1. Let m^{*} denote the Lebesgue outer measure, and suppose that $E \subset \mathbb{R}$ satisfies $m^{*}(E)<\infty$. Prove that if E is not measurable, then there exists an open set U containing E such that

$$
m^{*}(U \backslash E)>m^{*}(U)-m^{*}(E)
$$

2. Give an example of a sequence of measurable functions $\left\{f_{n}\right\}_{n \geq 1}$ on \mathbb{R} such that
(i) $\left\{f_{n}\right\}_{n \geq 1}$ converges to zero almost everywhere on \mathbb{R}, and
(ii) for each open interval $A \subset \mathbb{R}$ with finite length, the sequence $\left\{f_{n}\right\}_{n \geq 1}$ does not converge uniformly on the complement $\mathbb{R} \backslash A$.
(To receive full credit, you should prove that your example has these properties.)
3. Compute the following limit and justify your answer:

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left(1+\frac{x}{n}\right)^{-n} \sin \left(\frac{x}{n}\right) d x
$$

4. Suppose that f and g are absolutely continuous functions on $[0,1]$ and $g>0$. Prove that the ratio $\frac{f}{g}$ is absolutely continuous on $[0,1]$.
