Problem 1. (10 pt) Let E be a measurable set. Let A and B be two measurable subsets of E such that $m(A \backslash B)=3$ and $m(B \backslash A)=5$. Find the $L^{3}(E)$ norm

$$
\left\|\chi_{A}-\chi_{B}\right\|_{3}
$$ of the difference of the characteristic functions of A and B.

(Here, $X \backslash Y=\{x \in X \mid x \notin Y\}$ denotes the complement of Y in X.)

Problem 2. ($\mathbf{1 0} \mathbf{p t}$) Let $1<p<\infty$. Let T be a bounded linear functional on $L^{p}[1,2]$ having the property

$$
T\left(\chi_{[1, x]}\right)=x-1 \quad \text { for all } \quad x \in[1,2],
$$

where $\chi_{[1, x]}$ is the characteristic function of the interval $[1, x]$. Find the norm $\|T\|_{*}$ of the functional T.

Problem 3. ($\mathbf{1 0} \mathbf{p t})$ Let $1<p<\infty$. Let the sequence of functions $\left\{f_{n}\right\}$ on $[0,1]$ be defined by

$$
f_{n}=n^{1 / p} \chi_{[0,1 / n]},
$$

where $\chi_{[0,1 / n]}$ is the characteristic function of the interval $[0,1 / n]$ and $n \in \mathbb{N}$.
a) Prove that the sequence $\left\{f_{n}\right\}$ converges weakly to zero in $L^{p}([0,1])$.
b) Prove that the sequence $\left\{f_{n}\right\}$ does not converge strongly in $L^{p}([0,1])$.

Problem 4. ($\mathbf{1 0} \mathbf{~ p t)}$ Let g and h be two vectors in a Hilbert space H. Let $T \in \mathcal{L}(H)$ be the bounded linear operator defined by

$$
T(u)=\langle u, h\rangle g \quad \text { for all } \quad u \in H .
$$

Assume that $\|h\|=2$ and $\|g\|=5$.
a) Find the norm of the operator T.
b) Prove that T is a compact operator.

