- 1. [10 points] Do the following.
 - (a) Let $E \subset \mathbb{R}$. State the definition of the outer measure $m^*(E)$ of E.

(b) Let $E \subset \mathbb{R}$ and $0 < m^*(E) < \infty$. Prove that there exists an open interval I = (a, b) with the property that

 $m^*(E \cap I) > 0.99 \ m^*(I).$

- 2. [10 points] Let $\{f_n, n \in \mathbb{N}\}$ be Lebesgue measurable functions on [0, 1].
 - (a) Prove that the function $f(x) \equiv \sup\{f_n(x), n \in \mathbb{N}\}\$ is a measurable function.

(b) Let $E \subset [0,1]$ be the set of points where the sequence $\{f_n(x), n \in \mathbb{N}\}$ converges. Prove that E is Lebesgue measurable. 3. [10 points] Define

$$f_n(x) \equiv \frac{3 + \exp(n \sin x)}{2 + \exp(n \sin x)}, \ x \in [0, 2\pi].$$

(a) Prove that

$$\lim_{n \to +\infty} \int_{[0,2\pi]} f_n = \int_{[0,2\pi]} \lim_{n \to +\infty} f_n.$$

(b) Find the value of the above limit.

- 4. [10 points] Do the following.
 - (a) State the definition of a function of bounded variation on [a, b].

(b) Let f be the function defined by

$$f(x) = \begin{cases} 0 & \text{if } x = 0; \\ x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0. \end{cases}$$

Prove that this function is *not* of bounded variation on the interval $\left[0, \frac{2}{\pi}\right]$.