1. Suppose that X and Y are normed linear spaces and that $T: X \longrightarrow Y$ is a linear operator. Show that if T is continuous at a single point, then it is continuous and hence bounded. [10 points]

2. Let *E* be a measurable set, $1 \le p < \infty$, *q* the conjugate of *p*, and *S* a dense subset of $L^q(E)$. Show that if $g \in L^p(E)$ and $\int_E f \cdot g = 0$ for all $f \in S$, then g = 0 almost everywhere. [10 points]

- 3. Let X be a normed linear space.
 - (i) Show that if $\{x_n\}$ is a sequence in X that converges to x weakly, then x is unique. [2 points]
 - (ii) Show that the strong convergence implies the weak convergence, but the converse is not true in general. [4 points]
 - (iii) Suppose that X is a Hilbert space and $x_n \to x$ weakly in X. Show that if $||x_n|| \to ||x||$, then $x_n \to x$ strongly in X. [4 points]

4. Suppose that $\mathcal{K} : [a, b] \times [a, b] \longrightarrow \mathbb{R}$ is continuous, where $-\infty < a < b < \infty$ and $H = L^2(a, b)$ is a Hilbert space. A linear operator $T : H \longrightarrow H$ is defined by

$$Tu(x) = \int_{a}^{b} \mathcal{K}(x, y)u(y)dy, \quad \text{for all } u \in H.$$

- (i) Show that the operator T is bounded. [3 points]
- (ii) Show that T^* defined by $T^*u = \int_a^b \mathcal{K}(y, x)u(y)dy$ is an adjoint operator of T and hence T is self-adjoint if $\mathcal{K}(x, y) = \mathcal{K}(y, x)$ for all $x, y \in [a, b]$. [3 points]
- (iii) Show that $Tu \in C[a, b]$, for $u \in H$. [4 points]