- 1. [10 points] Let E be a subset of \mathbb{R} with finite outer measure $m^*(E)$ and a < b < c.
 - (a) Prove that

$$m^*(E \cap [a,c]) = m^*(E \cap [a,b]) + m^*(E \cap [b,c]).$$

(b) Define the function f_E by

$$f_E(x) \equiv m^* (E \cap (-\infty, x]), \quad \forall x \in \mathbb{R}.$$

Prove that f_E is increasing and continuous.

2. [10 points] Let f(x) and g(x) be Lebesgue measurable functions on [0, 1].

(a) Prove by definition that |f(x)| is Lebesgue measurable on [0, 1].

(b) Prove by definition that $h(x) \equiv \min(f(x), g(x))$ is Lebesgue measurable on [0, 1].

- 3. [10 points] Let $f_n(x) \equiv \frac{\sin x}{n^{-2} + \cos x}$, $x \in \left[0, \frac{\pi}{2}\right]$, $n \in \mathbb{N}$, and let $\nu(x)$ be a bounded non-negative measurable function on \mathbb{R} . Do the following.
 - (a) Prove that the limit $\lim_{n\to\infty}\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}f_n(x)\mathrm{d}x$ exists.

(b) Find the limit value in (a).

(c) Prove that, for $\alpha \in (0, \pi/2)$,

$$\lim_{n \to \infty} \int_0^\alpha f_n(x)\nu(x) \mathrm{d}x = \lim_{n \to \infty} \int_0^\alpha \tan(x)\nu(x) \mathrm{d}x,$$

and this limit is finite.

- 4. [10 points] Do the following.
 - (a) State the definition of an absolutely continuous function on a finite interval [a, b].

(b) Let P(x) be a polynomial function on [0, 1]. Prove that P(x) is absolutely continuous on [0, 1].