1. Let m^* denote the Lebesgue outer measure, and suppose that $E \subset \mathbb{R}$ satisfies $m^*(E) < \infty$. Prove that if E is not measurable, then there exists an open set U containing E such that

 $m^*(U \setminus E) > m^*(U) - m^*(E).$

- 2. Give an example of a sequence of measurable functions $\{f_n\}_{n\geq 1}$ on \mathbb{R} such that
 - (i) $\{f_n\}_{n\geq 1}$ converges to zero almost everywhere on \mathbb{R} , and
 - (ii) for each open interval $A \subset \mathbb{R}$ with finite length, the sequence $\{f_n\}_{n\geq 1}$ does not converge uniformly on the complement $\mathbb{R} \setminus A$.

(To receive full credit, you should prove that your example has these properties.)

3. Compute the following limit and justify your answer:

$$\lim_{n \to \infty} \int_0^\infty \left(1 + \frac{x}{n} \right)^{-n} \sin\left(\frac{x}{n}\right) dx.$$

4. Suppose that f and g are absolutely continuous functions on [0, 1] and g > 0. Prove that the ratio $\frac{f}{g}$ is absolutely continuous on [0, 1].