1. [10 points] Let E be a measurable set and $g \in L^2(E)$. Define a linear functional on $L^2(E)$ by

$$T(f) = \int g \cdot f$$
, for all $f \in L^2(E)$.

Show that T is a bounded linear functional on $L^2(E)$ and $||T||_* = ||g||_2$. Here $||\cdot||_*$ is the operator norm $||T||_* = \sup\{T(f) : ||f|| \le 1\}$.

2. [10 points] Let X and Y be normed spaces. The norm on $X \times Y$ is defined by

$$||(x,y)|| = ||x|| + ||y||.$$

If $T_1 : X \longrightarrow Y$ is a closed linear operator and $T_2 \in \mathcal{L}(X, Y)$ (which is the space of bounded linear operators), show that $T_1 + T_2$ is a closed linear operator.

3. [10 points] Let X and Y be normed linear spaces and $T: X \longrightarrow Y$ a liner operator. Show that T is a compact operator if and only if for every bounded sequence $\{x_n\}$ in X, the image sequence $\{T(x_n)\}$ in Y has a convergent subsequence. 4. [10 points] Let X and Y be normed spaces and $T: X \longrightarrow Y$ is a linear operator. Show that T is continuous if and only if T is bounded (that is, there is a constant M such that for all $x \in X$, $||T(x)|| \le M ||x||$.)