- 1. [10 points] Let $\mathcal{D}(T)$ be the set of functions defined on the closed bounded interval [a, b] (a < b) whose derivatives are continuous, and X = C[a, b] be the set of continuous functions defined on [a, b].
 - (a) Show that the differential operator $T: \mathcal{D}(T) \longrightarrow X$ defined by

$$T(f(t)) = \frac{df}{dt}$$

is a linear operator but is unbounded.

(b) Let $\kappa(t,\xi)$ be a continuous function defined on $[a,b] \times [a,b]$. Show that the operator $S: C[a,b] \longrightarrow C[a,b]$ defined by

$$S(f) = g(t)$$
, where $g(t) = \int_{a}^{b} \kappa(t,\xi) f(\xi) d\xi$

is a bounded and linear operator.

2. [10 points] For $1 \le p < \infty$, q the conjugate of p and $f \in L^p(E)$, show that f = 0 a. e. if and only if

$$\int_E f \cdot g = 0 \text{ for all } g \in L^q(E).$$

- 3. [10 points] Do the following.
 - (a) Let X and Y be normed linear spaces and $T: X \longrightarrow Y$ a linear operator. Prove that if T is compact, then it is continuous.
 - (b) Let X be an inner product space. Suppose y and z are two fixed elements of X. Show that an operator $T: X \longrightarrow X$ defined by

$$T(x) = \langle x, y \rangle z$$
 for every $x \in X$

is bounded, linear, and compact.

- UNCC ID:
- 4. [10 points] Let X be a normed linear space and X^* its dual space (the set of all real valued continuous linear functions defined on X). A sequence $\{x_n\}$ in X is a weak Cauchy sequence provided that for every $f \in X^*$, the sequence $f(x_n)$ is Cauchy in \mathbb{R} .
 - (a) Show that a weak Cauchy sequence is bounded (Hint: the Uniform Boundedness Principle by noting that X^* is a Banach space).
 - (b) Suppose $T: X \longrightarrow Y$ be a bounded linear operator between two normed linear spaces and $\{x_n\}$ is a sequence in X. If $\{x_n\} \longrightarrow x_0$ weakly, show that $\{T(x_n)\} \longrightarrow T(x_0)$ weakly.