1. Suppose that E is a Lebesgue measurable subset of \mathbb{R} with $0 < m(E) < \infty$ and $f \in L^p(E)$ for all $1 \le p \le \infty$. Prove that

$$\lim_{p \to \infty} \|f\|_p = \|f\|_{\infty}.$$

2. Suppose X and Y are Banach spaces. Let $\{\ell_n\}_n$ be a sequence of bounded linear functionals on X, and let $\{y_n\}_n$ be a sequence in Y such that for each $x \in X$, the following series converges in Y:

$$\sum_{n=1}^{\infty} \ell_n(x) y_n.$$

Let $S: X \to Y$ be the map defined by

$$S(x) = \sum_{n=1}^{\infty} \ell_n(x) y_n.$$

Prove that S is a bounded linear operator.

- 3. Let X be a Banach space. Let $\{y_j\}_j$ be a subset of X, and let $Y = \overline{\text{span}}\{y_j\}$ (the closed linear span of $\{y_j\}_j$). Let $x_0 \in X$. Prove that the following statements are equivalent:
 - (i) x_0 is in Y
 - (ii) for every bounded linear functional $\ell : X \to \mathbb{R}$, if $\ell(y_j) = 0$ for all j, then $\ell(x_0) = 0$.

4. Let $\{\varphi_k\}_k$ be an orthonormal basis of the Hilbert space H, and let $\{u_n\}_n$ be a bounded sequence in H. Prove that $\{u_n\}_n$ converges to 0 weakly in H if and only if for each k,

$$\lim_{n} < u_n, \varphi_k > = 0.$$