Real Analysis I Qualify Exam

\qquad
Last Name First Name

1. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $G \subset \mathbb{R}$ is open, and $F \subset \mathbb{R}$ is closed.
a) Prove from the definition that $f^{-1}(G)$ is open.
b) Prove from the definition that $f^{-1}(F)$ is closed.
c) Give an example of a bounded open set G and a continuous function g : $G \rightarrow \mathbb{R}$ such that $g(G)$ is closed.
2. Let E be a Lebesgue measurable subset of \mathbb{R} with $m(E)>0$, and let $c \in(0,1)$. Prove that there exists a nonempty open interval (a, b) with the property that

$$
m(E \cap(a, b)) \geq c \cdot m((a, b))
$$

3. a) State the Lebesgue Dominated Convergence Theorem (LDCT).
b) Let

$$
f_{n}(x) \equiv \frac{1}{n} \cdot \frac{1}{\frac{1}{n^{2}}+x^{2}}=\frac{n}{1+(n x)^{2}}, x \in[0, \infty), n \in \mathbb{N} .
$$

Prove that

$$
\int_{[0, \infty)} \lim _{n \rightarrow+\infty} f_{n} \neq \lim _{n \rightarrow+\infty} \int_{[0, \infty)} f_{n}
$$

c) Explain why in the example b) one can not use the LDCT as you stated in a).
4. a) Let $f:[0,1] \rightarrow \mathbb{R}$ be an increasing, continuous function such that f is absolutely continuous on the interval $\left[\frac{1}{n}, 1\right]$ for each $n \in \mathbb{N}$. Prove that f is absolutely continuous on $[0,1]$.
b) Give an example of a continuous function $f:[0,1] \rightarrow \mathbb{R}$ such that f is absolutely continuous on the interval $\left[\frac{1}{n}, 1\right]$ for each $n \in \mathbb{N}$, and yet f is not absolutely continuous on $[0,1]$. (You should prove that your example has these properties.)

