1. Let $a<b$, and let $p \in[1, \infty)$.
(a) Prove that there exists $C>0$ such that for all continuous $f:[a, b] \rightarrow \mathbb{R}$,

$$
\|f\|_{p} \leq C\|f\|_{\infty}
$$

(b) Prove that there is no constant $c>0$ such that for all continuous $f:[a, b] \rightarrow \mathbb{R}$,

$$
\|f\|_{\infty} \leq c\|f\|_{p}
$$

2. Let $\left\{T_{n}\right\}_{n=1}^{\infty}$ be a sequence in $\mathcal{L}(X, Y)$, where X and Y are Banach spaces. Prove that the sequence $\left\{\left\|T_{n}\right\|\right\}_{n=1}^{\infty}$ is bounded if and only if for each $x \in X$, the sequence $\left\{T_{n}(x)\right\}_{n=1}^{\infty}$ is bounded in Y.
3. Let $H=L^{2}([0,1])$, and let \mathcal{F} be an orthonormal subset of H.
(a) Prove that for any $f, g \in \mathcal{F}$,

$$
\|f-g\|_{2}=\sqrt{2}
$$

(b) Prove that \mathcal{F} must be countable.
4. Let H be a Hilbert space, and let $K: H \rightarrow H$ be a linear operator from H to itself. Prove that if $K(H)$ is a finite dimensional subspace, then K is compact.

