\min \{X, Y\}$.
3. Consider the random Taylor series

$$
F(z)=F(z, \omega)=\sum_{n=0}^{\infty} \frac{X_{n}(\omega)}{n!} z^{n}
$$

where $\left\{X_{n}: n \geq 0\right\}$ is a collection of iid $N(0,1)$ random variables on the probability space (Ω, \mathcal{F}, P). Prove that, for any complex number z, the series converges P-a.s.
4. Consider the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let \mathcal{F}_{1} and \mathcal{F}_{2} be independent sub- σ-algebras.
a) Give the definition of what it means for \mathcal{F}_{1} and \mathcal{F}_{2} to be independent.
b) Now let X be a random variable on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathrm{E}|X|<\infty$. Let $X_{1}=\mathrm{E}\left[X \mid \mathcal{F}_{1}\right]$ and calculate $\mathrm{E}\left[X_{1} \mid \mathcal{F}_{2}\right]$.

