1. Let a < b, and let $p \in [1, \infty)$. (a) Prove that there exists C > 0 such that for all continuous $f : [a, b] \to \mathbb{R}$,

 $||f||_p \le C ||f||_{\infty}.$

(b) Prove that there is no constant c > 0 such that for all continuous $f : [a, b] \to \mathbb{R}$,

 $\|f\|_{\infty} \le c \|f\|_p.$

2. Let $\{T_n\}_{n=1}^{\infty}$ be a sequence in $\mathcal{L}(X, Y)$, where X and Y are Banach spaces. Prove that the sequence $\{\|T_n\|\}_{n=1}^{\infty}$ is bounded if and only if for each $x \in X$, the sequence $\{T_n(x)\}_{n=1}^{\infty}$ is bounded in Y.

3. Let $H = L^2([0, 1])$, and let \mathcal{F} be an orthonormal subset of H. (a) Prove that for any $f, g \in \mathcal{F}$,

$$||f - g||_2 = \sqrt{2}.$$

(b) Prove that \mathcal{F} must be countable.

4. Let H be a Hilbert space, and let $K : H \to H$ be a linear operator from H to itself. Prove that if K(H) is a finite dimensional subspace, then K is compact.