- 1. Suppose that E is a Legesgue measurable subset of \mathbb{R} with finite measure, and let $1 \leq p_1 < p_2 < \infty$.
 - (a) Use Hölder's Inequality to show that $L^{p_2}(E) \subseteq L^{p_1}(E)$.

(b) Show that if $(f_n)_{n\geq 1} \to f$ in $L^{p_2}(E)$, then $(f_n)_{n\geq 1} \to f$ in $L^{p_1}(E)$.

2. Suppose that X is a Banach space and $P: X \to X$ is a bounded linear map such that $P \circ P = P$ (where \circ denotes composition). Let Y = P(X). Prove that $P: X \to Y$ is an open mapping.

3. Suppose that H is a Hilbert space and V is a nonempty closed subset of H such that if $u, v \in V$ then $\lambda u + (1 - \lambda)v \in V$ for all $\lambda \in [0, 1]$. Prove that there exists a unique $u \in V$ such that $||u|| \leq ||v||$ for all $v \in V$. You may use the Parallelogram Identity:

 $||a - b||^2 + ||a + b||^2 = 2||a||^2 + 2||b||^2.$

- 4. Let *H* be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$, and let $\mathcal{L}(H)$ be the set of bounded linear operators from *H* to itself.
 - (a) Let $T \in \mathcal{L}(H)$, and suppose that $(T_n)_{n\geq 1} \subset \mathcal{L}(H)$ is a sequence of compact operators such that $||T_n T||$ converges to zero. Prove that T is compact.

(b) Suppose that $(\varphi_k)_{k\geq 1}$ is an orthonormal basis of H, and let $(\lambda_k)_{k\geq 1}$ be a sequence of real numbers that converges to zero. Define $T: H \to H$ by

$$T(h) = \sum_{k} \lambda_k < h, \varphi_k > \varphi_k.$$

Prove that T is compact.