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Abstract

AGBOR ANDU. The Asymptotic Approximation of the Random Walk with heavy

tails. (Under the direction of DR. BORIS VAINBERG)

The main result of this dissertation concerns the asymptotics, uniform in t

and x, of the probability distribution of a random walk with heavy tails. The

random walk is a Markov process and thus can be characterized in terms of their

generators. We impose certain conditions on the Fourier transform of the kernel

of the generator, which still allow us to consider rather general class of processes

on Zd. The process we consider can be viewed as a generalization of the simple

symmetric walk (in continuous time) for which both the central limit theorem and

large deviation results are well-known.

For problems with heavy tails, the analogue of the central limit theorem is the

convergence of the properly normalized process to the stable laws. In terms of

probability densities, these limit theorems give the asymptotics of p(t, x, 0) when

x is of order t1/α.

For the class of random walk under consideration, we obtain the asymptotics

of p(t, x, 0) uniformly in t and x for all t > 1, x ∈ Rd, covering, in particular, the

regime of the central limit theorem and large deviations.
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Chapter 1. Literature Review and Introduction

1.1 Literature Review

Research in the area of large deviations for random walks with heavy-tailed jumps

began in the second half of the twentieth century. At first the main efforts was, of

course, concentrated on studying the deviations of the sum Sn of r.v’s. Here one

should first of all mention the papers by C. Heyde [6, 7], S.V. Nagaev [8, 9], A.V.

Nagaev [10, 11], D.H. Fuk and S.V. Nagaev [12], L.V. Rozovski [13, 14] and

others. These established the basic principle by which asymptotics of P (Sn > x)

are formed: the main contributions to the probability of interest comes from

trajectories that contain large jumps.

Later on, papers began to appear in which this principle was used to find the

distribution of the maximum S̄n of partial sums and also to solve more general

boundary problems for random walks (I.F. Pinelis [15], V.V. Godovanchuk [16],

A.A. Borokov [17, 18].Somewhat aside from this were papers devoted to the prob-

abilities of large deviations of maximum of a random walk with negative drift.

The general first results were obtain by A.A. Bokorov in [18], while more com-

plete versions (for subexponential summands) were established by N. Veraverbeke

[19]and D.A. Korshunov [20].

A.A. Bokorov [21, 22, 23] began a systematic study of large deviations for

random walks with regularly distributed jumps. Then the papers [24, 25, 26,

27, 28] and some others appeared, in which the derived results were extended to

semi-exponential and regular exponentially decaying distributions, to multivariate

random walks,to the case of non-identically distributed summands and so on. As

a result, a whole range interesting problems arose, unified by the general approach

to their solution and a system of interconnected rather advanced results were, as a

1
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rule, quite close to unimprovable. As these problems and results were, moreover,

of considerable interest for applications, the idea of writing a thesis on all this

became quite natural.

This thesis concerns the asymptotic behaviour of the probabilities of rare events

related to large deviations of the trajectories of random walk whose jump distribu-

tion decays not very fast at infinity and possess some form of ’regular behaviour’.

Random Walks form a classical object of probability theory, the study of which

is of tremendous theoretical interest. They constitute a mathematical model of

great importance for applications in mathematical statistics, risk theory, queueing

theory and so on.

Large deviations and rare events are of great interest in all these applied areas,

since computing the asymptotic of large deviation probabilities enables one to

find for example, small error probabilities in mathematical statistics, small ruin

probabilities in risk theory, small buffer overflow probabilities in queueing theory,

and so on.

Slowly decaying and, in particular, regular distributions present, when one

is studying large deviation probabilities, an alternative to distributions decaying

exponentially fast at infinity (for which cramer’s condition hold). The first classical

results in large deviation theory were obtained for the case of distribution decaying

exponentially fast. However, this condition of exponential decay fails in many

applied problems.

For regular distribution, the large deviation probabilities are mostly formed

by contributions from the distribution tails(on account of the large jumps in the

random walk trajectory).As a result, analytical methods prove to be efficient, and

everything is determined by the behaviour of the laplace transform of the jump

distributions.
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1.2 Introduction

The main result of this Thesis concerns the asymptotics, uniform in t and x, of

the probability density of a random walk with heavy tails. The random walks are

Markov Processes (section 2.2) and thus can be characterized in terms of their

generators (section 3.1). We impose certain conditions on the Fourier transform

of the kernel of the generator, which still allow us to consider a rather general class

of process on Zd. The processes we consider can be viewed as a generalization of

the simple symmetric walk (in continuous time) for which both the central limit

theorem and large deviation results are well-known.

For problems with heavy tails, the analogue of the central limit theorem is the

convergence of the properly normalized process to the stable laws ( section 2.2).

In terms of probability densities, these limit theorems give the asymptotics of

p(t, x, 0) when x is of order t1/α [29].

For the class of random walks under consideration, we obtain the asymptotics

of p(t, x, 0) uniformly in t and x for all t > 1, x ∈ Rd, covering, in particular, the

regime of the limit theorem and large deviations.

In the case of the simple random walk on the lattice Zd, the transition proba-

bility p(t, x, y) satisfies the standard heat equation


dp(t,x,y)

dt
= κ4xp(t, x, y) = κ4yp(t, x, y)

p(0, x, y) = δy(x),

where κ is the diffusion coefficient. The generator κ4 of a simple symmetric walk

is a particular case of the generator
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Lf(x) = k
∑
z 6=0

[f(x+ z)− f(x)]q(z)

q(z) = q(−z) > 0,∑
z 6=0

q(z) = 1

of the process with heavy tails. Here q(z) is the probability of the jump from one

state xt to another state xt + z in time dt, which is described by the relation

xt+dt =


xt with prob. 1− kdt,

xt + z with prob. kq(z)dt.

Indeed, L = κ∆ if

q(z) =


1
2d

if |z| = 1

0 otherwise.

We’ll, however, consider q that may be positive everywhere. The precise conditions

on q will be provided below.

The transition probability p(t, x, y) of a random walk with heavy tails is de-

termined by solving the initial value problem

dp

dt
= Lxp, p(0, x, y) = δy(x).

We apply the Fourier transform to obtain

p(t, x, y) =
1

(2π)d

∫
[−π,π]d

ei(ϕ,(y−x))−tφ(ϕ) dϕ, d ≥ 1,

where

φ(ϕ) = k
∑
z∈Zd

(1− ei(ϕ,z))q(z), d ≥ 1.
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We use these results to determine the asymptotics of the transition probability,

p(t, x), in both the 1-dimensional case (Sect. 4.2) and the n-dimensional case (sect.

4.3). In determining the asymptotics of p, we assumed that q decays slow (heavy-

tail), that is q(z) ∼ q0
|z|1+α , z →∞, 0 < α < 2.

In fact, the asymptotics of p in the 1-dimensional case is studied, we assume

that

q(z) =
q0

|z|1+α
+

q1

|z|2+α
+

q2

|z|3+α
+O(

1

|z|4+α
).

Then the following relation is proved for the function φ(ϕ):

φ(ϕ) ∼ c0|ϕ|α +O(|ϕ|γ), ϕ→ 0,

where γ = min{2, α + 1}, c0 and a0 are constants. This asymptotics is used

to justify the following main result concerning the 1-D case. Without loss of

generality, one may assume that c0 = 1. Then the following relations are valid

when d = 1.

p(t, x) =
1

t
1
α

F

(
x

t
1
α

)
(1 + o(1)), x2 + t2 →∞,

where

F (σ) =

∫ ∞
−∞

eiσϕ−|ϕ|
α

dϕ,

and ω is a neighborhood of the set {σi}ni=1 of points σi such that

F (σ) = 0, |σi| <∞.

The asymptotics of p(t, x) in the multidimensional case is similar to the one

above. We use notation L(ϕ) for the function φ(ϕ) in the multidimensional case

(to distinguish the cases). We assume that L has an asymptotic behavior at

zero similar to one that was established in the one dimensional case. Namely, we
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assume that

L(ϕ) = |ϕ|αh(ϕ̇) +
M−1∑
i=1

|ϕ|α+ihi(ϕ̇) +O(|ϕ|α+M), ϕ→ 0,

for some large enough M , ϕ̇ = ϕ
|ϕ| , h = h(ϕ̇) and hi are smooth functions on the

sphere. The asymptotics of p(t, x) is given by

p(t, x) =



1

t
d
α
F
(

x

t
1
α

)
(1 + o(1)), |x|2 + t2 →∞, if x

t
d
α
/∈ B(ε),

1

t
d
α

[
F
(

x

t
1
α

)
+ o(1)

]
, |x|2 + t2 →∞, if x

t
d
α
∈ B(ε),

where we denoted by B(ε) an ε-neighborhood of the set of points in Rd where

F (z) = 0 and

F

(
x

t
1
α

)
=

∫
Rd
e
i

(
ϕ, x

t
1
α

)
−|ϕ|αh(ϕ̇)

dϕ.

The asymptotics of F (y) =
∫
Rd
ei(ϕ,y)−|ϕ|αh(ϕ̇) dϕ, where ϕ̇ = ϕ

|ϕ| , is shown to be

F (y) = |y|−d−αf(ẏ) + o(|y|−d−α), |y| → ∞,

where ẏ = y
|y| and f(ẏ) is defined by h(ϕ̇) as follows:

∫
Rd
h(ϕ̇)|ϕ|αeiyϕdϕ = −|y|−d−αf(ẏ).

The integral here is understood in the sense of the Fourier transform in the space
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of distributions. Thus the formula for p can be rewritten in the form

a) p(x, t) =
1

t
d
α

F

(
x

t
1
α

)
+O

(
1

t
d
α

+1

)
,
|x|
t

1
α

≤ A,

where A is arbitrary,

b) p(x, t) =
t

|x|d+α
f(ẋ) + o

(
t

|x|d+α

)
, if

|x|
t

1
α

→∞,

where the regions in the domain of p(x, t) is described by the figure below - |x|

6

t |x| = t1/α

PPi
|x|
t1/α

< A |x|
t1/α
→∞



Chapter 2. Central Limit Theorem and Regularly Varying

functions.

2.1 Central Limit Theorem

Theorem 2.1.1 (Central Limit Theorem). Suppose X1, X2, ..., are mutually in-

dependent and identically distributed random variables with mean m and finite

variance σ2. Let Sn =
∑n

k=1Xk. Then we have

lim
n→∞

P

(
a <

Sn − nm√
nσ

≤ b

)
=

1√
2π

∫ b

a

e−x
2/2dx

uniformly for all −∞ ≤ a < b ≤ ∞.

Proof. We can without loss of geniality show assume that m = 0 and σ2 = 1 and

that if X and Y be independent r.v., then µX+Y =
√

2πµX ∗ µY . It follows that

µSn = (2π)
n−1
2 µ ∗ µ ∗ ... ∗ µ︸ ︷︷ ︸

n times

where µ denotes the common distribution of the Xns. Let Zn = sn√
n
. Then,

µ̂Zn(t) = µ̂Sn

(
t√
n

)
=

1√
2π

[√
2πµ̂

(
t√
n

)]n
.

We get

µ̂Zn(t) =
1√
2π

[
1− t2

2n
+ α

(
t√
n

)]n
.

consequently,

lim
n→∞

µ̂Zn(t) =
1√
2π
e−t

2/2 =
1√
2π
ĝ(t),

where g is the Gaussian function.

8
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By Lévy’s theorem, the sequence {Zn}nn=1 converges in distribution to a r.v.

having distribution ν(B) = 1√
2π

∫
B
e−x

2/2dx. We can conclude from here that

lim
n→∞

∫
R

fdµZn =

∫
R

fdν, f ∈ Cb(R).

Let 0 < ε < (b−a)
2
. Choose a continuous function f1 such that 0 ≤ f1 ≤ 1,

f1(x) = 0 for x /∈ (a, b) and f1(x) = 1 for x ∈ [a + ε, b − ε]. And choose a

continuous function f2 such that 0 ≤ f2 ≤ 1, f2(x) = 1 for x ∈ [a, b], and

f2(x) = 0 for x /∈ (a− ε, b+ ε). Then

∫
R

f1(x)dµZn(x) ≤
∫

(a,b]

dµZn(x) ≤
∫
R

f2(x)dµZn(x).

Thus,

1√
2π

∫ b−ε

a+ε

e−x
2/2dx ≤

∫
R

f1(x)dν(x) ≤ lim inf
n→∞

µZn((a, b])

and

lim sup
n→∞

µZn((a, b]) ≤
∫
R

f2(x)dν(x) ≤ 1√
2π

∫ b+ε

a−ε
e−x

2/2dx.

Because ε can be made arbitrarily small, it follows that

1√
2π

∫ b

a

e−x
2/2dx = lim

n→∞
µZn((a, b]) = lim

n→∞
P

(
a <

Sn√
n
≤ b

)
,

as required.

We can obtain as a special case of central limit theorem, the following result

known as DeMoivre-Laplace theorem:

lim
n→∞

P

(
a <

n(E)− np√
np(1− p)

≤ b

)
=

1√
2π

∫ b

a

e−x
2/2dx

uniformly for all −∞ ≤ a < b ≤ ∞. X1, X2, ... has a binomial distribution and

are iid and have common mean p and variance p(1 − p). Note that for n(E) =
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X1 + X2 + ... + Xn, we obtain the DeMoivre-Laplace theorem from the central

limit theorem.

2.2 Stable Laws

Definition 2.2.1 (slowly varying functions). A positive (Lebesgue) measurable

function L(t) is said to be a slowly varying function(svf) as t → ∞ if, for any

fixed v > 0,

L(vt)

L(t)
→ 1 as t→∞. (2.1)

Definition 2.2.2 (regularly varying functions). A function V (t) is said to be a

regularly varying function (of index −α ∈ R) function(rvf) as t→∞ if it can be

represented as

V (t) = t−αL(t), (2.2)

where L(t) is an svf as t→∞.

The definition of an s.v.f(r.v.f) as t ↓ 0 is quite similar. In what follows, the

term s.v.f(r.v.f) will always refer, unless otherwise stipulated, a function which is

slowly(regularly) varying at infinity.

One can easily see that, similarly to (2.1), the convergence

V (vt)

V (t)
→ v−α as t→∞. (2.3)

for any fixed v > 0 is a characteristic property of regularly varying functions.

Thus, and s.v.f of index 0.

Law of Large Numbers

Let ξ, ξ1, ξ2, ... be independent identically distributed (i.i.d) random variables.

Put S0 = 0 and

Sn =
n∑
i=1

ξi, n = 1, 2, ...
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The following assertions constitute the fundamental classical limit theorems for

random walks,Sn;n ≥ 1.

The strong law of large numbers states that, if there exists a finite expectations

Eξ, then as n→∞,

Sn
n
→ Eξ almost surely (a.s) (2.4)

One could call the value nEξ the first-order approximation to the sum Sn.

The central limit theorem states that if Eξ2 <∞ then. as n→∞,

ζn =
Sn − nEξ√

nd
⇒ ζ ∈ Φ, (2.5)

where d = Varξ = Eξ2− (Eξ)2 is the variance of the r.v. ξ, the symbol⇒ denotes

weak convergence of the r.v. in distribution and the notation ζ ∈ Φ says that

the r.v. ζ has the distribution Φ which is statndard normal, parameters (0,1).

nEξ + ζ
√
nd can be considered the second-order approximation of Sn.

Since the relation Φ is continuous, the relation (2.5) is equivalent to the fol-

lowing one: for any v ∈ R we have

P(ζn ≥ v)→ P(ζ ≥ v) as n→∞,

and, moreover, this convergence is uniform in v. In other words, for deviations of

the form x = nEξ + v
√
nd,

P(Sn ≥ x) v P

(
ζ ≥ x− nEξ√

nd

)
= 1− Φ(v) as n→∞ (2.6)

uniformly in v ∈ [v1, v2] where −∞ < v1 ≤ v2 < ∞ are fixed numbers and Φ is

the statndard normal distribution function.

Convergence to stable laws.

If the expectation of the r.v. ξ is infinite or does not exist, then the first-order
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approximation for the sum Sn can only be found when the sum of the right and

left tails of the distribution of ξ, that is, the function

F (t) = P(ζ ≥ t) + P(ζ < −t), t > 0,

is regularly varying as t→∞; it can be represented as

F (t) = t−αL(t), (2.7)

where α ∈ (0, 1] and L(t) is a slowly varying function(s.v.f) as t→∞. The same

can be said about the second-approximation for Sn in the case when E|ξ| < ∞

but Eξ2 =∞. In this case, we have α ∈ [1, 2] in (2.7).

For these two cases, we have the following assertion. For simplicity, assume

that α < 2, α 6= 1; we also assume that Eξ = 0 when expectation is finite. We

exclude α = 1 to avoid the necessity of non-trivial centring of sums Sn when

Eξ = ±∞ or expectations does exist.

Let F+(t) = P(ξ ≥ t), let (2.7) hold and let there exist the limit

lim
t→∞

F+(t)

F (t)
= ρ+ ∈ [0, 1]

Denote by

F−1(x) = inf{t > 0 : F (t) ≤ x}, x > 0,

the (generalized) inverse function for F , and put

b(n) = F−1

(
1

n

)
= n

1
αL1(n),

where L1 is also and s.v.f. Then, as n→∞,
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Sn
b(n)

⇒ ζ(α,ρ) ∈ Fα,ρ, (2.8)

where Fα,ρ is the standard stable law with parameters α and ρ = 2ρ+ − 1.

We now state some useful general properties of s.v.f(r.v.f). The proof of these

properties and related theorems can be found on [29].

Theorem 2.2.1 (Uniform convergence theorem). If L(t) is an s.v.f as t → ∞,

then the convergence of (2.1) holds uniformly in v on any interval [v1, v2] with

0 < v1 < v2 <∞.

It follows from the assertion of the theorem that the uniform convergence (2.1)

on an interval [ 1
M
,M ] will also take place in the case, when as t→∞, the quantity

M = M(t) increases to infinity slowly enough.

Theorem 2.2.2 (Integral Representation). A positive function L(t) is an s.v.f as

t→∞ iff for some t0 > 0 one has

L(t) = c(t)exp

(∫ t

t0

ε(u)

u
du

)
, t ≥ t0, (2.9)

where c(t) and ε(t) are measurable functions, with c(t)→ c ∈ R+ and ε(t)→ 0 as

t→∞.

2.3 Asymptotic properties

Theorem 2.3.1. i) If L1 and L2 are s.v.f’s then L1 + L2, L1L2, Lb1 and L(t) =

L1(at+ b), where a ≥ 0 and b ∈ R are also s.v.f’s.

ii) If L is an s.v.f then for any δ > 0 there exists a tδ > 0 such that

t−δ ≤ L(t) ≤ tδ for all t ≥ tδ, (2.10)

In other words, L(t) = to(1) as t→∞
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iii) If L is an s.v.f then for any δ > 0 and v0 > 1 there exists a tδ > 0 such that

for all v ≥ v0 and t ≥ tδ,

v−δ ≤ L(vt)

L(t)
≤ vδ, (2.11)

iv) (Karamata’s theorem) If α > 1 then, for the r.v.f V in (2.3), one has

V I(t) =

∫ ∞
t

V (u)du ∼ tV (t)

α− 1
as t→∞. (2.12)

If α < 1 then

VI(t) =

∫ t

0

V (u)du ∼ tV (t)

1− α
as t→∞. (2.13)

If α = 1 then one has the equalities

VI(t) = tV (t)L1(t). (2.14)

and

V I(t) = tV (t)L2(t) if

∫ ∞
0

V (u)du <∞, (2.15)

where the Li(t)→∞ as t→∞, i = 1, 2 are s.v.f’s.

v) For an r.v.f V of index −α < 0 put

σ(t) = V −1(1/t) = inf{u : V (u) < 1/t}

then σ(t) is an r.v.f of index 1/α:

σ(t) = t1/αL1(t),

where L1 is an s.v.f. If the function L has property

L(tL1/α(t)) ∼ L(t),
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as t→∞ then

L1(t) ∼ L1/α
(
t1/α
)
.

Similar assertion hold for functions that are slowly or regularly varying as t ↓ 0.

Observe that Theorem 1.1 and the inequality (2.11) we also obtain the following

property of s.v.f’s: for any δ > 0 there exists a tδ > 0 such that for all t and v

satisfying the inequalities t ≥ tδ, vt ≥ tδ one has

(1− δ)min{vδ, v−δ} ≤ L(vt)

L(t)
≤ (1 + δ)max{vδ, v−δ}, (2.16)

2.4 The convergence of distribution of sums of random vari-

ables with regularly varying tails to stable laws.

As is known, in case Eξ2 < ∞ one has the central limit theorem, which states

that the distribution of the norrmalized sums Sn =
∑n

i=1 ξi of independent r.v’s

ξi = ξconverge to the normal law as n→∞.

If Eξ2 =∞ then the situation noticeably changes. In this case, the convergence

of the distribution of appropriately normalized sums Sn to a limiting law will only

take place for r.v’s with regularly varying distribution tails.

From the proof of central limit theorem by the method of characteristic func-

tions (ch.f.), it is seen that the nature of the limiting distribution for Sn is defined

the behaviour of the ch.f.

f(λ) = Eeiλξ, λ ∈ R

of ξ in the vicinity of zero. If Eξ2 = 0 and Eξ2 = d <∞ then,as n→∞,

f

(
µ√
n

)
= 1 +

f ′(0)µ√
n

+
f ′′(0)µ2

2n
+ o

(
1

n

)
= 1− dµ2

2n
+ o

(
1

n

)
, (2.17)
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It is the relation that defines the asymptotic behaviour of the ch.f. fn
(

µ√
n

)
of Sn√

n
,

which leads to the limiting normal law. In case Eξ2 =∞ (so that f ′′(0) does not

exist) we will use the same method, but, in order to obtain the ’right’ asymptotic

of f
(

µ
b(n)

)
under a suitable scaling b(n), we will have to impose regular variation

conditions on the ’two-sided’ tails

F (t) = F((−∞,−t)) + F([t,∞)) = P(ξ /∈ [−t, t)), t > 0.

As before, the functions

F+(t) = F([t,∞)) = P(ξ ≥ t), F−(t) = F((−∞,−t)) = P(ξ < −t)

will be referred to as the right and the left tails of the distribution of ξ,respectively.

Assume that the following condition holds for some α ∈ (0, 2] and ρ ∈ [−1, 1] :

[Rα,ρ] The two-sided tail F (t) = F−(t) + F+(t) is an r.v.f. at infinity, i.e. it

has representation of the form

F (t) = t−αLF (t), α ∈ (0, 2], (2.18)

where LF (t) is an s.v.f; in addition there exists the limit

lim
t→∞

F+(t)

F (t)
= ρ+ =

1

2
(ρ+ 1) ∈ [0, 1]. (2.19)

If ρ+ > 0 then clearly the right tail F+(t) admits a representation of the form

F+(t) = V (t) = t−αL(t), α ∈ (0, 2], L(t) ∼ ρ+LF (t)

If ρ+ = 0 then the right tail F+(t) = o(F (t)) need not be regularly.
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It follows from (2.19) that there also exists the limit

lim
t→∞

F+(t)

F (t)
= ρ− = 1− ρ+.

If ρ>0 the similarly, the left tail F−(t) admits a representation of the form

F−(t) = W (t) = t−αLW (t), α ∈ (0, 2], LW (t) ∼ ρ−LF (t)

If ρ− = 0 then the left tail F−(t) = o(F (t)) is not assumed to be regularly varying.

The parameters ρ± are connected to the parameters ρ from conditions [Rα,ρ]

by the relations

ρ = ρ+ − ρ− = 2ρ+ − 1.

Evidently, for ρ < 2 one has Eξ2 =∞, so that the representation (2.17) ceases

to hold,and the central limit theorem is inapplicable. In what follows in situation

where Eξ exists and is finite we will always assume, without loss of generality

that,

Eξ = 0.

Since F (t) in non-increasing, the (generalized) inverse function F−1(u), understood

as

F−1(u) = inf{t > 0 : F (t) < u},

always exists. If F (t) is strictly monotone and continuous then b = F−1(u) is the

unique solution of the equation

F (b) = u, u ∈ (0, 1).

Put

ζn =
Sn
b(n)

,
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where the scaling factor b(n) is defined in the case α < 2 by

b(n) = F−1

(
1

n

)
(2.20)

It is obvious that in the case ρ+ > 0 the scaling factor b(n) is connected to the

function σ(n) = V −1(1/n).

For α = 2 we put

b(n) = Y −1(1/n), (2.21)

where

Y (t) = 2t−2

∫ t

0

yF (y)dy

= 2t−2

(∫ t

0

yV (y)dy +

∫ t

0

yW (y)dy

)
∼ t−2E[ξ2;−t ≤ ξ ≤] = t−2LY (t) (2.22)

and LY is and s.v.f(See Theorem 2.3.1 iv)). From Theorem 2.3.1 v) it follows

also that if (2.18) holds then

b(n) = n1/αLb(n), α ≤ 2,

where Lb is an s.v.f.

Theorem 2.4.1. Let condition [Rα,ρ] be satisfied. Then the following assertions

hold true.

i) For α ∈ (0, 2), α 6= 1, and the scaling factor (2.20), we have

ζn ⇒ ζ(α,ρ) as n→∞

where the distribution [Fα,ρ] of all r.v. ζ(α,ρ) depends only on the parameters α
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and ρ and has a ch.f. f (α,ρ)(λ) given by

f (α,ρ)(λ) = Eeiλζ
(α,ρ)

= exp{|λ|αB(α, ρ, φ)}

where φ = signλ,

B(α, ρ, φ) = Γ(1− α)
(
iρφ sin

απ

2
− cos

απ

2

)

and for α ∈ (1, 2) we put Γ(1− α) = Γ(2−α)
1−α .

ii) When α = 1, for the sequence ζn with scaling factor (2.20) to converge to a

limiting law the former, generally speeking, needs to be centered. More precisely,

we have

ζn − An ⇒ ζ(1,ρ) as n→∞,

where

An =
n

b(n)
[VI(b(n))−WI(b(n))]− ρC,

C ≈ 0.5772 is the Euler constant and

f (1,ρ)(λ) = Eeiλζ
(α,ρ)

= exp

(
−π|λ|

2
− iρλ ln |λ|

)
.

If n[VI(b(n))−WI(b(n))] = o(b(n)), then ρ = 0 and one can put An = 0.

If Eξ = 0, then

An =
n

b(n)
[V I(b(n))−W I(b(n))]− ρC.

If Eξ = 0, ρ 6= 0, then ρAn → −∞ as n→∞.

iii) For α = 2 and scaling factor (2.21),

ζn ⇒ ζ(2,ρ) = ζ as n→∞, f (2,ρ)(λ) = Eeiλζ = e−λ
2/2,
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so that ζ has the standard normal distribution that is independent of ρ.

Remark 1

We can easily verify that in extreme cases ρ = ±1 the ch.f’s B(α, ρ, φ), f (1,ρ)(λ)

(defined above) of stable distributions with α < 2 admit the following simpler

representations:

f (1,ρ)(λ) = exp{−Γ(1− α)(−iλ)α}, α ∈ (0, 2), α 6= 1,

f (1,1)(λ) = exp{(−iλ) ln(−iλ)}; f (α,−1)(λ) = f (α,1)(−λ), α ≤ 2.

Remark 2

From representation of An (above) for the centring sequence {An} in the α = 1

it follows that if there exists Eξ = 0 then the boundedness of the sequence implies

that ρ = 0. The converse assertion, that in case Eξ = 0 the relation ρ = 0 implies

the boundedness of {An}, is false.

Indeed, let ξ be an r.v. with Eξ = 0 such that for t ≥ t0 > 0 one has

V (t) =
1

2t ln2 t
, W (t) = V (t)

[
1 +

1

L2(t)

]
, L2(t) = ln ln t.

Then ρ = 0, F (t) ∼ t−1 ln−2 t, b(n) ∼ n ln−2 n and

V I(t) =
1

2 ln t
, W I(t) = V I(t) +

1 + o(1)

L2(t) ln(t)
,

so that

W I(t)− V I(t) ∼ 1

L2(t) ln t
.

Therefore

An =
(1 + o(t)) ln2 n

L2(b(n)) ln b(n)
− ρC ∼ lnn

ln lnn
→∞ as n→∞.
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Remark 3

If α < 2 then from the properties of s.v.f (Theorem (2.3.1) iv) we have that,

as n→∞,

∫ t

0

yF (y)dy =

∫ t

0

y1−αLF (y)dy ∼ 1

2− α
t2−αLF (t) =

1

2− α
t2F (t).

Hence for α < 2 one has Y (t) ∼ 2(2− α)−1F (x),

Y −1

(
1

n

)
∼ F−1

(
2− α

2n

)
∼
(

2

2− α

)1/α

F−1

(
1

n

)

However, when α = 2 and d = Eξ <∞, we have

Y (t) ∼ t−2d, b(n) = Y −1

(
1

n

)
∼
√
nd.

Thus, scaling (2.21) is ’transitional’ between the scaling of (2.20) (up to the con-

stant factor 2/(2−α)1/α) and the standard scaling
√
nd in the central limit theorem

in the case Eξ2 < ∞. This also means that the scaling (2.21) is ’universal’ and

can be used for all α ≤ 2. However, for α < 2 the scaling (2.20) is simpler and

easier to deal with, and this why it will be used the present exposition.

The proof of Theorem (2.4.1) essentially uses the form of the scaling sequence

b(n) and thereby helps to establish direct connection between the zones of ’normal’

distribution and large deviations. This proof can be found in [29].

Recall that Fα,ρ denotes the distribution of ζ(α,ρ). The parameter α assumes

values from the half-interval (0, 2] and the parameter ρ = ρ+−ρ− can assume any

value from the closed interval [−1, 1].

It follows from Theorem (2.4.1)that each Fα,ρ, 0 < α ≤ 2, −1 ≤ ρ ≤ 1

is limiting for distributions of suitably normalized sums of i.i.d. r.v’s. The law

of large numbers implies the the degenerate distribution Ia concentrated at some
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point a is also a limiting one. The totality of all these distributions will be denoted

by Go. Further, it is not hard to see that F ∈ Go then the distribution obtained

from F by scale and shift transformation, that is a distribution F{a,b} given, for

some fixed b > 0 and a, by the relation

F{a,b}(B) = F

(
B − a
b

)
, where

(
B − a
b

)
= {u ∈ R : ub+ a ∈ B},

is also limiting(for the distribution of (Sn − an)/bn as n→∞, with suitable {an}

and {bn}).

Let ξ, ξ1, ξ2, ... be independent identically distributed (i.i.d) random variables.

Put S0 = 0 and

Sn =
n∑
i=1

ξi, n = 1, 2, ...

The following assertions constitute the fundamental classical limit theorems for

random walks,Sn;n ≥ 1.



Chapter 3. Infinitesimal Matrix

3.1 Markov Processes with a finite state Space

3.1.1 Markov Chains

Let Ω be the space of sequences (ω0, ..., ωn), where ωk ∈ X = {x1, ..., xr}, 0 ≤

k ≤ n. Without loss of generality, we may identify X with the set of the first r

integers, X = {1, ..., r}.

Let P be a probability measure on Ω. Sometimes we shall denote by ωk the

random variable which assigns the value of the kth element to the sequence ω =

(ω0, ..., ωn). It is usually clear from the context whether ωk stands for such a

random variable or simply the kth element of a particular sequence. We shall

denote the probability of the sequence (ω0, ..., ωn) by p(ω0, ..., ωn). Thus

p(i0, ..., in) = P (ω0 = i0, ..., ωn = in).

Assume that we are given a probability distribution µ = (µ1, ..., µr) on X and

a stochastic matrices P (1), ..., P (n) with P (k) = (pij(k)).

Definition 3.1.1. The Markov chain with the state space X generated by the initial

distribution µ on X and the stochastic matrices P (1), ..., P (n) is the probability

measure P on Ω such that

P (ω0 = i0, ..., ωn = in) = µi0 .pi0i1(1)...pin−1in(n) (3.1)

for each i0, ..., in ∈ X.

The elements of X are called the states of the Markov chain. Let us check that

(3.1) defines a probability measure on Ω. The inequality P (ω0 = i0, ..., ωn = in) ≥

23
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0 is clear. It remains to show that

r∑
i0=1

...

r∑
in=1

P (ω0 = i0, ..., ωn = in) = 1.

We have

r∑
i0=1

...

r∑
in=1

P (ω0 = i0, ..., ωn = in)

=
r∑

i0=1

...

r∑
in=1

µi0 .pi0i1(1)...pin−1in(n).

We now perform the summation over all values of in. Note that in is only present

in the last factor in each term of the sum, and the sum
∑r

in=1 pin−1in(n) is equal

to one, since the matrix P (n) is stochastic. We then fix i0, ..., in−2, and sum over

all the values of in−1, and so on. In the end we obtain
∑r

i0=1 µi0 , which is equal

to one, since µ is a probability distribution.

In the same way one can prove the following statement:

P (ω0 = i0, ..., ωn = ik) = µi0 .pi0i1(1)...pik−1ik(k)

for any 1 ≤ i0, ..., ik ≤ r, k ≤ n. This equality shows that the induced probability

distribution on the space of sequences of the form (ω0, ..., ωk) is also a Markov chain

generated by the initial distributionµ and the stochastic matrices P (1), ..., P (k).

The matrices P (k) are called the transition probability matrices, and the ma-

trix entry pij(k) is called the transition probability from the state i to the j at

time k. The use of the of these terms is justified by the following calculation.

Assuming that P (ω0 = i0, ..., ωk−2 = ik−2, ωk−1 = i) > 0. We consider the

conditional probability P (ωk = j|ω0 = i0, ..., ωk−2 = ik−2, ωk−1 = i). By definition
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of the measure P ,

P (ωk = j|ω0 = i0, ...,

ωk−2 = ik−2, ωk−1 = i)

=
P (ω0 = i0, ..., ωk−2 = ik−2, ωk−1 = i, ωk = j)

P (ω0 = i0, ..., ωk−2 = ik−2, ωk−1 = i)

=
µi0pi0i1(1)...pik−2i(k − 1).pij(k)

µi0pi0i1(1)...pik−2i(k − 1)

= pij(k).

The right-hand side here does not depend on i0, ..., ik−2. This property is some-

times used as a definition of a chain, It is also easy to see that P (ωk = j|ωk−1 =

i) = pij(k).

Definition 3.1.2. A Markov chain is said to be homogeneous if P (k) = P for a

matrix P which does not depend on, k, 1 ≤ k ≤ n.

The notion of a homogeneous Markov chain can be understood as a generaliza-

tion of the notion of a sequence of independent identical trials. Indeed, it all the

rows of the stochastic matrix P = (pij) are equally to (p1, ..., pr), where (p1, ..., pr)

is a probability distribution on X, then the Markov with such a matrix P and the

initial distribution (p1, ..., pr) is a sequence of independent identical trials.

In what follows we consider only homogeneous Markov Chains. Such chains can

be represented with the help of graphs. The vertices of the graph are the elements

of X. The vertices i and j are connected by an oriented edge if pij > 0. A sequence

of states (i0, i1, ..., in) which has a positive probability can be represented as a path

of length n on the graph starting at the point i0, then going to the point i1, and

so on. Therefore, homogeneous Markov chain can be represented as a probability

distribution on the space of paths of length n on the graph.

Let us consider the conditional probabilities P (ωs+l = j|ωl = i). It is assumed
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here that P (ωl = i) > 0. We claim that

P (ωs+l = j|ωl = i) = p
(s)
ij ,

where p
(s)
ij are elements of the matrix P s. Indeed,

P (ωs+l = j|ωl = i) =
P (ωs+l = j, ωl = i)

P (ωl = i)

=

∑r
i0=1 ...

∑r
il−1=1

∑r
il+1=1 ...

∑r
is+l−1=1 P (ω0 = i0, ..., ωl = i, ..., ωs+l = j)∑r

i0=1 ...
∑r

il−1=1 P (ω0 = i0, ..., ωl = i)

=

∑r
i0=1 ...

∑r
il−1=1

∑r
il+1=1 ...

∑r
is+l−1=1 µi0pi0i1 ...pil−1ipiil+1

...pis+l−1j∑r
i0=1 ...

∑r
il−1=1 µi0pi0i1 ...pil−1i

=

∑r
i0=1 ...

∑r
il−1=1 µi0pi0i1 ...pil−1i

∑r
il+1=1 ...

∑r
is+l−1=1 µi0pi0i1 ...pil−1ipiil+1

...pis+l−1j∑r
i0=1 ...

∑r
il−1=1 µi0pi0i1 ...pil−1i

r∑
il+1=1

...
r∑

is+l−1=1

piil+1
...pis+l−1j = p

(s)
ij

Thus the conditional probabilities p
(s)
ij = P (ωs+l = j|ωl = i) do not depend on l.

They are called s-step transition probabilities. A similar calculation shows that

for a homogeneous Markov chain with initial distribution µ,

P (ωs = j) = (µP s)j =
r∑
i=1

µip
(s)
ij . (3.2)

Note that by considering infinite stochastic matrices, Definition 3.1.2 and the

argument leading to (3.2) can be generalized to the case of Markov chains with a

countable number of states.

Definition 3.1.3. A stochastic matrix P is said to be ergodic if there exists s

such that the s-step transition probabilities p
(s)
ij are positive for all i and j. A

homogeneous Markov Chain is said to be ergodic if it can be generated by some

initial distribution and an ergodic stochastic matrix.
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3.1.2 Definition of a Markov Process

Here we define a homogeneous Markov process with values in a finite state space.

We can assume that the state space X is the set the first r positive integers, that

is X = {1, 2, ...r}.

Let P (t) be a family of r × r stochastic matrices indexed by the parameter

t ∈ [0,∞). The element of P (t) will be denoted by Pij(t), 1 ≤ i, j ≤ r. We

assume that the family P (t) forms a semi-group, that is P (s)P (t) = P (s + t) for

any s, t ≥ 0. Since P (t) are stochastic matrices, the semi-group property implies

P (0) is the identity matrix. Let µ be a distribution X.

Let Ω̃ be the set of all functions ω̃ : R+ → X and B be the σ−algebra generated

by all cylindrical sets. Define a family of finite-dimensional distributions Pto,t1,...,tk .

where 0 = to ≤ t1 ≤ ... ≤ tk, as follows

Pto,t1,...,tk(ω̃(t0) = i0, ω̃(t1) = i1, ..., ω̃(tk) = ik)

= µi0Pi0i1(t1)Pi1i2(t2 − t1)...Pik−1ik(tk − tk−1).

It can easily be seen that this family of finite-dimensional distribution satisfies

the consistency conditions. By the Kolmogorov Consistency Theorem, there is

a process Xt with values in X with these finite-dimensional distribution. Any

such process will be called a homogeneous Markov process with the family of

transition matrices P (t) and the initial distribution µ. (Since we donot consider

non-homogeneous Markov process in this section, we shall refer to Xt simply as a

Markov process.)

Lemma 1. Let Xt be a Markov process with the family of transition matrices P (t).

Then, for 0 ≤ s1 ≤ ... ≤ sk, t ≥ 0, and i1, i2, ...ik, j ∈ X, we have

P (Xsk+t = j|Xs1 = i1, ..., Xsk = ik) = P (Xsk+t = j|Xsk = ik) = Pikj(t) (3.3)



28

if the conditional probability on the left-hand side is defined.

Proof. Assume P (Xs1 = i1, ..., Xsk = ik) > 0. The conditional probability

P (Xsk+t = j|Xs1 = i1, ..., Xsk = ik)

=
P (Xs1 = i1, ..., Xsk−1

= ik−1, Xsk = ik, Xsk+t = j)

P (Xs1 = i1, ..., Xsk−1
= ik−1, Xsk = ik)

=
µi1Pi1i2(2)...Pik−1ik(k − 1)Pikj(t)

µi1Pi1i2(2)...Pik−1ik(k − 1)

= Pikj(t)

Definition 3.1.4. A distribution π is said to be stationary for a semi-group of

Markov transition matrices P (t) if πP (t) = π for all t ≥ 0.

Theorem 3.1.1. Let P (t) be a semi-group of Markow Transition matrices such

that for some t all the matrix entries of P (t) are positive. Then there is a unique

stationary distribution π for the semi-group of transition matrices. Moreover,

supi,j∈X |Pi,j(t)− πj| converges to zero exponentially fast as t ∈ ∞.

Proof. For the sake of transparency we’ll prove the theorem in the case of discrete

time. Let µ′ = (µ′1, ..., µ
′
r), µ

′′ = (µ′′1, ..., µ
′′
r) be two probability distributions on the

space X. We set d(µ′, µ′′) = 1
2

∑r
i=1 |µ′i− µ′′i |. Then d can be viewed as a distance

on the space of probability distribution on X, and the space of distributions with

this distance is a complete metric space. We note that

0 =
r∑
i=1

µ′i −
r∑
i=1

µ′′i =
r∑
i=1

(µ′i − µ′′i ) =
+∑

(µ′i − µ′′i )−
+∑

(µ′′i − µ′i),

where
∑+ denotes the summation with respect to those indices i for which the
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terms are positive. Therefore,

d(µ′, µ′′) =
1

2

r∑
i=1

|µ′1 − µ′′i | =
1

2

+∑
(µ′1 − µ′′i ) +

1

2

+∑
(µ′′i − µ′i) =

+∑
(µ′1 − µ′′i ).

It is clear that d(µ′, µ′′) ≤ 1.

Let µ′ and µ′′ be two probability distributions on X and Q = (qij) a stochastic

matrix. This implies µ′Q and µ′′Q are also probability distributions. Let us

demonstrate that

d(µ′Q, µ′′Q) ≤ d(µ′, µ′′), (3.4)

for all qij ≥ α, then

d(µ′Q, µ′′Q) ≤ (1− α)d(µ′, µ′′). (3.5)

Let J be the set of indices j for which (µ′Q)j − (µ′′Q)j > 0. Then

d(µ′Q, µ′′Q) =
∑
j∈J

(µ′Q− µ′′Q)j =
∑
j∈J

r∑
i=1

(µ′ − µ′′)qij

≤
+∑
i

(µ′ − µ′′)
∑
j∈J

qij ≤
+∑
i

(µ′ − µ′′) = d(µ′, µ′′),

which proves (3.4). We now note that J can not contain all indices of j since

both µ′Q and µ′′Q are probability distributions. Therefore, at least one index j is

missing in the sum
∑

j∈J qij. Thus, if all qij > α, then
∑

j∈J qij < 1− α for all i,

and

d(µ′Q, µ′′Q) ≤ (1− α)
+∑
i

(µ′i − µ′′i ) = (1− α)d(µ′, µ′′),

which implies (3.5).

Let µ0 be an arbitrary probability distribution on X and µn = µ0P
n. We shall

show that the sequence of probability distribution µn is a Cauchy sequence, that
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is for ε > 0 there exists n0(ε) such that for any k ≥ 0 we kave d(µn, µn+k) < ε for

n0(ε).By (3.4) and (3.5),

d(µn, µn+k) = d(µ0P
n, µ0P

n+k) ≤ (1− α)d(µ0P
n−s, µ0P

n+k−s) ≤ ...

≤ (1− α)md(µ0P
n−ms, µ0P

n+k−ms) ≤ (1− α)m,

where m is such that 0 ≤ n−ms < s. For sufficiently large n we have (1−α)m < ε,

which implies that µn is a cauchy sequence.

Let π = limn→∞ µn. Then

πP = lim
n→∞

µnP = lim
n→∞

(µ0P
n)P = lim

n→∞
(µ0P

n+1) = π

We now show that the distribution π, such that πP = π, is unique. Let π1 and

π2 be two distributions with π1 = π1P and π2 = π2P . Then π1 = π1P
s and

π2 = π2P
s. Therefore, d(π1, π2) = d(π1P

s, π2P
s) ≤ (1 − α)d(π1, π2) by (3.4). If

follows that d(π1, π2) = 0, that is π1 = π2.

We have proved that for any initial distribution µ0 the limit

lim
n→∞

µ0P
n = π

exists and does not depend on the choice of µ0. Let us take µ0 to be probability

distribution which is concentrated at the point i. Then, for i fixed, µ0P
n is the

probability distribution
(
p

(n)
ij

)
. Therefore, limn→∞ p

(n)
ij = πj. It is easy to show

that πj > 0 for 1 ≤ j ≤ r.

We now consider semi-groups of Markov transition matrices which are differ-
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entiable at zero. Namely, assume that there exists the following limits

Qi,j = lim
t↓o

Pij(t)− Iij
t

, 1 ≤ i, j ≤ r (3.6)

where I is the identity matrix.

Definition 3.1.5. If the limits in (3.6) exist for all 1 ≤ i, j ≤ r, then the matrix Q

is called the infinitesimal matrix of the semi-group P (t).

Since Pij(t) ≥ 0 and Iij = 0 for i 6= j, the off-diagonal elements of Q are

non-negative. Moreover,

r∑
j=1

Qij =
r∑
j=1

lim
t↓0

Pij(t)− Iij
t

= lim
t↓0

∑r
j=1 Pij(t)− 1

t
= 0

or equivalently,

Qij = −
∑
i 6=j

Qij.

Lemma 2. If the limits in (3.6) exist, then the transition matrices are differentiable

for t ∈ R+ and satisfy the following system of ordinary differential equations.

dP (t)

dt
= P (t)Q (forward system).

dP (t)

dt
= QP (t) (backward system).

The derivative at t = 0 should be understood as one-sided derivatives.

Proof. Due to the semi-group property of P (t)

lim
h↓0

P (t+ h)− P (t)

h
= P (t) lim

h↓0

P (h)− I
h

= P (t)Q (3.7)

This shows, in particular, that P (t) is right-differentiable. Let us prove that P (t)
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is left-continuous. For t > 0 and 0 ≤ h < t,

P (t)− P (t− h) = P (t− h)(P (h)− I).

All the elements of P (t− h) are bounded, while all elements of (P (h)− I)→ 0 as

h ↓ 0. This establishes the continuity of P (t).

For t > 0,

lim
h↓0

P (t)− P (t− h)

h
= lim

h↓0
P (t− h) lim

h↓0

P (h)− I
h

= P (t)Q (3.8)

combining (3.7) and (3.8), we obtain the forward system of equations.

Due to the semi-group property of P (t), for t ≥ 0,

lim
h↓0

P (t+ h)− P (t)

h
= P (t) lim

h↓0

P (h)− I
h

= P (t)Q

and similarly, for t > 0

lim
h↓0

P (t)− P (t− h)

h
= lim

h↓0
P (t− h) lim

h↓0

P (h)− I
h

= P (t)Q

This justifies the backward systems of equations.

The systems dP (t)
dt

= P (t)Q with initial conditions P0 = I has the unique

solution P (t) = etQ. Thus, the transition matrices can be uniquely expressed in

terms of the infinitesimal matrix.

Let us note another property of the infinitesimal matrix. If π is a stationary

distribution for the semi-group of transition matrices, then

πQ = lim
t↓0

πP (t)− π
t

= 0.
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Conversely, if πQ = 0 for some distribution π, then

πP (t) = πetQ = π(I + tQ+
t2Q2

2!
+
t3Q3

3!
+ ...) = π

Thus, π is a stationary distribution for the family P (t).

3.1.3 Construction of a Markov Process

Let µ ba a probability distribution on X and P (t) be differentiable semi-group of

transition matrices with the infinitesimal matrix Q. Assuming that Qii < 0 for all

i.

On an intuitive level, a Markov process with the family of transition matrices

P (t) and initial distribution µ can be discribed as follows. At time t = 0 the

process is distributed according to µ. If at time t the process is in a state i, then

it will remain in the same state for time τ , where τ is a random variable with

exponential distribution. The parameter of the distribution depends on i, but

does not depend on t. After time τ the process goes to another state, where it

remains for exponential time, and so on. The transition probability depends on i,

but not on the moment of time t.

Now let us justify the above description and relate the transition times and

transition probabilities to the infinitesimal matrix. Let Q be an r× r matrix with

Qii < 0 for all i. Assume that there are random variables ξ, τni ,1 ≤ i ≤ r, n ∈ N,

and ηni , 1 ≤ i ≤ r, n ∈ N, defined on a common probability space, with the

following properties:

1. The random variable η takes values in X and has distribution µ.

2. For any 1 ≤ i ≤ r, the random variable τni , n ∈ N, are identically distributed

according to the exponential distribution with parameter ri = −Qii.

3. For any 1 ≤ i ≤ r, the random variable ηni , n ∈ N, takes values in X{i} and

are identically distributed with P (ηni = j) = −Qij/Qii for j 6= i.
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4. The random variable ξ, τni , ηni ,1 ≤ i ≤ r,n ∈ N, are independent.

We inductively define two sequences of random variables: σn, n ≥ 0, with

values in R+, and ηn, n ≥ 0, with values in X. Let σ0 = 0 and ξ0 = ξ. Assume

that σm and ξm have been defined for all m < n, where n ≥ 1, and set

σn = σn−1 + τnξn−1 .

ξn = ηnξn−1 .

We shall treat σn as the time till the nth transition takes place, and ξn as the nth

state visited by the process. Thus, define

Xt = ξn for σn ≤ t < σn+1 (3.9)

Lemma 3. Assume that the random variable ξ, τni , 1 ≤ i ≤ r,n ∈ N, and ηni , 1 ≤

i ≤ r,n ∈ N, are defined on a common probability space and satisfy assumptions

1 − 4 above. Then the process Xt defined by (3.9) is a Markov process with the

family of transition matrices P (t) = πetQ and initial distribution µ.

Proof. It is clear from (3.9) that the initial distribution of Xt is µ. Using properties

τni and ηni it is possible to show that, for k 6= j,

P (X0 = i,Xt = k,Xt+h = j) = P (X0 = i,Xt = k)(P (τ 1
k < h)P (ξ1

k = j) + o(h))

= P (X0 = i,Xt = k)(Qkjh+ o(h)) as h ↓ 0.

In other words, the main distribution to the probability on the left-hand side

comes from the event that there is exactly one transition between the states k and

j during the time interval [t, t+ h).
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Similarly,

P (X0 = i,Xt = k,Xt+h = j) = P (X0 = i,Xt = k)(P (τ 1
k ≥ h)P (ξ1

k = j) + o(h))

= P (X0 = i,Xt = j)(1 +Qjjh+ o(h)) as h ↓ 0,

that is, the main contribution to the probability on the left-hand side comes from

the event that there are no transitions during the time interval [t, t+ h].

Therefore,

r∑
k=1

P (X0 = i,Xt = k,Xt+h = j) = P (X0 = i,Xt = k)+

h

r∑
k=1

P (X0 = i,Xt = k)Qkj + o(h).

Let Rij = P (X0 = i,Xt = k). The last equality can be written as

Rij(t+ h) = Rij(t) + h
r∑

k=1

Rik(t)Qkj + o(h).

Using Matrix notation,

lim
h↓0

R(t+ h)−R(t)

h
= R(t)Q.

The existence of the left derivative is justified similarly. Therefore,

dP (t)

dt
= P (t)Q for t ≥ 0.

Note that Rij(0)=µi for i = j, and Rij(0) = 0 for i 6= j. These are the same

equation and initial condition that are satisfied by the matrix-valued function

µiPij(t). Therefore,

Rij = P (X0 = i,Xt = j) = µiPij(t). (3.10)
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In order to prove that Xt is a Markov process with the family of transition matrices

P (t), it is sufficient to demonstrate that

P (Xt0 = i0, Xt1 = i1, ..., Xtk = ik)

= µi0Pi0i1(t1)Pi1i2(t2 − t1)...Pik−1ik(tk − tk−1).

for 0 = t0 ≤ t1 ≤ ... ≤ tk. The case k = 1 has been covered by (3.10). The proof

for k > 1 is similar and is based on induction on k.

γ(i) =


λ if i = 0

λ+ iµ if 1 ≤ i ≤ n− 1,

iµ if i = n.

If the process is in the state i = 0, it can only make a transition to the state

i = 1, which corresponds to an arrival of a request. From a state 1 ≤ i ≤ n−1 the

process can make a transition either to state i − 1 or to state i + 1. The former

corresponds to completion of one i requests being serviced before the arrival of a

new request. Therefore the probability of transition from i to i− 1 is equal to the

probability that the smallest of the i exponential random variable with parameter

µ is less than an exponential random variable with parameter λ(all random variable

are independent). This probability is equal to iµ
iµ+λ

. Consequently, the transition

probability from i to i + 1 is equal to λ
iµ+λ

. Finally, if the process is in the state

n, it can only make a transition to the state n− 1.

Let the initial state of the process Xt be independent of the arrival times of the

requests and the times it takes to service the requests. Then the processXt satisfies

the assumptions of Lemma 3. The matrix Q is the (r + 1) × (r + 1) tri-diagonal

matrix with the vectors γ(i), 0 ≤ i ≤ r, on the diagonal, and u(i) := λ,0 ≤ i ≤ r

above the diagonal, and l(i) = iµ, 0 ≤ i ≤ r, below diagonal. By Lemma 3, the

process Xt is Markov with the family of transition matrix P (t) = etQ.
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It is not difficult to prove that all the entries of etQ are positive for some t, and

therefore Ergodic Theorem is applicable. Let us find the stationary distribution

for the family of transition matrices P (t). As noted in a previous section, a

distribution π is stationary for P (t) if and only if πQ = 0. It is easy to verify that

the solution of this linear system,subject to the conditions π(i) ≥ 0, 0 ≤ i ≤ r,

and
∑r

i=0 = 1, is

π(i) =
(λ/µ)i/i!∑r
j=0(λ/µ)j/j!

, 0 ≤ i ≤ r.



Chapter 4. Random Walk with Heavy tails

4.1 Transition Probability

Let Zd be the cubic lattice in Rd, d ≥ 1, equipped with l1 norm ||x||1 =
∑d

i=1 |xi|, x =

(x1, ..., xd) ∈ Zd. Each point x ∈ Zd has 2d nearest neighbours of x : x′ : ||x′−x|| =

1. The symmetric random walk x(t), t ≥ 0 is the Markov process with continu-

ous time and the generator κ4. Here

4Φ(x) =
∑

x′:||x′−x||1=1

(Φ(x′)− Φ(x))

and κ > 0 is a constant. It means that

P (x(t+ dt) = x|x(t) = x) = κdt,

and

P (x(t+ dt) = x′|x(t) = x) = 1− 2dκdt, where ||x′ − x|| = 1.

We call κ > 0 the diffusion coefficient or diffusivity. The random walk spends

in each site x ∈ Zd the exponentially distributed time τ with parameter 2dκ and

jumps at moment τ + 0 to one of the nearest neighbours x′ : ||x′ − x|| = 1 with

equal probability 1
2d

. The transition probability p(t, x, y) = P (x(t) = y|x(0) = x)

satisfies the heat equation


dp(t,x,y)

dt
= κ4xp(t, x, y) = κ4yp(t, x, y)

p(0, x, y) = δy(x)

(4.1)

The symmetric random walk is transient in dimensions d ≥ 3 and recurrent

38
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for d ≤ 2. In this section we consider the processes for which the transition rates

are non-local and have heavy tails.

Let’s define the operator

Lf(x) = k
∑
z 6=0

[f(x+ z)− f(x)]q(z)

q(z) = q(−z) > 0, (4.2)∑
z 6=0

q(z) = 1

It is clear that the generator of simple symmetric random walk is a particular case

of such an operator with

q(z) =


1
2d

if |z| = 1

0 otherwise.

We’ll however consider q which may be positive everywhere. The precise conditions

on q will be provided below;

Let p be the solution of dp
dt

= Lxp with initial condition p(0, x, y) = δy(x). As

discussed in section 3.1.3, we can define the Markov process with the generator L.

Its transition density is p(t, x, y) and the process satisfies

xt+dt =


xt with prob. 1− kdt,

xt + z with prob. kq(z)dt.

(4.3)

As discussed in section 3.1.2 this process spends an exponentially distributed time

in each state x before jumping to a new site x+ z with probability q(z).

Let us note again that the generator of the process is defined by (4.2). Indeed
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since

p(t, x, y) = Px(xt = y) = P (xt = y|x0 = x),

we have

p(t+ dt, x, y) = Px(xt+dt = y)

=
∑
z∈Zd

p(dt, x, x+ z)p(t, x+ z, y)

= p(dt, x, x)p(t, x, y) +
∑
z 6=0

p(dt, x, x+ z)p(t, x+ z, y)

= (1− kdt)p(t, x, y) +
∑
z 6=0

kq(z)p(t, x+ z, y)dt.

Hence

dp

dt
= −kp(t, x, y) +

∑
z 6=0

kq(z)p(t, x+ z, y) = Lxp.

This equation can be solved using the Fourier transform. Define

p̂(t, ϕ, y) =
∑
x∈Zd

p(t, x, y)ei(ϕ,x).

Then

dp̂

dt
= −φ(ϕ)p̂(t, ϕ, y), p̂(0, ϕ, y) = ei(ϕ,y), (4.4)

where

φ(ϕ) = k
∑
z∈Zd

(1− ei(ϕ,z))q(z), d ≥ 1.

Since q(z) = q(−z), the latter formula in 1-dimensional case can be re-written in

the form

φ(ϕ) = 2k
∞∑
z=1

(1− cos(ϕz))q(z) ≥ 0, d = 1. (4.5)

If d ≥ 1 is arbitrary, then it follows from (4.4) that

p̂(t, ϕ, y) = ei(ϕ,y)e−tφ(ϕ),
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and therefore

p(t, x, y) =
1

(2π)d

∫
[−π,π]d

ei(ϕ,(y−x))−tφ(ϕ) dϕ, d ≥ 1. (4.6)

We are now going to study asymptotic of p(t, x, y) for cases d = 1 and d > 1.

Since p depends on the difference x − y, we can put y = 0 and consider function

p(t, x) = p(t, x, 0).

4.2 Asymptotic approximation of transition probability in

the 1-Dimensional case

First of all note, that if q decays fast enough at infinity, so that
∑
q(z)z2 < ∞,

then φ is twice differentiable and φ(ϕ) ∼ κφ2, ϕ→ 0.

After that, one can apply stationary phase method and prove that

p(t, x− y) ∼ 1√
4πκt

e−
(x−y)2

4κt for |x− y| ≤ A
√
t, t→∞. (4.7)

We will assume below that q decays much slower (heavy tails):

q(z) ∼ q0

|z|1+α
, z →∞, 0 < α < 2. (4.8)

This section contains two parts. First, we establish an asymptotic behavior

of the function φ as ϕ → 0, and then, using the asymptotics of φ, we will find

behavior of p. We will determine the behavior of ϕ for a specific q first:

Lemma 4. Let q(z) = 1
|z|1+α . Then the following relation holds for function (4.5):

φ(ϕ) = 2k
∞∑
z=1

(1− cos(ϕz))q(z) ∼ c0|ϕ|α +O(|ϕ|γ), ϕ→ 0,

where γ = min{2, 1 + α}, c0 and a0 are constants.
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In order to prove this statement, we will need the following lemma:

Lemma 5. Let J(ϕ) =
∫∞

1
1−cosϕz
z1+α

dz.

Then

J(ϕ) = f(ϕ2) + c|ϕ|α,

where c is a constant and f(·) ∈ C∞.

Proof. If we let x = |ϕ|z, then

J : = |ϕ|α
∫ ∞
|ϕ|

1− cosx

x1+α
dx

= |ϕ|α


∫ 1

|ϕ|

1− cosx

x1+α
dx︸ ︷︷ ︸

I

+

∫ ∞
1

1− cosx

x1+α
dx︸ ︷︷ ︸

II

 .

Since the integrand in (II) is continuous within the domain of integration, and

therefore integrable, then
∫∞

1
1−cosx
x1+α

dx = c1. Evaluating (I) we obtain,

I : =

∫ 1

|ϕ|

1− cosx

x1+α
dx

=

∫ 1

|ϕ|

x2

2
− x4

24
+ ...

x1+α
dx+

∫ 1

|ϕ|

O(x2N)

x1+α
dx

= c2 + a0|ϕ|2−α + a1|ϕ|4−α + a2|ϕ|6−α + ...O(|ϕ|2N−α).

Thus

J = |ϕ|α
[∫ 1

|ϕ|

1− cosx

x1+α
dx+

∫ ∞
1

1− cosx

x1+α
dx

]
= |ϕ|α

[
c1 + a0|ϕ|2−α + a1|ϕ|4−α + a2|ϕ|6−α + ...O(|ϕ|2N−α) + c2

]
= c|ϕ|α + f(ϕ2),
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where

f(ϕ2) = a0ϕ
2 + a1ϕ

4 + ...+O(ϕ2N).

We now proceed to prove Lemma 4 using the results in Lemma 5.

Proof of Lemma 4. We have

Ψ(ϕ) :=
∞∑
n=1

1− eiϕn

n1+α

= k0 −
∑∞

n=1

∫ 1

0
eiϕ(n+τ)

n1+α dτ∫ 1

0
eiϕτ dτ

= k0 − g(ϕ)

∫ ∞
1

eiϕz

[z]1+α dz,

where g(ϕ) = iϕ
eiϕ−1

∈ C∞ when ϕ is small, and k0 =
∑∞

n=1
1

n1+α . Note that

limϕ→0 g(ϕ) = 1. Thus

Ψ(ϕ) =
∞∑
n=1

1− eiϕn

n1+α

= k1 + g(ϕ)

∫ ∞
1

1− eiϕz

[z]1+α dz. (4.9)

If z ∈ [n, n+ 1], i.e., z = n+ τ , for τ ∈ [0, 1], then (using the Taylor’s series)

1

[z]1+α
=

1

(n+ τ)1+α

=
1

n1+α
+

a0

n2+α
+

a1

n3+α
+ .... (4.10)

Similarly,

1

n1+α
=

1

(z − τ)1+α
=

1

z1+α
+

c0

z2+α
+

c1

z3+α
+ ... (4.11)
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Substituting (4.10) and (4.11) in (4.9) we have

Ψ(ϕ) = k1 + g(ϕ)

∫ ∞
1

(1− eiϕz)
[

1

z1+α
+

c0

z2+α
+ h(z)

]
dz,

(4.12)

where h(z) = O( 1
z3+α

) as z →∞. Obviously,

∫ ∞
1

(1− eiϕz)h(z) dz = O(ϕ2), ϕ→ 0,

since the integral converges after the integrand is differentiated twice. Hence

Ψ(ϕ) = k1 + g(ϕ)

∫ ∞
1

(1− eiϕz)
[

1

z1+α
+

c0

z2+α

]
dz +O(ϕ2), ϕ→ 0.

Note that Lemma 5 remains valid if the cosine function there is replaced by

the exponential function. However, the function f in this case will depend on ϕ,

not ϕ2. It also remains valid if z1+α is replaced by z2+α. Therefore,

Ψ(ϕ) = A1 + A2|ϕ|+ A3|ϕ|α +O(ϕ2), (4.13)

where Aj ∈ C are some constants. Since φ(ϕ) = Re 2kΨ(ϕ), the same relation

(4.13) is valid for φ(ϕ). It remains to note that φ(0) = 0, and that φ(ϕ) is an even

function. The latter two properties immediately imply the statement of Lemma

4.

Lemma 6. Let

q(z) =
q0

|z|1+α
+

q1

|z|2+α
+

q2

|z|3+α
+O(

1

|z|4+α
).
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Then the following relation holds for function (4.5):

φ(ϕ) = 2k
∞∑
z=1

(1− cos(ϕz))q(z) ∼ c0|ϕ|α +O(|ϕ|γ), ϕ→ 0,

where γ = min{2, α + 1}, c0 and a0 are constants.

Proof. Since φ depends on q linearly, one can prove the statement of Lemma 6

for each term of q separately. The validity of the statement of the Lemma for the

first three terms of q is proved in Lemma 4. If q = O( 1
|z|4+α ), one can differentiate

formula (4.5) three times, which shows that φ = O(ϕ3) as ϕ → 0. Thus the

statement of Lemma 6 is valid in this case also.

Now we will pass to the second part of this section. Namely, we will use the

asymptotic formula for φ in order to obtain the asymptotic behavior of p(t, x).

Without loss of generality, we can replace c0 in Lemma 6 by c0 = 1 (since one can

make the change of the variable c0t→ t) and write

p(t, x) =

∫ π

−π
eixϕ−tφ(ϕ) dϕ, (4.14)

where φ has the following properties:


If ϕ 6= 0, then φ(ϕ) ∈ C∞ and φ(ϕ) > 0,

φ(ϕ) = |ϕ|α +O(|ϕ|γ), γ = min{2, 1 + α}, ϕ→ 0,

φ is 2π - periodic.

Lemma 7. Let F (σ) =
∫∞
−∞ e

iσϕ−|ϕ|α dϕ.

Then F is analytic in σ and does not vanish

F (σ) ∼ C±
|σ|α+1

, σ → ±∞, C± 6= 0. (4.15)
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The proof of this lemma is on page 51.

Theorem 4.2.1. The following relation holds for the transition probability p(t, x) =

p(t, x, 0):

p(t, x) =
1

t
1
α

F

(
x

t
1
α

)
(1 + o(1)), as x2 + t2 →∞.

Proof. Let η(ϕ) ∈ C∞c , and η(ϕ) = 1 when |ϕ| < δ, δ > 0.

- ϕ

6

η(ϕ)

1

++
δ−δ

..

Let

p1(t, x) =

∫ π

−π
eixϕ−tφ(ϕ)(1− η(ϕ)) dϕ

=

∫ −δ
−π

eixϕ−tφ(ϕ)(1− η(ϕ)) dϕ+

∫ π

δ

eixϕ−tφ(ϕ)(1− η(ϕ)) dϕ. (4.16)

Estimating (4.16), we have

|p1(t, x)| ≤
∫ −δ
−π

e−tφ(ϕ) dϕ+

∫ π

δ

e−tφ(ϕ) dϕ ≤ 2πe−εt, (4.17)

where ε = minδ≤|ϕ|≤πφ(ϕ).

The latter estimate is not effective when t is bounded. We can integrate (4.16)

by parts to obtain a better estimate:

p1(t, x) = − 1

ix

∫ π

−π
eixϕ

(
(1− η)e−tφ(ϕ)

)′
dϕ,

which implies (similar to (4.17)) that

p1(t, x) ≤ C

|x|
e−εt.
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If we repeat the integration by parts N times, we will obtain that

|p1(t, x)| ≤ CN

(
1 + t

|x|

)N
e−εt ≤ AN

(
1

|x|

)N
e−εt/2.

By combining the latter formula with (4.17), we obtain

|p1(t, x)| ≤ DN

(
1

1 + |x|

)N
e−εt/2, x2 + t2 →∞. (4.18)

From Lemma 7 it follows that estimate (4.18) allows us to consider p1 as a part

of the remainder terms in the statement of Theorem 4.2.1.

Now we put

p(t, x) = p1(t, x) + p2(t, x), where p2(t, x) =

∫ π

−π
eixϕ−tφ(ϕ)η(ϕ) dϕ,

and we introduce p3, which is obtained from p2 by leaving only the main term of

the asymptotics of the function φ(ϕ) in the integral defining p2:

p3(t, x) =

∫ π

−π
eixϕ−t|ϕ|

α

η(ϕ) dϕ

=

∫ ∞
−∞

eixϕ−t|ϕ|
α

dϕ︸ ︷︷ ︸
I

−
∫ ∞
−∞

eixϕ−t|ϕ|
α

(1− η(ϕ)) dϕ︸ ︷︷ ︸
II

The first integral term of p3, I, can be expressed through F , which is defined in

Lemma 7, and the second term, II, can be evaluated similar to p1. Thus

p3(t, x) =
1

t
1
α

F

(
x

t
1
α

)
+O

[(
1

1 + |x|

)N
e−εt/2

]
, x2 + t2 →∞.

It remains to justify that |p2−p3| can be estimated in such a way that allows one

to consider it as a part of remainder terms in the statement of the Theorem 4.2.1.

This property of |p2−p3| will be proved if we show that the following two relations

hold:
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1) |p2 − p3| = o

(
t

|x|α+1

)
, when x2 + t2 →∞, |x|

t1/α
→∞, (4.19)

and 2) for any A <∞,

|p2 − p3| = o

(
1

t1/α

)
,

|x|
t1/α

< A. (4.20)

Indeed, assume that (4.20) and (4.19) are proved. From Lemma 7 it follows

that

1

t
1
α

F

(
x

t
1
α

)
∼ ct

|x|α+1
,
|x|
t1/α
→∞.

Let us fix an arbitrary ε > 0. From (4.19) it follows that there exists A0 = A0(ε)

such that

|p2 − p3| < ε
1

t
1
α

F

(
x

t
1
α

)
when

|x|
t1/α

> A0, x2 + t2 →∞. (4.21)

From (4.20) it follows that

|p2 − p3| < ε
1

t
1
α

when
|x|
t1/α
≤ A0, x2 + t2 →∞. (4.22)

Thus, (4.21) and (4.22) with the fact that F does not vanish imply that p2−p3 can

be included into the remainder term in the statement in Theorem 4.2.1. Hence, it

remains only to prove (4.19) and (4.20).

Let us prove (4.20). We have

p2(t, x) =

∫ ∞
−∞

eixϕ−t(|ϕ|
α+O(|ϕ|γ))η(ϕ) dϕ.

p3(t, x) =

∫ ∞
−∞

eixϕ−t|ϕ|
α

η(ϕ) dϕ.
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In p2, we use the substitution |ψ|α = |ϕ|α +O(|ϕ|γ), which implies

ϕ = f(ψ) = ψ +O(ψ2),

dϕ = f
′
(ψ) dψ = (1 +O(ψ)) dψ.

Thus

p2(t, x) =

∫ ∞
−∞

eixf(ψ)−t|ψ|αη(f(ψ))f
′
(ψ) dψ

=

∫ ∞
−∞

eixf(ψ)−t|ψ|αη(f(ψ))(1 +O(ψ)) dψ

=

∫ ∞
−∞

eix(ψ+O(ψ2))−t|ψ|αη(f(ψ))(1 +O(ψ)) dψ.

Hence

|p2(t, x)− p3(t, x)| ≤
∫ ∞
−∞

e−t|ψ|
α|eix(ψ+O(ψ2))η(f(ψ))(1 +O(ψ))− eixψη(ψ)| dψ

=

∫ ∞
−∞

e−t|ψ|
α|eixO(ψ2)η(f(ψ))(1 +O(ψ))− η(ψ)| dψ

=

∫ ∞
−∞

e−t|ψ|
α|(1 +O(xψ2))η(f(ψ))(1 +O(ψ))− η(ψ)| dψ

=

∫ ∞
−∞

e−t|ψ|
α|O(ψ) +O(xψ2)| dψ

≤ C

∫ ∞
−∞

ψe−t|ψ|
α

dψ + C1x

∫ ∞
−∞

ψ2e−t|ψ|
α

dψ

=
C2

t
2
α

+
C3x

t
3
α

, (4.23)

which implies (4.20).
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Let us prove (4.19). We have

p2(t, x) =

∫ ∞
−∞

eixϕ−t(|ϕ|
α+O(|ϕ|γ))η(ϕ) dϕ

=

∫ ∞
−∞

eixϕ(1− t(|ϕ|α +O(|ϕ|γ)) +O(t2|ϕ|2α))η(ϕ) dϕ.

p3(t, x) =

∫ ∞
−∞

eixϕ−t|ϕ|
α

η(ϕ) dϕ

=

∫ ∞
−∞

eixϕ(1− t|ϕ|α +O(t2|ϕ|2α))η(ϕ) dϕ.

Thus,

p2 − p3 =

∫ ∞
−∞

eixϕO(t|ϕ|γ + t2|ϕ|2α)η(ϕ) dϕ.

We assume that the asymptotic expansion of φ(ϕ) as ϕ→ 0 admits differenti-

ation. Then, using stationary phase method, we obtain

∫ ∞
−∞

eixϕO(|ϕ|γ)η(ϕ) dϕ ∼ c1

|x|γ+1
, |x| → ∞,

∫ ∞
−∞

eixϕO(|ϕ|2α)η(ϕ) dϕ ∼ c2

|x|2α+1
, |x| → ∞.

From the last three formulas it follows that

|p2 − p3| < C

(
t

|x|γ+1
+

t2

|x|2α+1

)
= C

t

|x|α+1

(
1

|x|γ−α
+

t

|x|α

)
, |x| → ∞.

This inequality implies (4.20) since |x| → ∞ when x2 +t2 →∞ and |x|
t1/α
→∞.

Proof of Lemma 7. We now determine the asymptotic estimate of

I(σ) =

∫ ∞
0

eiσϕ−ϕ
α

dϕ.
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We split I(σ) in two terms I1(σ) + I2(σ), where

I1(σ) =

∫ ∞
0

eiσϕ−ϕ
α

ψ(ϕ) dϕ, I2(σ) =

∫ ∞
0

eiσϕ(1− ψ(ϕ))e−ϕ
α

dϕ,

and ψ(ϕ) is defined by the following graph

- ϕ
δ
++

δ
2

6

ψ(ϕ)

1

Integrating I2(σ) by parts N times we have

I2(σ) =

∫ ∞
0

eiσϕ

(−iσ)n
[
(1− ψ(ϕ))e−ϕ

α](n)
dϕ = O(

C1

σn
). (4.24)

It remains to estimate I1(σ). In order to do this, we deform the contour [0, 2]

into contour C = C1∪C2 in the complex plane z = ϕ+iρ, where C1 is the segment

[0, ı] and C2 is an infinitely smooth contour in the first quadrant, which is given

by an equation ρ = f(ϕ). We assume that f(ϕ) ∈ C∞[0,∞), f(ϕ) ≥ 0, f(0) =

1, f(ϕ) = 0 for ϕ > 1. Thus contour C2 starts at z = i, comes to the point z = 1

and then goes to infinity along the real axis. Then

I1(σ) =

∫
C

eiσϕ−ϕ
α

ψ(ϕ) dϕ.

-R
c

6
I
1

c1

c2

We now estimate the integral along the path C1 and C2 respectively.
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∫
C1

eiσϕ−ϕ
α

ψ(ϕ) dϕ = i

∫ 1

0

e−σse−(is)α ds = i

∫ 1

0

e−σs

[
N∑
n=0

(−is)nα

n!
+ h(is)

]
ds,

where

h(is) = |e−(is)α −
N∑
n=0

(−is)nα

n!
| ∼ (s)(N+1)α, as s→ 0.

Thus, after integrating by parts N + 1 times, we will obtain that

i

∫ 1

0

e−σsh(is) ds ' i

∫ 1

0

e−σsO(s(N+1)α) ds = O(
1

σN+2
).

Standard Laplace method implies that

∫ 1

0

e−σssnα ds ∼ cn
σnα+1

, σ →∞, c0 = 1.

Hence ∫
C1

eiσϕ−ϕ
α

ψ(ϕ) dϕ =
i

σ
+

c1

σα+1
+O(

1

σ2α+1
).

The asymptotic integral of I1 along C2 is estimated by

∫
C2

eiσϕ−ϕ
α

ψ(ϕ) dϕ =

∫
C2

eiσz−z
α

ψ(z) dz

=
eiσzψ(z)e−z

α

iσ
|z=2
z=i −

1

iσ

∫
C2

eiσz(ψe−z
α

)
′
dz

= O(
1

σN+1
), after integrating by parts N times.

Hence

I(σ) = I1(σ) + I2(σ) =
i

σ
+

c1

σα+1
+O(

1

σ2α+1
).

It remains to note that F (σ) = I(σ) + I(σ).
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4.3 Asymptotic Approximation of the Transition Probabil-

ity in n-Dimension

We will find the asymptotics of the transition probability (4.6) in n-dimensional

case. In order to distinguish from the one dimensional case (studied in the previous

section) we will use another notation L for the symbol φ. Thus, p(t, x) has the

form

p(x, t) =

∫
(−π,π)d

ei(ϕ,x)−L(ϕ)t dϕ,



L > 0, for ϕ 6= 0

L is 2π − periodic

L ' |ϕ|αh(ϕ̇), ϕ→ 0,where ϕ̇ = ϕ
|ϕ|

0 < α < 2

We assume that L has an asymptotic behavior at zero similar to one that was

established in the one dimensional case. Namely, we assume that

L(ϕ) = |ϕ|αh(ϕ̇) +
M−1∑
i=1

|ϕ|α+ihi(ϕ̇) +O(|ϕ|α+M), ϕ→ 0,

for some large enough M . Here, ϕ̇ = ϕ
|ϕ| , h = h(ϕ̇) and hi are smooth functions

on the sphere. We wish to estimate p(x, t) asymptotically as |x|2 + t2 →∞.

Let

F

(
x

t
1
α

)
=

∫
Rd
e
i

(
ϕ, x

t
1
α

)
−|ϕ|αh(ϕ̇)

dϕ.
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Theorem 4.3.1. The following asymptotic expansions hold when |x|2 + t2 →∞:

a) p(x, t) =
1

t
d
α

F

(
x

t
1
α

)
+O

(
1

t
d
α

+1

)
,
|x|
t

1
α

≤ A,

where A is arbitrary

b) p(x, t) =
t

|x|d+α
f(ẋ) + o

(
t

|x|d+α

)
if
|x|
t

1
α

→∞

where the two regions in the domain of p(x, t) is described by the figure below

- |x|

6

t |x| = t1/α

PPi
|x|
t1/α

< A |x|
t1/α
→∞

and f(ẋ) is defined by h(ϕ̇) as follows:

∫
Rd
h(ϕ̇)|ϕ|αei(ϕ,y)dϕ = −|y|−d−αf(ẏ).

The integral here is understood in the sense of the Fourier transform in the space

of distributions.

c)
1

t
1
α

F

(
x

t
1
α

)
=

t

|x|d+α
f(ẋ) + o

(
t

|x|d+α

)
if
|x|
t

1
α

→∞.

If f(ẋ) 6= 0, then statements a) - c) can be written in the following form.

Define by B(ε) an ε-neighborhood of the set in Rd where F (z) = 0. Then

p(x, t) =
1

t
d
α

F

(
x

t
1
α

)
(1 + o(1)), |x|2 + t2 →∞, if

x

t
d
α

/∈ B(ε),

and

p(x, t) =
1

t
d
α

[
F

(
x

t
1
α

)
+ o(1)

]
, |x|2 + t2 →∞, if

x

t
d
α

∈ B(ε).



55

The next lemma provides the asymptotics for F (y) at infinity, which is equiv-

alent to the statement c) above.

Lemma 8. Let F (y) =
∫
Rd
ei(ϕ,y)−|ϕ|αh(ϕ̇) dϕ, where ϕ̇ = ϕ

|ϕ| . Then

F (y) = |y|−d−αf(ẏ) + o(|y|−d−α), |y| → ∞,

where ẏ = y
|y| and f(ẏ) is defined as follows:

∫
Rd
h(ϕ̇)|ϕ|αeiyϕdϕ = −|y|−d−αf(ẏ).

The integral here is understood in the sense of the Fourier transform in the space

of distributions.

Remark: Function f is defined by h.

Proof. Let ψ(ϕ) be defined by

- |ϕ|
2
++

1

6

ψ(ϕ)

1

Then

F1(y) =

∫
Rd
ei(ϕ,y)−|ϕ|αh(ϕ̇)(1− ψ(ϕ)) dϕ

= − 1

|y|2

∫
Rd

(
∆ei(ϕ,y)

)
e−|ϕ|

αh(ϕ̇)(1− ψ(ϕ)) dϕ

= − 1

|y|2

∫
Rd
ei(ϕ,y)∆

(
e−|ϕ|

αh(ϕ̇)(1− ψ(ϕ))
)

dϕ.
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|F1(y)| =
∣∣∣∣− 1

|y|2

∫
Rd
ei(ϕ,y)∆

(
e−|ϕ|

αh(ϕ̇)(1− ψ(ϕ))
)

dϕ

∣∣∣∣
≤ 1

|y|2

∫
Rd

∣∣∆ (e−|ϕ|αh(ϕ̇)(1− ψ(ϕ))
)∣∣ dϕ

=
C0

|y|2
.

We can repeat the integration by parts N times to obtain F1(y) ∼ CN
|y|2N . If

F2 = F − F1, then

F2(y) =

∫
|ϕ|<2

ei(ϕ,y)−|ϕ|αh(ϕ̇)ψ(ϕ) dϕ

=

∫
|ϕ|<2

ei(ϕ,y)

(
e−|ϕ|

αh(ϕ̇) −
M∑
j=1

(−|ϕ|αh(ϕ̇))j

j!

)
ψ(ϕ) dϕ+

∫
|ϕ|<2

ei(ϕ,y)

M∑
j=1

(−|ϕ|αh(ϕ̇))j

j!
ψ(ϕ) dϕ.

The first integrand can be made as smooth as we please if M is large enough.

Thus we can integrate by parts and prove that the first integral has order O
(

1
|y|N

)
if M = M(N) is large enough.

Hence,

F (y) =

∫
|ϕ|<2

ei(ϕ,y)

M∑
j=1

(−|ϕ|αh(ϕ̇))j

j!
ψ(ϕ) dϕ+O

(
1

|y|N

)
(4.25)

for |y| → ∞, M = M(N).

Denote by Φ the Fourier transform in the space of distributions S ′. Consider

Fs(y) =

∫
|ϕ|<2

ei(ϕ,y)|ϕ|sg(ϕ̇)ψ(ϕ) dϕ.

This function can be written as

Fs(y) = Φ(|ϕ|sg(ϕ̇))− Φ(|ϕ|sg(ϕ̇)(1− ψ(ϕ))). (4.26)
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The first term on the right is a homogeneous function of order −d − s, i.e.,

Φ(|ϕ|sg(ϕ̇)) = |y|−d−sq(ẏ). The second term can be written in the form

Φ(|ϕ|sg(ϕ̇)(1− ψ(ϕ))) =
1

(−|y|2)N
Φ
(
∆N
ϕ (|ϕ|sg(ϕ̇)(1− ψ(ϕ)))

)
.

If N > s+ d, then the function u = ∆N
ϕ (|ϕ|sg(ϕ̇)(1−ψ(ϕ))) is integrable, and

therefore |Φu| < cN . Thus the second term does not exceed cN
|y|2N . Hence

Fs(y) = |y|−d−sq(ẏ) +O

(
1

|y|2N

)
, |y| → ∞.

This and (4.25) proves the lemma.

We will obtain the following two lemmas before we start proving Theorem

4.3.1. We need to study

p(x, t) =

∫
(−π,π)d

ei(ϕ,x)−L(ϕ)t dϕ, |ϕ| → 0,

where L > 0 for |ϕ| 6= 0, L is 2π-periodic and

L(ϕ) = |ϕ|αh(ϕ̇) +
M−1∑
i=1

|ϕ|α+ihi(ϕ̇) +O(|ϕ|α+M), h > 0. (4.27)

Recall that Dk
ϕ = ∂|k|

∂ϕ
k1
1 ∂ϕ

k2
2 ...∂ϕ

kd
d

, |k| =
∑d

i=1 ki. The next statement is obvious.

Lemma 9. There is γ > 0 such that for ϕ ∈ (−π, π)d, and k ≤M ,

i). L > γ|ϕ|α,

ii). | 5 L| < c|ϕ|α−1,

iii). |Dk
ϕL| ≤ Ck|ϕ|α−|k|.
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Lemma 10.

∣∣Dk
ϕe
−L(ϕ)t

∣∣ ≤ ckt
|k|
α e−

γ
2
|ϕ|αt when t ≥ 1, |ϕ| ≥ 1

t
1
α

.

Proof. Applying Lemma 9 i)& ii), and the fact that xγe−x is bounded for x ≥ 1,

we have

∣∣∣∣ ∂∂ϕi e−L(ϕ)t

∣∣∣∣ =
∣∣Lϕite−L(ϕ)t

∣∣
≤ c|ϕ|α−1te−γ|ϕ|

αt

≤ ct1/αe−
γ
2
|ϕ|αtmax

[
(|ϕ|αt)

α−1
α e−

γ
2
|ϕ|αt

]
= c1t

1
α e−

γ
2
|ϕ|αt.

For the second derivative we’ll have

∣∣∣∣ ∂2

∂ϕi∂ϕj
e−L(ϕ)t

∣∣∣∣ ≤ ∣∣Lϕiϕj te−L(ϕ)t
∣∣+
∣∣LϕiLϕj t2e−L(ϕ)t

∣∣
≤ c2|ϕ|α−1te−γ|ϕ|

αt + c2t2|ϕ|2α−2e−γ|ϕ|
αt

= c2t
2
α e−

γ
2
|ϕ|αtmax|ϕ|αt≥1

[
(|ϕ|αt)

α−2
α e−

γ
2
|ϕ|αt

]
+ c2t

2
α e−

γ
2
|ϕ|αtmax|ϕ|αt≥1

[
(|ϕ|αt)

2α−2
α e−

γ
2
|ϕ|αt

]
≤ Ct

2
α e−

γ
2
|ϕ|αt.

Other higher order derivatives can be estimated similarly, and this completes

the proof of the lemma.

Proof of Theorem 4.3.1. Statement c) was established in Lemma 8. Statements

a) can be proved by the same arguments that were used to prove the similar

statement in the one dimensional case. We are going to prove b) now.
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Let us introduce functions

I2(x, t) =

∫
(−π,π)d

ei(ϕ,x)−L(ϕ)t(1− ψ(|ϕ|t
1
α )) dϕ

and

I3(x, t) =

∫
(
|ϕ|t

1
α

)
<2

ei(ϕ,x)−L(ϕ)tψ(|ϕ|t
1
α ) dϕ,

where the cut off function ψ is defined on page 55. Then p(t, x) = I2 + I3. We

will show that I2 has an estimate that allows us to consider it as a part of the

remainder terms in the statement b) of the theorem, and I3 has the asymptotics

that has to be proved in b) for p. Our next step is to prove the estimate on I2.

Lemma 11. For each N , the following estimate is valid:

I2(x, t) ≤ 1

t
d
α

CN

(
t

1
α

|x|

)N

.

Proof.

|I2(x, t)| ≤ c

∫
(−π,π)d

e−γ|ϕ|
αt dϕ ≤ c

∫
<d
e−γ|ϕ|

αt dϕ = c1
1

t
d
α

Further using Lemma 9, we obtain

|I2(x, t)| = 1

|x|2
|
∫

(−π,π)d

(
∆ei(ϕ,x)

)
e−L(ϕ)t

(
1− ψ(|ϕ|t

1
α ))
)

dϕ|

=
1

|x|2
|
∫

(−π,π)d
ei(ϕ,x)∆

(
e−L(ϕ)t(1− ψ(|ϕ|t

1
α ))
)

dϕ|

≤ Ct
2
α

|x|2

∫
(−π,π)d

e−γ|ϕ|
αt dϕ ≤ Ct

2
α

|x|2

∫
<d
e−γ|ϕ|

αt dϕ = c1
1

t
d
α

t
2
α

|x|2
. (4.28)

We can apply ∆ any number of times to prove the lemma.
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We represent

I3(x, t) =

∫
|ϕ|<2 1

t
1
α

ei(ϕ,x)−L(ϕ)tψ(|ϕ|t
1
α ) dϕ

in the form

I3(x, t) =

∫
|ϕ|<2 1

t
1
α

ei(ϕ,x)

(
e−L(ϕ)t −

J∑
j=0

(−L(ϕ)t)j

j!

)
ψ(|ϕ|t

1
α ) dϕ

+

∫
|ϕ|<2 1

t
1
α

ei(ϕ,x)

J∑
j=0

(−L(ϕ)t)j

j!
ψ(|ϕ|t

1
α ) dϕ. (4.29)

Function f =
(
e−L(ϕ)t −

∑J
j=0

(−L(ϕ)t)j

j!

)
ψ(|ϕ|t 1

α ) is smooth, and from Lemma

9 it follows that |Dk
ϕf | < ckt

|k|
α if |ϕ| < 2t−

1
α . Thus, each integration by parts of

the first integral term in (4.29) will provide the factor, which can be estimated by

t
1
α

|x| . We integrate by parts N times, and we choose J > J0(N) large enough. If

we also take into account that the domain of integration does not exceed Ct−d/α,

we will arrive to the following bound on the the first integral term in (4.29): this

term does not exceed

C1t
− d
α

(
t

1
α

|x|

)N

if J ≥ J0(N) is large enough.

Thus

I3(x, t) =

∫
|ϕ|<2t−

1
α

ei(ϕ,x)

J∑
j=0

(−L(ϕ)t)j

j!
ψ(|ϕ|t

1
α ) dϕ+

1

t
d
α

O

(
t

1
α

|x|

)N

.

We substitute here expression (4.27) for L with M >> 1 and add together

terms with the same powers of t and |ϕ|. This implies that

I3 =

∫
|ϕ|<2t−

1
α

ei(ϕ,x)

J∑
j=0

tj

(
l∑

s=0

|ϕ|αj+sqs,j(ϕ̇) +O
(
|ϕ|αj+l+1

))
ψ dϕ
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+
1

t
d
α

O

(
t

1
α

|x|

)N

. (4.30)

Here q0,0 = 1, q1,0 = −h(ϕ), l will be chosen later. By integrating by parts

[αj] + l + 1 times (where [αj] is the integer part) we get that

∣∣∣∣∫
|ϕ|<2t−

1
α

ei(ϕ,x)tjO(|ϕ|αj+l+1)ψ dϕ

∣∣∣∣ ≤ C
tj

|x|[αj]+l+1

∫
|ϕ|<2t−

1
α∣∣∣∑Dk1

ϕ O(|ϕ|αj)Dk2
ϕ ψ(|ϕ|t

1
α )
∣∣∣ dϕ,

where summation is taken over all k1, k2, |k1|+ |k2| = [αj] + l + 1.

Since Dk2
ϕ ψ(|ϕ|t 1

α ) ≤ ct
|k2|
α , the latter expression does not exceed

C
tj+

|k2|
α

|x|[αj]+l+1

∫
|ϕ|<2t−

1
α

|ϕ|αj+l+1−|k1| dϕ = C1
tj+

|k1|+|k2|
α

− [αj]+l+1+d
α

|x|[αj]+l+1

≤ C1

(
t

1
α

|x|

)[αj]+l+1

t−
l+2
α . (4.31)

We needed the integrability here, i.e. we needed αj + l + 1 − |k1| > −d, but

this is always true since αj − [αj] > −d. We’ll take l = d. Then (4.31) implies

that the remainder terms in (4.30) contribute o
(
t
1
α

|x|

)d+α
1

t
d
α

in I3.

Other terms in formula (4.30) for I3 can be reduced to the Fourier transform

Φ of homogeneous functions. The arguments similar to those used in the proof of

lemma 8, lead the following formula for these terms Fs,j:

Fs,j = tj−
d
α
−αj+s

α

(
t1/α

|x|

)d+αj+s

fs,j(ẋ) + tj−
d
α
−αj+s

α

(
t1/α

|x|

)N
,

where N is arbitrary large. The main contributions to I3 comes from s = 0, j = 1
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(since f0,0 = 0) and this gives

I3 =
1

t
d
α

(
t1/α

|x|

)d+α

f(ẋ) +
1

t
d
α

o

(
t1/α

|x|

)d+α

=
t

|x|d+α
f(ẋ) + o

(
t

|x|d+α

)

Since p(x, t) = I2 + I3 we now have the asymptotics of p(x, t) in the case b), and

this completes the proof of the theorem.



Chapter 5. conclusion

This thesis is concerned with the asymptotics behavior of the probability of

rare events related to large deviations of the trajectories of random walks, whose

jump distributions decay not too fast at infinity and possesses some form of ”reg-

ular behavior”. Typically we consider regularly varying distribution. The first

classical results in large deviation theory were obtained for the case of distribu-

tions decaying exponentially fast. However, this condition of fast (exponential)

decay fails in many applied problems. Consequently, we presented the asymptotic

approximation of the transition probability of random walks with heavy tails. We

examine the asymptotic probability in both the 1-dimension and n-dimensional

cases respectively.

The transition probability p(t, x, y) = P (x(t) = y|x(0) = x) satisfies the heat

equation (4.1). We obtained p(t, x, y) as an integral function (4.6) from (4.1) by

applying the Fourier transform. We used the asymptotic approximation of (4.5)

as a power series to establish the asymptotic behavior of p(t, x, y).

Random walks form a classical object of probability theory, the study of which

is of tremendous theoretical interest. They constitute a mathematical model of

great importance for applications in mathematical statistics. Computing large

deviation probabilities enables one to find, for example, small error probabilities

in mathematical statistics, small ruin probabilities in risk theory, small buffer

overflow probabilities in queueing theory and so on.
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