1. Let 1 and <math>q = p/(p-1). Prove that for any $\lambda \in (0, 1/q)$ and any $f \in L^p([0, 1])$,

$$\lim_{\epsilon \to 0^+} \frac{1}{\epsilon^{\lambda}} \int_0^{\epsilon} f = 0.$$

2. Let X be a normed linear space, and let $T: X \to X$ be a linear operator. Recall that the kernel of T is

$$\ker(T) = \{ x \in X : T(x) = 0 \}.$$

- (a) Prove that $\ker(T)$ is closed in X.
- (b) Prove that T is injective if and only if $ker(T) = \{0\}$.

3. Let X be a Banach space and $T: X \to X$ a linear operator such that ||T|| < 1. For $n \ge 1$, let T^n denote the composition of T with itself n times: $T^n(x) = T \circ \cdots \circ T(x)$. Let $S: X \to X$ be defined by

$$S(x) = \sum_{n=1}^{\infty} T^n(x).$$

Prove that S is a well-defined bounded linear operator.

- 4. Let H be a Hilbert space.
 - (a) Let $v \in H$. Define $T : H \to \mathbb{R}$ by $T(u) = \langle u, v \rangle$. Prove that T is a bounded linear functional and ||T|| = ||v||.
 - (b) Suppose that $\mathcal{S} \subset H$ and for all $u \in H$, there exists $M_u > 0$ such that for all $v \in \mathcal{S}$,

$$\langle u, v \rangle \leq M_u.$$

Prove that \mathcal{S} is bounded.