Problem 1. (10 pt) Let E be a measurable set. Let A and B be two measurable subsets of E such that $m(A\setminus B)=3$ and $m(B\setminus A)=5.$ Find the $L^3(E)$ norm $\|\chi_A-\chi_B\|_3$

$$\|\chi_A - \chi_B\|$$

of the difference of the characteristic functions of A and B.

(Here, $X \setminus Y = \{x \in X \mid x \notin Y\}$ denotes the complement of Y in X.)

Problem 2. (10 pt) Let $1 . Let T be a bounded linear functional on <math>L^p[1, 2]$ having the property

$$T(\chi_{[1,x]}) = x - 1$$
 for all $x \in [1,2]$,

where $\chi_{[1,x]}$ is the characteristic function of the interval [1,x]. Find the norm $||T||_*$ of the functional T.

Problem 3. (10 pt) Let $1 . Let the sequence of functions <math>\{f_n\}$ on [0, 1] be defined by

$$f_n = n^{1/p} \chi_{[0,1/n]}$$

where $\chi_{[0,1/n]}$ is the characteristic function of the interval [0,1/n] and $n \in \mathbb{N}$.

- **a**) Prove that the sequence $\{f_n\}$ converges weakly to zero in $L^p([0,1])$.
- **b**) Prove that the sequence $\{f_n\}$ does not converge strongly in $L^p([0,1])$.

Problem 4. (10 pt) Let g and h be two vectors in a Hilbert space H. Let $T \in \mathcal{L}(H)$ be the bounded linear operator defined by

$$T(u) = \langle u, h \rangle g \qquad \text{for all} \qquad u \in H.$$

Assume that ||h|| = 2 and ||g|| = 5.

- **a**) Find the norm of the operator T.
- **b**) Prove that T is a compact operator.