Probability Preliminary Qualifying Exam

Solve any 3 of the following.

1. Let X, X_1, X_2, \ldots with $E|X| < \infty$ and $E|X_i| < \infty$ for $i = 1, 2, \ldots$. We say that X_1, X_2, \ldots converges to X in L^1 and write $X_i \to X$ in L^1 if

$$\lim_{i \to \infty} \mathbf{E}|X_i - X| = 0.$$

a) Show that if X_1, X_2, \ldots converge to X in L^1 then X_1, X_2, \ldots converge in probability to X. b) Give an example of a sequence of random variables X_1, X_2, \ldots with $E|X_i| < \infty$, such that $X_i \to 0$ almost surely, but the sequence does not converge to 0 in L^1 .

c) Give an example of a sequence of random variables X_1, X_2, \ldots such that $E|X_i| < \infty$ for $i = 1, 2, \ldots, X_i \to 0$ in L^1 , but the sequence does not converge to 0 almost surely.

2. a) State the two Borel-Cantelli lemmas.

b) Let X_1, X_2, \ldots be independent and identically distributed random variables with distribution function F. Let $\{\lambda_n\}$ be a deterministic sequence of numbers with $\lambda_n \to \infty$. Show that, with probability 1,

$$\limsup_{n \to \infty} \frac{X_n}{\lambda_n} > 1$$

if and only if $\sum_{n=1}^{\infty} (1 - F(\lambda_n)) = \infty$.

3. Let X and Y be bounded random variables on a common probability space (Ω, \mathcal{F}, P) and let $\mathcal{G} \subset \mathcal{F}$ be a sub σ -algebra.

a) Give the definition of the conditional expectation $E[X|\mathcal{G}]$

b) Prove that

$$\mathbf{E}[X\mathbf{E}[Y|\mathcal{G}]] = \mathbf{E}[Y\mathbf{E}[X|\mathcal{G}]].$$

4. a) Define a π -system, a λ -system, and state the $\pi - \lambda$ -theorem.

b) Prove that, if A is independent of a π -system \mathcal{P} and $A \in \sigma(\mathcal{P})$, then P(A) is either 0 or 1.