1. [10 points] Let f be a non negative Lebesgue measurable function on E with $m(E)<\infty$. Denote $E_{k}=f^{-1}([k, k+1)), k \in \mathbb{N}$. Prove that

$$
\int_{E} f<+\infty
$$

if and only if

$$
\sum_{k=1}^{\infty} k \cdot m\left(E_{k}\right)<+\infty
$$

2. [10 points] Do the following.
(a) Give a definition of a Lebesgue measurable function on \mathbb{R}.
(b) Assume that the function f defined on $(0,1)$ is differentiable at each point on $(0,1)$. Prove that its derivative f^{\prime} is Lebesgue measurable on $(0,1)$.
(c) Let f be any function defined on \mathbb{R}. Define a new function g by

$$
g(x) \equiv \chi_{\mathbb{Q}}(x) \cdot f(x), \quad x \in[0,1]
$$

where \mathbb{Q} is the set of rational numbers and $\chi_{\mathbb{Q}}$ is the characteristic function of \mathbb{Q}. Prove that g is Lebesgue measurable on \mathbb{R}.
3. [10 points] Let m and n be natural numbers $m, n \geq 1$ and $m<n$. Assume that $E_{1}, E_{2}, \cdots, E_{n}$ are n Lebesgue measurable subsets of $[0,1]$ with the property that each point $x \in[0,1]$ is in at least m of above subsets. Prove that there exists at least one E_{j} such that $m\left(E_{j}\right) \geq \frac{m}{n}$.
4. [10 points] Do the following.
(a) State the definition of bounded variation.
(b) Let f be the function defined by

$$
f(x)= \begin{cases}0, & \text { if } x=0 \\ 1-x, & \text { if } x \in(0,1) \\ 7, & \text { if } x=1\end{cases}
$$

Prove that f is of bounded variation. Find the total variation of f.
(c) Write the function f into the form of difference of two increasing functions.

