1. Let A and B be subsets of \mathbb{R}, and suppose that $A \subset(-\infty, 0)$ and $B \subset(0, \infty)$. Let m^{*} denote the Lebesgue outer measure. Prove that

$$
m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)
$$

2. Suppose that f is a measurable function on $E, m(E)<\infty$, and f is finite almost everywhere.
(a) For $n \in \mathbb{N}$, let

$$
A_{n}=\{x \in E:|f(x)|>n\} .
$$

Find $\lim _{n} m\left(A_{n}\right)$, and justify your answer.
(b) Prove that for each $\epsilon>0$, there exists a measurable set $F \subset E$ such that f is bounded on F and $m(E \backslash F)<\epsilon$.
3. Compute the following limit and justify your answer:

$$
\lim _{n \rightarrow \infty} \int_{1}^{\infty} \frac{\sin ^{n}(x)}{x^{2}} d x
$$

4. Suppose that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a sequence of nonnegative numbers, and let $f:[0,1] \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}(-1)^{n} a_{n}, & \text { if } \frac{1}{n+1}<x \leq \frac{1}{n} \\ 0, & \text { if } x=0\end{cases}
$$

Prove that f has bounded variation if and only if $\sum_{n=1}^{\infty} a_{n}<\infty$.

