1. Let m^{*} denote the Lebesgue outer measure, and suppose that $E \subset \mathbb{R}$.
(a) State the definition of $m^{*}(E)$.
(b) Now suppose that E is compact. Prove that

$$
m^{*}(E)=\inf \left\{\sum_{n=1}^{N} \ell\left(I_{n}\right): E \subset \bigcup_{n=1}^{N} I_{n}\right\}
$$

where the infimum is over all finite collections of bounded open intervals and $\ell(I)$ denotes the length of the interval I.
2. Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of positive real numbers tending to zero, and suppose that $\left\{f_{n}\right\}_{n=1}^{\infty}$ is a sequence of measurable functions on \mathbb{R}. Let

$$
E_{n}=\left\{x:\left|f_{n}(x)\right|>a_{n}\right\},
$$

and suppose that $\sum_{n} m\left(E_{n}\right)<\infty$.
(a) Prove that $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges in measure to zero.
(b) Prove that $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges pointwise almost everywhere to zero.
3. Prove that the following limit exists and find the limit:

$$
\lim _{n} \int_{0}^{2} \frac{e^{n(x-1)}}{1+e^{n(x-1)}}
$$

4. Let $f:[0,1] \rightarrow \mathbb{R}$ be Lebesgue integrable, and let $F:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
F(x)=\int_{0}^{x} f
$$

(a) Prove directly from the definition that F has bounded variation.
(b) Now suppose that $f \geq 0$. Find the total variation of F.

