- 1. Let m^* denote the Lebesgue outer measure, and suppose that $E \subset \mathbb{R}$.
 - (a) State the definition of $m^*(E)$.
 - (b) Now suppose that E is compact. Prove that

$$m^*(E) = \inf\left\{\sum_{n=1}^N \ell(I_n) : E \subset \bigcup_{n=1}^N I_n\right\},\,$$

where the infimum is over all finite collections of bounded open intervals and $\ell(I)$ denotes the length of the interval I.

2. Suppose that $\{a_n\}_{n=1}^{\infty}$ is a sequence of positive real numbers tending to zero, and suppose that $\{f_n\}_{n=1}^{\infty}$ is a sequence of measurable functions on \mathbb{R} . Let

$$E_n = \left\{ x : |f_n(x)| > a_n \right\},$$

- and suppose that $\sum_{n} m(E_n) < \infty$. (a) Prove that $\{f_n\}_{n=1}^{\infty}$ converges in measure to zero.
- (b) Prove that $\{f_n\}_{n=1}^{\infty}$ converges pointwise almost everywhere to zero.

3. Prove that the following limit exists and find the limit:

$$\lim_{n} \int_{0}^{2} \frac{e^{n(x-1)}}{1+e^{n(x-1)}}.$$

4. Let $f:[0,1] \to \mathbb{R}$ be Lebesgue integrable, and let $F:[0,1] \to \mathbb{R}$ be defined by

$$F(x) = \int_0^x f.$$

- (a) Prove directly from the definition that F has bounded variation.
- (b) Now suppose that $f \ge 0$. Find the total variation of F.