near Analysis II, Froblem I	Real	Analysis	II,	Problem	1
-----------------------------	------	----------	-----	---------	---

Name:

1. Let X be a compact space and let A be a closed subset of X. Prove directly from the definition that A is compact.

2. Let *H* be a Hilbert space with inner product (x, y) for $x, y \in H$ and let $\{x_n\} \subset H$ such that $\{x_n\}$ converges weakly to $x \in H$. Prove that $||x_n - x|| \to 0$ if and only if $\lim_{n\to\infty} ||x_n|| = ||x||$.

3. Let *H* be a Hilbert space with inner product (x, y) for $x, y \in H$ and let $\{x_n\} \subset H$ such that $\{x_n\}$ converges weakly to $x \in H$. Prove that $\{\|x_n\|\}$ is bounded, i.e., there is a constant *M* independent of *n* such that $\|x_n\| \leq M$ for all indices *n*.

4. Let (X, \mathcal{B}, μ) be a complete measure space and let $f \in L^p(\mu)$, $1 . Let <math>\{T_n\}$ be a convergent sequence of bounded operators on $L^p(\mu)$, i.e., there exists a $T \in \mathcal{L}(L^p(\mu))$ such that $||T_n - T|| \to 0$. Let $g \in L^q(\mu)$ where $\frac{1}{p} + \frac{1}{q} = 1$, and suppose there exists $\{g_n\} \subset L^q(\mu)$ such that $||g_n - g||_q \to 0$. Prove that

$$\int_X (T_n f) g_n d\mu \to \int_X (Tf) g d\mu$$