1. [10 points] Let E be a subset of \mathbb{R} with finite outer measure $m^{*}(E)$ and $a<b<c$.
(a) Prove that

$$
m^{*}(E \cap[a, c])=m^{*}(E \cap[a, b])+m^{*}(E \cap[b, c])
$$

(b) Define the function f_{E} by

$$
f_{E}(x) \equiv m^{*}(E \cap(-\infty, x]), \quad \forall x \in \mathbb{R}
$$

Prove that f_{E} is increasing and continuous.
2. [10 points] Let $f(x)$ and $g(x)$ be Lebesgue measurable functions on $[0,1]$.
(a) Prove by definition that $|f(x)|$ is Lebesgue measurable on $[0,1]$.
(b) Prove by definition that $h(x) \equiv \min (f(x), g(x))$ is Lebesgue measurable on $[0,1]$.
3. [10 points] Let $f_{n}(x) \equiv \frac{\sin x}{n^{-2}+\cos x}, x \in\left[0, \frac{\pi}{2}\right], n \in \mathbb{N}$, and let $\nu(x)$ be a bounded non-negative measurable function on \mathbb{R}. Do the following.
(a) Prove that the limit $\lim _{n \rightarrow \infty} \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} f_{n}(x) \mathrm{d} x$ exists.
(b) Find the limit value in (a).
(c) Prove that, for $\alpha \in(0, \pi / 2)$,

$$
\lim _{n \rightarrow \infty} \int_{0}^{\alpha} f_{n}(x) \nu(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \int_{0}^{\alpha} \tan (x) \nu(x) \mathrm{d} x
$$

and this limit is finite.
4. [10 points] Do the following.
(a) State the definition of an absolutely continuous function on a finite interval $[a, b]$.
(b) Let $P(x)$ be a polynomial function on $[0,1]$. Prove that $P(x)$ is absolutely continuous on $[0,1]$.

