- 1. Let m^* denote the Lebesgue outer measure, and suppose that $E \subset \mathbb{R}$ satisfies $m^*(E) < \infty$.
 - (a) State the definition of $m^*(E)$.
 - (b) Prove that for each $\epsilon > 0$, there exists M > 0 such that $m^*(E \setminus [-M, M]) < \epsilon$.
 - (c) Prove that E is measurable if and only if for each $\epsilon > 0$, there exists a compact set $K \subset E$ such that $m^*(E \setminus K) < \epsilon$.

- 2. Suppose that $g: E \to \mathbb{R}$ is measurable. (a) Prove that for all t > 0,

$$m\Big(\big\{x\in E: |g(x)|>t\big\}\Big) \ \le \ \frac{1}{t}\int_E |g|$$

(b) Now suppose that $\int_E |g| = 0$ and prove that g = 0 a.e. on E.

3. (a) Suppose that $\{f_n\}_n$ is a sequence of non-negative measurable functions on [0, 1]and $f_n \to f$ pointwise a.e. on [0, 1], where f is integrable on [0, 1]. Let $g_n(x) = \min\{f_n(x), f(x)\}$ for all $n \in \mathbb{N}$ and $x \in [0, 1]$. Prove that each g_n is integrable and find

$$\lim_n \int_0^1 g_n.$$

(b) Give an example of a sequence $\{f_n\}_n$ of non-negative measurable functions on [0, 1] such that $f_n \to 0$ pointwise a.e. on [0, 1] and yet $\int_0^1 f_n$ does not converge to 0. Remember to prove that your example has these properties.

- 4. Let $f:[a,b]\to \mathbb{R}$ and $g:[a,b]\to \mathbb{R}$ be absolutely continuous.
 - (a) Show that the product $f \cdot g$ is absolutely continuous.
 - (b) Show that the following integration by parts formula holds:

$$\int_a^b f \cdot g' = f(b)g(b) - f(a)g(a) - \int_a^b f' \cdot g.$$