1. [10 points] Let f be a Lebesgue (μ) integrable function on \mathbb{R} and $n \in \mathbb{N}$.

(a) Let
$$E_n = \{t \in \mathbb{R} : f(t) \ge n\}$$
. Prove that $\lim_{n \to +\infty} \int_{E_n} f d\mu = 0$.

(b) Prove that $\lim_{n \to +\infty} n \cdot \mu(E_n) = 0.$

2. [10 points] Let μ be the Lebesgue measure on \mathbb{R} and $f: E \to \mathbb{R}$ be a function with a measurable domain E. Consider the following three statements.

Statement (a) $f^{-1}((\alpha, \infty))$ is measurable for each $\alpha \in \mathbb{R}$; Statement (b) $f^{-1}([\alpha, \infty))$ is measurable for each $\alpha \in \mathbb{R}$; Statement (c) $f^{-1}(\{\alpha\})$ is measurable for each $\alpha \in \mathbb{R}$.

(1) Prove that Statements (a) and (b) are equivalent.

(2) Does Statement (c) imply that f is a measurable function? Provide your proof (if your answer is 'yes') or a counterexample (if your answer is 'not always true'.)

- 3. [10 points] Let f(x) be a Lebesgue measurable function on [0, 1]. For $n \in \mathbb{N}$, define $\varphi_n(x) = \tan^{-1}(nf(x)), x \in [0, 1].$
 - (a) Prove that the limit function $\varphi(x) = \lim_{n \to \infty} \varphi_n(x)$ is well defined, and that

$$\int_{[0,1]} \varphi d\mu = \frac{\pi}{2} \Big(\mu \big(\{ x \in [0,1] : f(x) > 0 \} \big) - \mu (\{ x \in [0,1] : f(x) < 0 \}) \Big).$$

(b) Prove that

$$\lim_{n \to +\infty} \int_{[0,1]} \varphi_n d\mu = \int_{[0,1]} \varphi d\mu.$$

- 4. [10 points] Do the following.
 - (a) State the definition of an absolutely continuous function on a finite interval [a, b].

(b) Let f(t) be a Lebesgue integrable function on \mathbb{R} . Assume that for all rational numbers α, β with $\alpha < \beta$, $\int_{\alpha}^{\beta} f(t)dt = 0$. Prove that f(t) = 0 almost everywhere on \mathbb{R} .