1. Let m^{*} denote the Lebesgue outer measure, and suppose that $E \subset \mathbb{R}$ satisfies $m^{*}(E)<\infty$.
(a) State the definition of $m^{*}(E)$.
(b) Prove that for each $\epsilon>0$, there exists $M>0$ such that $m^{*}(E \backslash[-M, M])<\epsilon$.
(c) Prove that E is measurable if and only if for each $\epsilon>0$, there exists a compact set $K \subset E$ such that $m^{*}(E \backslash K)<\epsilon$.
2. Suppose that $g: E \rightarrow \mathbb{R}$ is measurable.
(a) Prove that for all $t>0$,

$$
m(\{x \in E:|g(x)|>t\}) \leq \frac{1}{t} \int_{E}|g|
$$

(b) Now suppose that $\int_{E}|g|=0$ and prove that $g=0$ a.e. on E.
3. (a) Suppose that $\left\{f_{n}\right\}_{n}$ is a sequence of non-negative measurable functions on $[0,1]$ and $f_{n} \rightarrow f$ pointwise a.e. on $[0,1]$, where f is integrable on $[0,1]$. Let $g_{n}(x)=$ $\min \left\{f_{n}(x), f(x)\right\}$ for all $n \in \mathbb{N}$ and $x \in[0,1]$. Prove that each g_{n} is integrable and find

$$
\lim _{n} \int_{0}^{1} g_{n}
$$

(b) Give an example of a sequence $\left\{f_{n}\right\}_{n}$ of non-negative measurable functions on $[0,1]$ such that $f_{n} \rightarrow 0$ pointwise a.e. on $[0,1]$ and yet $\int_{0}^{1} f_{n}$ does not converge to 0 . Remember to prove that your example has these properties.
4. Let $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ be absolutely continuous.
(a) Show that the product $f \cdot g$ is absolutely continuous.
(b) Show that the following integration by parts formula holds:

$$
\int_{a}^{b} f \cdot g^{\prime}=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime} \cdot g
$$

