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ABSTRACT

HUSEYIN ERTURK. Limit theorems for random exponential sums and their
applications to insurance and random energy model. (Under the direction of DR.

STANISLAV MOLCHANOV)

In this dissertation, we are mainly concerned with the sum of random exponentials,

SN(t) =

N(t)∑
i=1

etXi . Here, t, N(t) → ∞ in appropriate form and {Xi, i ≥ 1} are i.i.d.

random variables. Our first goal is to find the limiting distributions of SN(t) for new

class of the random variables, {Xi, i ≥ 1}. For some classes, such results were known;

normal distribution, Weibull distribution etc.

Secondly, we apply these limit theorems to some insurance models and random

energy model (REM) in statistical physics. Specifically for the first case, we give the

estimate of the ruin probability in terms of the empirical data. For REM, we present

the analysis of the free energy for new class of distributions of the random variables,

Xi. In some particular cases, we prove the existence of several critical points for free

energy. In some other cases, we prove the absence of phase transitions.

The technical tool of this study includes the classical limit theory for the sum

of i.i.d. random variables and different asymptotic methods like Euler-Maclaurin

formula and Laplace method.
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CHAPTER 1: INTRODUCTION

1.1 A General Summary

The main object in this paper is the partial sum of exponentials of the form

SN(t) =

N(t)∑
i=1

etXi (1)

where the sequence,

{X1, X2, ..., XN(t)}, (2)

is composed of i.i.d. random variables. First, we analyze the limiting behavior of this

object for different growth rates of N(t) when the sequence (2) is double exponentially

distributed (8). In our analysis, we show that the random exponential sum converges

to normal distribution or stable distribution under appropriate additive and multi-

plicative factors of t. After this theoretical analysis, we explore applications of the

statistical sum in insurance mathematics and statistical physics.

1.2 Two Particular Applications

The first application of the partial sum of exponentials is from insurance mathemat-

ics. Consider a portfolio consisting of N policies with individual risks {X1, ...., XN}

over a given time period and assume that the nonnegative random variables

{X1, ...., XN} are i.i.d. Here the aggregate claim amount can be calculated as U =
N∑
i=1

Xi and the risk reserve process is given by R(s) = u+ βs−U where β is the pre-
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mium rate, s is time and and u is the initial reserve. One problem is to estimate the

Lundberg bounds which approximate the tail distribution of U , FU(x) = P (U > x).

This requires the solution of the Laplace equation,

m(γ) = E(γX) = p−1 (3)

where p is a small constant. We assume that the solution exists and it is called

the adjustment coefficient, γ. Also the same equation helps us to approximate the

ruin probability ψ(s) := P

(
min
s≥0

R(s) < 0

)
for appropriate p which is essential for

insurance companies [see Rolski et al. (1999), Sect. 4.5.1, p. 125-126 and Sect. 5.4.1,

p. 170-171] [11].

In practical applications, γ is estimated using a statistical method and this esti-

mation utilizes empirical Laplace transform. Hence, we replace m(γ) (3) with the

empirical Laplace transform. Also, we define p on the right hand side of the Laplace

equation as a sequence, pn. When n → ∞, pn → 0. Then, we obtain the empirical

Laplace equation:

−
mU(γn) :=

1

N(γn)

N(γn)∑
i=1

eγnUi = p−1n (4)

It means that we have a sequence of adjustment coefficients, γn, for a sequence of

insurance portfolios which give a sequence of Lundberg bounds to esimate ruin prob-

abilities from below and above. Our interest is to analyze the asymptotic behaviour

of γn when n is large. We make use of the exponential sum to develop this estimation

procedure. The estimation of γ has been studied in the paper by Sándor Csörgö

and Jef L. Teugels [6] where classical central theorem has been used. Our approach
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is slightly different in the sense that we can control the growth rate of number of

individual risks.

Another application of this study is REM. REM was first introduced by Derrida

[2]. Eisele [7] demonstrated the phase transitions (non-analiticity) of free energy

in the class of Weibull type distributions. We will show similar results for Weibull

distribution, relatively heavy tailed distribution and relatively light tailed double

exponential distribution using order statistics. Also, we will show that there are

several critical points for mixed Weibull distributions.

REM [2] introduced in Derrida’s paper describes the system of size n with 2n

energy levels where Ei =
√
nXi and {Xi, i = 1, 2, ..., N } are i.i.d. random variables

following N(0,1) distribution. Thermodynamics of the system is quantified by the

statistical sum i.e. so called partition function. This partition function in Derrida’s

model has the following form

Zn(β) =
N∑
i=1

eβA(n)Xi (5)

where A(n) =
√
n and β > 0 is the inverse temperature. We use the same statistical

sum with different selection of A(n). Derrida defines free energy by the following

formula:

χ(β) = lim
n→∞

logZn(β)

n

According to Derrida’s results, free energy is quantified as

χ(β) =


β2/2 + β2

c/2, if 0 < β ≤ βc ,

ββc, if β ≥ βc
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where βc =
√

2log2 . It is important to note that χ(β) and χ′(β) are continuous but

χ′′(β) has a jump. This is so called third order phase transition. χ(β) is convex and

continuous. The phase transition introduces the presence of two analytic branches in

free energy. One branch corresponds to the high temperature i.e. β =
1

kT
< βcritical.

The second branch corresponds to the low temperature i.e. β ≥ βcritical.

Derrida’s paper was extended in several directions. In Eisele’s paper [2], the results

of Derrida [2] were proven for Weibull type distributions. Later on, Olivieri and Picco

[3] and also L. A. Pastur [4] rigorously derived the limits as well. The mathematical

justification of this result as well as the theory of limit theorems for the sum Zn(β)

was analyzed in detail in the mathematical paper by A. Bovier, I. Kurkova and M.

Löwe [1]. In the paper by G. Ben Arous, L. V. Bogachev and S. A. Molchanov [5],

the results were extended to the Weibull/Frechet-type tails. It contains the complete

theory of of the limiting distributions for the sum of the random exponentials in the

case

Zn(β) =
N∑
i=1

etXi

P{Xi > a} = exp

{
−a

%L(a)

%

}
where % ≥ 1 and L(a) is slowly varying function with additional regulatory properties

(See in [5]).

The technical tools in A. Bovier, I. Kurkova and M. Löwe [1] and G. Ben Arous, L.

V. Bogachev and S. A. Molchanov [5] are traditional Bahr-Esseen inequality and Lya-

punov fraction that are used for the proof of LLN and CLT. Also, standard methods

for the stable distributions are utilized.
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In this paper, we use the methods developed in G. Ben Arous, L. V. Bogachev

and S. A. Molchanov [5] for the computation of free energy. In addition to this

methodology, we develop the new approach based on the properties of the variational

series of exponential random variables, see in Feller Volume 2 (1971) [10]. This

approach covers REM outside the Weibull type tails and Bahr-Esseen inequality. We

analyze four types of distributions for REM: Weibull, mixed Weibull, light tailed and

heavy tailed distribution.



CHAPTER 2: STATEMENT OF THE VARIABLES AND DISTRIBUTIONS

In this chapter, we state the variables and distributions that are used throughout

the whole dissertation. All the sequence of random variables in this study are assumed

to be i.i.d.

Weibull distribution is the most commonly used distribution. Weibull random

variable, X, folllows the law:

1. P (X > x) =


exp

{
−x

%

%

}
, if x ≥ 0

1, o.w.

(6)

where 1 < % <∞. Also, we make use of the mixed Weibull distribution:

2. X =


X1, with prob. p and P (X1 > x) = exp

{
−x

%

%

}
(7a)

L(n) +X2, with prob. 1-p and P (X2 > x) = exp

{
−x

%

%

}
(7b)

where n is a large number and 1 < % < ∞. In the next chapter, we work on double

exponential distribution which has lighter tails than Weibull distribution. The paper

by G. Ben Arous, L. V. Bogachev and S. A. Molchanov [5] analyzes the limiting

distributions of the random exponential sum (1) when Xi’s in the statistical sum are

Weibull type random variables. We extend this to the double exponential random

variable which has the distribution function:

3. P (X > x) =


exp {1− ex} , if x ≥ 0 (8a)

1, o.w. (8b)
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In addition to the above distributions, we have relatively heavy tailed distribution.

Corresponding heavy tailed random variable is defined as a function of standard

exponential random variables. Heaviness of the tail behavior is relative to Weibull

distribution. Standard exponential distribution and relatively heavy tailed random

variable are expressed as

4. P (Y > x) =


exp {−x} , if x ≥ 0

1, o.w.

(9)

5. X =
1 + Y

ln(1 + Y )
(10)

respectively.

Assume that wX stands for ess sup X, and P (X < wX) = 1 which means X is finite

with probability 1 and the log tail distribution for above distributions is:

h(x) = − logP (X > x) (11)

for x ∈ R, h(x) is non-negative, non-decreasing and right-continuous. From the above

information, we can state that P (X > x) = e−h(x) such that x < wX . If h is regularly

varying at infinity with index %, we write h ∈ R% where 1 < % < ∞. It means that

for any κ > 0 we have h(κx)/h(x)→ κ% as x→∞

We frequently work with Laplace transform and we require that E
[
etXi

]
<∞ for

finite t. The selected distributions above satisfy this condition and detailed analysis

is given in Chapter 6: Appendix. We introduce the cumulant generating function as

H(t) = logE[etX ] (12)
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where H(t) is well defined, non-decreasing for any t ≥ 0. H(t) → ∞ as t → ∞. For

Weibull distribution,

%
′
=

%

%− 1
(13)

is being used as the exponent of the cumulant generating function with the condition

that 1 < %
′
< ∞. Note that 1 =

1

%
+

1

%′
. It is important to mention that h ∈ R%

implies H ∈ R%′

As a result of these definitions we express the expected value of the random expo-

nential sum (1) as

E[SN(t)] =
N∑
i=1

E[etXi ] = NeH(t), (14)

For REM, random variables in the statistical sum (5) are expressed as a function of

exponential random variables, Y1, ..., YN (9), such that Xi = f(Yi) (10). This enables

us to express the statistical sum in a simplified form and compute free energy using

Euler-Maclaurin formula and Laplace Method. The results for free energy depend on

the structure of the distribution which is specified by f(Yi) and the selection of A(n).

A(n) is an analytic and increasing function of n. For appropriate selection of A(n),

we assume that there exists p-a.s. limit for free energy

χ(β) := lim
n→∞

logZn(β)

n

Also, there are other variables that we will use for various theorems:

B(t) = (λt)t (15)
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A(t) =


E[SN(t)], for 1 < λ < 2 (16a)

E[SN(t)1{Y≤τ}], for λ = 1 (16b)

0, for 0 < λ < 1 (16c)



CHAPTER 3: LIMIT THEOREMS FOR WEIBULL AND DOUBLE
EXPONENTIAL DISTRIBUTION

This section is devoted to the convergence of the random exponential sum (1) when

Xi’s (2) have Weibull (6) or double exponential distribution (8). Similar analysis has

been done for Weibull distribution in in the paper of Gerard Ben Arous, Leonid V.

Bogachev, Stanislav A. Molchanov [5]. We extend this to double exponential dis-

tribution. We look for the range of the exponential rate, λ, on N(t) that gives the

necessary and sufficient conditions for the existence of law of large numbers (LLN),

central limit theorem (CLT) and convergence to the stable distribution. Before start-

ing our theorems we specify the growth rate of N(t). In this chapter, Case 1 refers to

the Weibull distribution (6) and Case 2 refers to the double exponential distribution

(8). When Xi’s have Weibull distribution,

N(t) = eλH(t) (17)

is being used as the growth rate. H(t) is the cumulant generating function introduced

in (12). The asymptotic of H(t), H0(t), can be found in Appendix 6.3. When Xi’s

have double exponential distribution (8), the growth rate is

N(t) = eλt (18)
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We first prove lemma 1 that helps us in the proof of LLN and CLT. In later sections,

we prove LLN, CLT and convergence to the stable distribution. Similar study for

Weibull distribution has been done in the paper by G. Ben Arous, L. V. Bogachev

and S. A. Molchanov [5]. We extend it to double exponential distribution.

3.1 Main Lemma

Lemma 1. Consider the function

vλ(x) := λ(x− 1)− (x%
′
− x) x ≥ 1

if λ > λb (λb = λ1 = %
′ − 1 for Case 1) then there exists x0 > 1 such that vλ(x) > 0

for all x ∈ (1, x0).

Proof. Note that vλ(1) = 0 and v
′

λ(x) = λ − (%
′
x%
′−1 − 1) so v

′

λ(1) = λ − (%
′ − 1) =

λ − λb > 0 where λb = λ1 for Case 1. Based on Taylor’s formula, vλ(x) > 0 for all

x > 1 sufficiently close to 1.

3.2 Main Theorems

Theorem 2. Law of large numbers (LLN) for different growth rates of N(t),

SN(t)

E[SN(t)]

p→ 1. (19)

1. Assume that Xi’s (2) in the statistical sum (5) have Weibull distribution (6).

If λ > %
′ − 1 = λ1 (17), LLN holds.

2. Assume that Xi’s (2) in the statistical sum (5) have double exponential distribution

(8). If λ > 1 (18), LLN holds.
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Proof. Set

S∗N(t) =
SN(t)

E[SN(t)]
=

1

N

N∑
i=1

etxi−H(t)

It is sufficient to show that limt→∞E |S∗N(t)− 1|r = 0 for some r > 1.

E|S∗N(t)− 1|r = E

∣∣∣∣∣
∑N

i=1 e
txi−H(t)

N
− 1

∣∣∣∣∣
r

= E

∣∣∣∣∣
∑N

i=1 e
txi−H(t) − 1

N

∣∣∣∣∣
r

= N−rE

∣∣∣∣∣
N∑
i=1

etxi−H(t) − 1

∣∣∣∣∣
r

Using Bahr Essen inequality and (x+ 1)r ≤ 2r−1(xr + 1) where (x > 0, r ≥ 1),

N−rE

∣∣∣∣∣
N∑
i=1

etxi−H(t) − 1

∣∣∣∣∣
r

≤ 2N−r
N∑
i=1

E
∣∣etxi−H(t) − 1

∣∣r
≤ 2N1−rE

∣∣etxi−H(t) + 1
∣∣r ≤ 2N1−r2r−1E

∣∣ertxi−rH(t) + 1
∣∣

= 2rN1−reH(rt)−rH(t) + 2rN1−r (20)

Case 1: Since H ∈ R%′ [Refer to Appendix 6.2 for details]

lim inf
n→∞

[
(r − 1) log(N)

H(t)
− H(rt)

H(t)
+ r

]
= λ(r − 1)−

(
r%
′

− r
)

= vλ(r)

By Lemma 1, we can choose r > 1 such that vλ(r) > 0 when λ > λ1 =
%
′

%
= %

′ − 1

and this implies that right hand side converges to 0.

Case 2: For Double Exponential distribution, we use the Bahr-Essen inequality (20),

E |S∗N(t)− 1|r < 2rN1−reH(rt)−rH(t) + 2rN1−r.

Cumulant generating function H(t) of double exponential distribution has asymptotic

equivalent

H(t) = t ln(t)− t+
ln t

2
+ o(1).
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[Refer to Appendix 6.3 for details] Only the first two terms play a role in the proof

of LLN. Using substitution r = 1 + ε as ε→ 0+, we must have

(r − 1) log(N)−H(rt) + rH(t) ∼= ε log(N)− (1 + ε)εt+ ε/2(ln t− 1) > 0

for the existence of LLN which implies that

logN

t
= λ > 1

Theorem 3. CLT for different growth rates of N(t)

SN(t)− E[SN(t)]

V ar[SN(t)]1/2
d→ N(0, 1), (21)

1. Assume that Xi’s (2) in the statistical sum (5) have Weibull distribution (6).

If λ > 2%
′ %
′

%
= λ2 (17), CLT holds.

2. Assume that Xi’s (2) in the statistical sum (5) have double exponential distribution

(8). If λ > 2 (18), CLT holds.

Proof. Suppose that etX1 , etX2 , ... is a sequence of independent random variables,

each with finite expected value and variance. We know from Lemma 4.1 in [5] that

V ar(etXi) ∼= eH(2t) for Weibull distribution. This asymptotic also holds for double

exponential distribution which can be proven using the same steps of Lemma 4.1 in

[5]. Define

s2n =

N(t)∑
i=1

V ar(etXi) ∼= N(t)eH(2t)
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If for some δ > 0, the Lyapunov’s condition

lim
t→∞

=
1

s2+δn

N(t)∑
i=1

E
[∣∣etXi − E (etXi)∣∣2+δ] = 0

is saitsfied then
SN(t)− E[SN(t)]

V ar[SN(t)]1/2
converges to standard normal distribution. Using

the Lyapunov’s condition and the inequality, (x + 1)r ≤ 2r−1(xr + 1) where (x >

0, r ≥ 1), we obtain

1

s2+δn

N(t)∑
i=1

E[|etXi − E(etXi)|2+δ]

∼= N(t)−δ/2 exp{H(t)(2 + δ)} exp{−H(2t)(1 + δ/2)}E

[∣∣∣∣ etXieH(t)
− 1

∣∣∣∣2+δ
]

≤ exp {− ln(N(t))δ/2 +H(t)(2 + δ)−H(2t)(1 + δ/2)}E

[(
etXi

eH(t)
+ 1

)2+δ
]

≤ 2r−1 exp {− ln(N(t))δ/2 +H(t)(2 + δ)−H(2t)(1 + δ/2)}
[
E

[
et(2+δ)Xi

eH(t)(2+δ)

]
+ 1

]
= 2r−1 exp {− ln(N(t))δ/2−H(2t)(1 + δ/2) +H(t(2 + δ))} (1 + o(1)) (22)

Case 1: Since H ∈ R%′ and using the substitution r = 1 + δ/2,

lim inf
t→∞

[
ln(N(t))δ/2

H(t)
+
H(2t)(1 + δ/2)

H(t)
− H(t(2 + δ))

H(t)

]
= 2%

′
[
λ

2%
′ (r − 1)− (r%

′

− r)
]

= 2%
′

v
λ/2%

′ (r)

By Lemma 1, we can choose r > 1 such that v
λ/2%

′ (r) > 0 when λ/2%
′
> λ1 =

%
′

%
and

this implies that CLT holds if λ > λ2 = 2%
′ %
′

%
.

Case 2: We make use of the inequality that we obtained in (22)

1

s2+δn

N(t)∑
i=1

E
[∣∣etXi − E (etXi)∣∣2+δ]

≤ 2r−1 exp {− ln(N(t))δ/2−H(2t)(1 + δ/2) +H(t(2 + δ))} (1 + o(1))
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where H(t) for double exponential distribution has asymptotic equivalent

H0(t) = t ln(t)− t. Then, the requirement for CLT is the following condition

lim inf
t→∞
δ→0+

[ln(N(t))δ/2 +H(2t)(1 + δ/2)−H(t(2 + δ))] > 0

This inequality implies that we have CLT if

lim inf
t→∞

ln(N)

t
= λ > lim inf

δ→0+

ln(1 + δ/2)

δ/2
(2 + δ) = 2

Theorem 4. Conditions for Convergence to an Infinitely Divisible Distribution

We use the theorem about the weak convergence of sums of independent random vari-

ables from Gerard Ben Arous, Leonid V. Bogachev, Stanislav A. Molchanov [5] which

is also given in a similar form in the book of Petrov [8]. Suppose that

Yi(t) =
etXi

B(t)
(23)

is a sequence of independent identically distributed random variables where B(t) is a

multiplicative factor. Additionally, we define A(t) as an additive factor. Both A(t)

and B(t) are increasing function of t such that A(t), B(t)→∞ as t→∞. According

to classical theorems on weak convergence of sums of independent random variables,

in order that

S∗N(t) =

N(t)∑
i=1

Yi(t)−
A(t)

B(t)
(24)

converges to an infinitely divisible law with characteristic function

φ(u) = exp

{
iau− σ2u2

2
+

∫
|x|>0

(
eiux − 1− iux

1 + x2

)
dL(x)

}
, (25)
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it is necessary and sufficient that the following conditions hold:

1. At all continuity points, L(x) satisfies

L(x) =


lim
t→∞

NP{Y ≤ x} for x < 0

− lim
t→∞

NP{Y > x} for x > 0.

(26)

2. σ2 satisfies

σ2 = lim
τ→0+

lim sup
t→∞

NV ar[Y 1{Y≤τ}] = lim
τ→0+

lim inf
t→∞

NV ar[Y 1{Y≤τ}] (27)

3. For each τ > 0 the following identity is satisfied.

lim
t→∞

{
NE[Y 1{Y≤τ}]−

A(t)

B(t)

}
= a+

∫ τ

0

x3

1 + x2
dL(x)−

∫ ∞
τ

x

1 + x2
dL(x) (28)

where a is a constant depending on the distribution function.

Theorem 5. Suppose that Xi’s in (23) are i.i.d. double exponentially distributed

random variables (8). Also, suppose that N(t) is defined as in (18) and λ satisfies

the inequality, 0 < λ < 2. Then

SN(t)− A(t)

B(t)

d→ Fλ (29)

for large t where A(t) and B(t) are given in (16) and (15) respectively. Fλ is an

infinitely divisible distribution with the characteristic function,

φλ(u) = exp

{
iau+ λ

∫ ∞
0

(
eiux − 1− iux

1 + x2

)
dx

xλ+1

}
, (30)



17

where a is given by

a =


λeπ

2 cos
λπ

2

for λ 6= 1

0 for λ = 1

(31)

Proof. To prove this theorem, we need to show that the 3 conditions in Theorem (4)

are satisfied.

1. For selected B(t) = (λt)t (15), the function L(x) (26) is given by

L(x) =


lim
t→∞

NP{Y ≤ x} = 0 for x < 0

− lim
t→∞

NP{Y > x} = −x−λ for x > 0.

(32)

where Y is given in (23). Because Y ≥ 0, L(x) = 0 holds in the case x < 0.

Assume that x > 0. By using (15), (18) and (23) we obtain

NP{Y (t) > x)} = eλtP

{
etX

B(t)
> x

}
= eλtP

{
X >

lnx+ lnB(t)

t

}
∼= exp

{
1 + λt− exp

(
lnx+ lnB(t)

t

)}
∼= exp

{
1 + λt−

(
1 +

lnx

t

)
λt

}
= −x−λe

for large t which shows that (32) holds.

2. We claim that (27) holds and σ2 = 0 for all λ ∈ (0, 2). Since

0 ≤ V ar
[
Y 1{Y≤τ}

]
≤ E

[
Y 21{Y≤τ}

]
,

we just need to prove that

σ2 = lim
τ→0+

lim
t→∞

NE
[
Y 21{Y≤τ}

]
= 0 (33)
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We introduce a common variable which will be used throughout this theorem,

η(t, τ) =
lnB(t) + ln τ

t
(34)

Using (15), (18) and (34) for any τ > 0,

NE
[
Y 21{Y≤τ}

] ∼= N(t)E

[
e2tX

B2(t)
1{X≤η(t,τ)}

]
∼=
N(t)e

B2(t)

∫ +∞

0

exp {2tx+ x− ex} 1{x≤η(t,τ)} dx

We use the substitution x = y + ln(2t + 1), (18) and Appendix 6.3.2, 6.3.3 which

gives

C(t)

∫ +∞

− ln(2t+1)

exp {(2t+ 1)(y − ey)} 1{y≤η(t,τ)−ln(2t+1)} dy

= C(t)

∫ K

− ln(2t+1)

exp {(2t+ 1)(y − ey)} dy

= C(t) exp
{

(2t+ 1)(K − eK)
} 1

(2t+ 1) | g′(K) |
(35)

where

C(t) =
N(t)e

B2(t)
exp{(2t+ 1) ln(2t+ 1)}

K = ln(λ/2) +
ln τ

t
− ln

(
1 +

1

2t

)
(36)

Substitution of K (36) into (35) gives us [Refer to Appendix 6.3.4, for details]

NE
[
Y 21{Y≤τ}

] ∼= λτ 2−λe

|g′(K)|

where |g′(K)| ∼= 1− λ/2 < 0 when t is large. Then

σ2 = lim
τ→0+

lim
t→∞

NE[Y 21{Y≤τ}] = lim
τ→0+

λτ 2−λe

|g′(K)|
= lim

τ→0+

λτ 2−λe

1− λ/2
= 0
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3. When λ ∈ (0, 2), for each τ > 0 the limit,

Dλ(τ) = lim
t→∞

{
NE[Y 1{Y≤τ}]−

A(t)

B(t)

}
,

exists where A(t) and B(t) are given in (16), (15) respectively. Then Dλ(τ) can

be expressed

Dλ(τ) =


λe

1− λ
τ 1−λ for λ 6= 1

e ln τ for λ = 1.

(37)

3.a) Assume that λ ∈ (0, 1). Then A(t) = 0 (16c). Using the substitution x =

y + ln(t+ 1), (34) and Appendix 6.3.2

NE
[
Y 1{Y≤τ}

] ∼= N(t)e

B(t)

∫ +∞

0

exp
{
tx+ x− eX

}
1{x≤η(t,τ)} dx

= D(t)

∫ +∞

− ln(t+1)

exp {(t+ 1)(y − ey)} 1{y≤η(t,τ)−ln(t+1)} dy

= D(t)

∫ K

− ln(t+1)

exp {(t+ 1)(y − ey)} dy

= D(t) exp
{

(t+ 1)(K − eK)
} 1

(t+ 1) | g′(K) |
(38)

where

D(t) =
N(t)e

B(t)
exp{(t+ 1) ln(t+ 1)} (39)

K = ln(λ) +
ln τ

t
− ln

(
1 +

1

t

)
(40)

Substitution of K (40) into (38) gives us [Refer to Appendix 6.3.4, 6.3.5 for details]

NE
[
Y 1{Y≤τ}

] ∼= λτ 1−λe

|g′(K)|
∼=
λτ 1−λe

1− λ

when t is large.

3.b) Assume that λ ∈ (1, 2). Also, A(t) = E[SN(t)] (16a). Using the substitution
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x = y + ln(t+ 1), (39) and Appendix 6.3.3

NE[Y 1{Y≤τ}]−
A(t)

B(t)

∼=
N(t)e

B(t)

∫ +∞

0

exp
{
tx+ x− eX

}
1{x>η(t,τ)} dx

= D(t)

∫ +∞

− ln(t+1)

exp {(t+ 1)(y − ey)} 1{y>η(t,τ)−ln(t+1)} dy

= D(t)

∫ ∞
K

exp {(t+ 1)(y − ey)} dy

= D(t) exp
{

(t+ 1)(K − eK)
} 1

(t+ 1) | g′(K) |
(41)

where

K = ln(λ) +
ln τ

t
− ln

(
1 +

1

t

)
> 0 (42)

for large t. Substitution of K (42) into (41) gives us [Refer to Appendix 6.3.4 and

6.3.6 for details]

NE
[
Y 1{Y≤τ}

]
− A(t)

B(t)
∼=
λτ 1−λe

|g′(K)|
∼=
λτ 1−λe

1− λ

when t is large.

3.c) Assume that λ = 1 and τ > 1 for definiteness. Also, A(t) = E[SN(t)1{Y≤1}]

(16b). Using N(t) (18) and B(t) (15),

NE[Y 1{Y≤τ}]−
A(t)

B(t)

∼=
N(t)e

B(t)

∫ +∞

0

exp
{
tx+ x− eX

}
[1{x≤η(t,τ)} − 1{x≤lnB(t)/t}] dx

=
N(t)e

B(t)

∫ η(t,τ)

lnB(t)/t

exp
{
tx+ x− eX

}
dx

∼=
N(t)e

B(t)

ln τ

t
exp

{
tK +K − eK

}
(43)
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where

K = ln t+
ln τ

t
(44)

for large t. Substitution of K (44) into (43) gives us

NE
[
Y 1{Y≤τ}

]
− A(t)

B(t)
∼= e ln τ

when t is large.

3.d) The parameter a defined in (31) satisfies the identity (28) with L(x) specified

by (32),

Dλ(τ) = lim
t→∞

{
NE[Y 1{Y≤τ}]−

A(t)

B(t)

}
∼= a+

∫ τ

0

ex2−λ

1 + x2
dx−

∫ ∞
τ

ex−λ

1 + x2
dx (45)

where Dλ(τ) is given by (37).

Assume that λ ∈ (0, 1). It is known that

∫ τ

0

x2−λ

1 + x2
d(x) =

τ 1−λ

1− λ
−
∫ τ

0

x−λ

1 + x2
dx (46)

Using (32) and (31), equation (45) turns out to be

π

2cos

(
λπ

2

) =

∫ ∞
0

x−λ

1 + x2
dx

which is true from Gradshteyn and Ryzhik [9].

When λ ∈ (1, 2), it is known that

∫ ∞
τ

xλ

1 + x2
d(x) =

τ 1−λ

λ− 1
−
∫ ∞
τ

x2−λ

1 + x2
dx (47)
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Using (32) and (31), equation (45) turns out to be

π

2cos

(
λπ

2

) +

∫ ∞
0

x2−λ

1 + x2
dx = 0,

which is true again from Gradshteyn and Ryzhik [9].

For λ = 1, equation (45) has the form

ln τ =

∫ τ

0

x

1 + x2
dx+

∫ ∞
τ

1

(1 + x2)x
dx

The integral on the right can be computed using calculus as

1

2
ln
(
1 + x2

) ∣∣∣τ
0

+
1

2
ln

(
x2

1 + x2

) ∣∣∣∞
τ

= ln τ

This completes the proof.

Theorem 6. The charachteristic function φλ determined by Theorem 5 corresponds

to a stable probability law with exponent λ ∈ (0, 2) and skewness parameter β = 1 and

can be represented in canonical form by

φλ(u) =



exp

{
−Γ(1− λ) | u |λ exp

(
−iπλ

2
sgn(u)

)}
for λ ∈ (0, 1)

exp

{
Γ(2− λ)

λ− 1
| u |λ exp

(
−iπλ

2
sgn(u)

)}
for λ ∈ (1, 2)

exp

{
iu(1− γ)− π

2
| u |

(
1 + i sgn(u)

2

π
ln | u |

)}
for λ = 1

(48)

where Γ(s) =
∫∞
τ
xs−1e−x dx is the gamma function, sgn(u) : u/ | u | for u 6= 0 and

sgn(u) := 0, and γ = 0.5772... is the Euler constant. The proof of this theorem can be

found in the paper of Gerard Ben Arous, Leonid V. Bogachev, Stanislav A. Molchanov

[5].



CHAPTER 4: APPLICATION: STATISTICAL ESTIMATION OF THE
LUNDBERG ROOT USING EMPIRICAL LAPLACE TRANSFORM

Many applications in insurance mathematics are related to compound distributions

and their corresponding ruin probabilities. The ruin probability of an insurance

portfolio is one of the major concerns of an insurance company and it depends on the

tail behavior of the insurance portfolio. Hence, it is important to understand how

the tails behave. In practice, it is difficult to quantify the tail probability exactly so

we estimate the upper and lower bounds. The main technical tool for this estimation

procedure is CLT.

Consider a portfolio consisting of infinitely many policies with individual risks

{X1, X2, ...} over a given time period. Assume that the non-negative random variables

{X1, X2, ...} are i.i.d. Weibull type random variables (6) with distribution function

FX . First, we investigate the asymptotic behaviour of the tail probability FU(x) =

P (U > x) of the compound U =
N∑
i=1

Xi when N → ∞. Here, N has geometric

distribution with parameter p ∈ (0, 1). We are able to determine this by finding

the upper and lower Lundberg bounds but this procedure requires the existence of a

solution to the following Lundberg equation,

L(γ) =

∫ ∞
0

eγx dF (x) =
1

p
. (49)

The solution of this equation, γ, is so called the adjustment coefficient in risk theory.
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The question is how to estimate the unknown solution of this equation. In practical

applications, we do not know the form of L(t) precisely. Only a sample version of

L(t), LN(t), is known for an insurance company. This is defined as the empirical

Laplace transform,

LN(γ) =
1

N

N∑
j=1

(eγXj). (50)

Hence, an estimation procedure was developed in the paper of Sandor Csorgo and

Jef L. Teugels [6] where the empirical Laplace transform of L(t) has been used. We

extend this procedure by customizing the growth rate of the number of individual

risks i.e. the number of claims. The adjustment coefficient which is the solution

of the estimation procedure gives us the Lundberg bounds which also gives the tail

probability. When p in the Lundberg equation is replaced by a different constant,

runin probability can be obtained. Details can be found in the book of T. Rolski, H.

Schmidli, V. Schmidt and J. Teugels [11] (P. 125-131 and P. 170-171).

4.1 Geometric Compounds

Consider the case where N has geometric distribution with parameter p ∈ (0, 1).

Then, the compound geometric distribution FU is given by

FU(x) =
∞∑
i=0

(1− p)pi F ∗iX (x) (51)

Writing the first summand in (51) separately, we get

FU = (1− p)δ0 + pFX ∗ FU (52)
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where

δ0 = δ0(x) =


1, if x ≥ 0

0, if x < 0

This is so called the defective renewal equation or transient renewal equation. Replac-

ing the distribution FU on the right hand side of (52) by the term (1−p) δ0+pFX ∗FU

and iterating this procedure, we get

FU(x) = lim
n→∞

Fn(x) (53)

for x ≥ 0 where Fn is defined as

Fn = (1− p)δ0 + pFX ∗ Fn−1 (54)

for all n ≥ 1 and F0 is an arbitrary initial distribution on R+. Additionally, assume

that

L(γ) =

∫ ∞
0

eγx dFX(x) =
1

p
(55)

has a solution where p is the parameter of the geometric distribution and FX(x) is

the distribution function of Weibull distributed individual risks, {X1, X2, ...}. γ is

the adjustment coefficient here. Let x0 = sup{x : FU(x) < 1}. Then the following

theorem gives us the Lundberg bounds based on the existence of the adjustment

coefficient.

Theorem 7. If X is a geometric compound with characteristics (p, FX) such that
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(55) admits a positive solution ,γ, then

a−e
−γx ≤ FU(x) ≤ a+e

−γx

where x ≥ 0 and

a− = inf
x∈[0,x0)

eγxFX(x)∫∞
x
eγy dFX(y)

(56)

a+ = sup
x∈[0,x0)

eγxFX(x)∫∞
x
eγy dFX(y)

Proof. To find the upper bound in (56) we aim to find an initial distribution F0 such

that the corresponding distribution F1 defined in (54) for n = 1 satisfies

F1(x) ≥ F0(x) (57)

for x ≥ 0. Then FX(x) ∗ F1(x) ≥ FX(x) ∗ F0(x) for x ≥ 0 and by induction,

Fn+1(x) ≥ Fn(x) for all x ≥ 0 and n ∈ N. This means that

FU(x) ≤ F 0(x) (58)

for x ≥ 0. Let F0(x) = 1 − a e−γx = (1 − a)δ0(x) + aG(x) where a ∈ (0, 1] is some

constant and G(x) = 1− e−γx. Inserting this into (54) we obtain

F1(x) = 1− p+ p

(
(1− a)FX(x) + a

∫ x

0

G(x− y) dFX(y)

)
= 1− p+ p

(
FX(x)− a

∫ x

0

e−γ(x−y) dFX(y)

)
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for all x ≥ 0. Since we want to arrive at (57) we look for a such that

1− p+ p

(
FX(x)− a

∫ x

0

e−γ(x−y) dFX(y)

)
≥ 1− aeγx (59)

This inequality can be simplified to

a

(
1− p

∫ x

0

eγy dFX(y)

)
≥ peγx FX(x)

which is trivial for x ≥ x0 using

1 = p

∫ ∞
0

eγy dFX(y) = p

∫ x

0

eγy dFX(y) + p

∫ ∞
x

eγy dFX(y)

Then (59) is equivalent to

ap

∫ ∞
x

eγy dFX(y) ≥ peγxFX(x) (60)

Setting a+ = sup
x∈[0,x0)

eγxFX(x)∫∞
x
eγy dFX(y)

, we get (57) and consequently (58). Upper bound

follows and lower bound can be driven similarly.

This section is mainly taken from the book of T. Rolski, H. Schmidli, V. Schmidt

and J. Teugels [11].

4.2 Estimation of the Adjustment Coefficient

When we found the bounds to the tail probability in the previous section, we

assumed the existence of a solution to the Lundberg equation (55). As stated earlier,

we estimate this adjustment coefficient, γ, using empirical Laplace transform.

We made use of Laplace transform for Lundberg equation (55). We always as-

sume that Laplace transform L(γ) exists in an open neighborhood of the origin,

I = (−∞, σ) where σ is the abscissa of convergence of L(γ). L(γ) is arbitrarily many
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times differentiable in I. Also, L(γ) is an increasing convex function on I and it has

non-negative random variables.

Let’s assume that we have a sequence of insurance portfolios {0, 1, 2, ..., n, ...}. n’th

portfolio has Nn individual risks and Nn is geometrically distributed with parameter

pn ∈ (0, 1). Individual risks {X1, X2, ..., XNn} follow Weibull law with parameter %

and distribution function FX (6). They are i.i.d. random variables. Assume that pn

is a decreasing function of n and pn → 0 as n→∞.

Also, assume that there exists a solution to the following Lundberg equation for

each n.

L(γ) =

∫ ∞
0

eγx dF (x) =
1

pn
. (61)

We define each solution as tn and tn → ∞ when n → ∞. tn is a large number even

for small n because pn is small for every n. Note that tn is the real Lunberg root that

we estimate.

We only have a sample as available information which means we do not have the

precise form of L(γ). Hence, we replace the Laplace transform with the empirical

Laplace transform and assume that there exist a solution to the following empirical

Lundberg equation for each n,

LNn(γ) =
1

Nn

Nn∑
j=1

(eγXj) =
1

pn
(62)

Nn in (62) is defined as in (17):

Nn(γ) = eλH(γ). (63)
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where H(γ) =
γ%
′

%′
for Weibull distribution when γ is large and λ is a constant. We

define these solutions as a sequence of adjustment coefficients, τn.

Based on the above definitions, we have the following array scheme which contains

i.i.d. individual risks.

X11, X12, ..., X1N1

X21, X22, ..., X2N2

............................

Xn1, Xn2, ..., XnNn

............................

Each line refers to a portfolio and has its own associated adjustment coefficient de-

pending on n, τn. On the other hand, there is a sequence of real solutions, tn to the

Lundberg Equations,

L(tn) = E(etnXj) =

∫ ∞
0

etnx dFX(x) =
1

pn
(64)

Combining the above variables and equations, we solve

LNn(τn) =
1

Nn(τn)

Nn(τn)∑
j=1

(eτnXj) =

∫ ∞
0

eτnx dFNn(x) =
1

pn
(65)

where

FNn(x) =
1

Nn

#{1 ≤ j ≤ Nn : Xj ≤ x}

is the empirical distribution function of the sample. LNn(τn) is a random analytic

function for all values of τn. We obtain sample based estimator of the adjustment



30

coefficient using empirical Laplace transform.

We introduce some useful functions to express limits:

WNn(τn) =

Nn(τn)∑
j=1

{eτnXnj − E(eτnXj)} (66)

Also, one term Taylor expansion gives us the identity

exp (τnXj) = exp (tnXj) + (τn − tn)Xj exp (τn(j)Xj) (67)

where τn(j) satisfies the inequalities min(τn, tn) ≤ τn(j) ≤ max(τn, tn). Additionally,

We use the following abbreviations

SNn(τn) =

Nn(τn)∑
j=1

Xje
τnXj (68)

SNn(τn, tn) =

Nn(τn)∑
j=1

Xje
τn(j)Xj

where τn(j) is determined by by the above equations.

We estimate tn by solving the equation LNn(τn) = 1/pn and L(tn) = 1/pn when pn

is small.

0 = Nn(τn) (LNn(τn)− L(tn))

=

Nn(τn)∑
j=1

(eτnXj − E(etnXj))

Applying taylor series approximation from (67) gives us

Nn(τn)∑
j=1

(eτnXj − E(etnXj)) =

Nn(τn)∑
j=1

(etnXj − E(etnXj)) + (τn − tn)

Nn(τn)∑
j=1

Xje
τn(j)Xj = 0
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Rearrangement of terms leads to

tn − τn =

Nn(τn)∑
j=1

(etnXj − E(etnXj))

Nn(τn)∑
j=1

Xje
τn(j)Xj

(69)

∼=
WNn(tn)

SNn(τn, tn)

Assume that central limit theorem holds for the random exponential sums in (66)

and (68). It means that the growth rate satisfies the inequality λ > λ2 = 2%
′ %
′

%
using

Theorem 3 about CLT. Then, law of large number already holds, Theorem 2. Using

these theorems, we can state that the following limit exists:

SNn(τn, tn) =

Nn(τn)∑
j=1

Xje
τn(j)Xj p→ E[SNn(τn, tn)]

where

E[SNn(τn, tn)] ∼= Nn(τn)E
[
Xje

τn(j)Xj
] ∼= Nn(τn)τ %

′−1
n eH(τn)

In theorems 2 and 3, we did not have Xj as a multiplier but this multiplier is asymp-

totically small and do not change the boundaries of the limits. The last approxima-

tion, Nn(τn)E
[
Xje

τn(j)Xj
] ∼= Nn(τn)τ %

′−1
n eH(τn), comes from a similar integration for

Weibull which is shown in Appendix 6. The central limit theorem 3 provides us

WNn(τn) =

Nn(τn)∑
j=1

{etnXj − E(etnXj)} d→ N(0, 1)

V ar Nn(tn)∑
j=1

etnXj

1/2

(70)
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where

V ar

Nn(tn)∑
j=1

etnXj =

Nn(tn)∑
j=1

V ar(etnXi) ∼= Nn(tn)eH(2tn)

As a result of these limits, we get an asymptotic confidence interval for tn

lim
n→∞

P
{
τn − zα/2 τ %

′−1
n J(τn) ≤ tn ≤ τn + zα/2 τ

%
′−1

n J(τn)
}

= 1− α (71)

where φ(zα/2) = 1− α/2 for 0 < α < 1 and

J(τn) = exp{H(τn)−H(2τn)}

.



CHAPTER 5: APPLICATION: REM MODEL

Free energy was driven using concepts of convergence in probability in papers by

Eisele’s [7] and A. Bovier, I. Kurkova and M. Löwe [1]. This computation required

long derivations though. Hence, we develop a different approach using order statistics,

Euler-Maclaurin series and Laplace method which simplifies the process. In the first

part, we introduce variables for our computations. Then, we drive free energy for

Weibull distribution using limiting distributions similar to the paper G. Ben Arous,

L. V. Bogachev and S. A. Molchanov [5]. Then, we develop the new approach using

order statistics. Free energy is calculated for Weibull, relatively heavy tailed (10) and

relatively light tailed (8) distributions using this method. Once the statistical sum

is represented in terms of exponential random variables, driving free energy is quite

straight forward.

5.1 Variable Definitions

Assume that {Xi, i = 1, 2, ..., N } are i.i.d. random variables. We already defined

free energy in Chapter 1 as

χ(β) = lim
n→∞

logZn(β)

n
(72)

where

Zn(β) =
N∑
i=1

eβA(n)Xi (73)
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is the statistical sum or partition function. β is strictly positive. For simplicity, we

assume that

N = [en] (74)

lnN = n+O
(
e−n
)

A(n) in the statistical sum is selected in such a way that free energy converges.

For different distributions, we will select the proper growth factor for A(n).

5.2 Free Energy Using Limit Theorems for Weibull Distribution

Assume that {Xi, i = 1, 2, ..., N } are i.i.d. random variables with Weibull distri-

bution and we select

A(n) = n1/%
′

(75)

as the proper growth factor where %
′

is introduced in Chapter 2 for Weibull distribu-

tion.

The cumulant generating function for Weibull is

H(t) = logE[etX ] ∼=
t%
′

%′
(76)

for large t. H(t) is well defined, non-decreasing and H(t)/t → ∞ as t → ∞. Also

A(n) is an increasing funtion of n. As a result of these definitions, we express the

expected value of the statistical sum for large n as

E[Zn(β)] =

[en]∑
i=1

E
[
eβA(n)Xi

] ∼= [en]exp

{
β%
′
n

%′

}
(77)
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5.2.1 Main Theorems

Theorem 8. (Law of Large Numbers for the statistical sum)

Let ln E[eβA(n)Xi ] = H(βA(n)). For sufficiently small ε, if

nε−H((1 + ε)βA(n)) + (1 + ε)H(βA(n))] > 0

then we have

Zn(β)

E[Zn(β)]

p→ 1. (78)

for large n.

Proof. Set t= βA(n). Also define

Z∗n(β) =
Zn(β)

E[Zn(β)]
=

1

N

N∑
i=1

etxi−H(t) (79)

We have to prove that Z∗n(β)
p→ 0 as n→∞. It is sufficient to show that

lim
n→∞

E|Z∗n(β)− 1|r = 0

for some r > 1. Using Bahr Essen inequality and

(x+ 1)r ≤ 2r−1(xr + 1)

where (x > 0, r ≥ 1), we obtained in the proof of Law of Large numbers, Theorem 2

E |Z∗n(β)− 1|r ≤ 2rN1−reH(rt)−rH(t) + 2rN1−r (80)

For the existence of the limit we must have lim
n→∞

E|Z∗n(β) − 1|r = 0. Substituting

t = βA(n), r = 1 + ε, N = [en] (74) to the right hand side of the inequality (80), we
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obtain the condition

lim inf
t→∞
ε→0+

[nε−H((1 + ε)βA(n)) + (1 + ε)H(βA(n))] > 0

for the existence of LLN.

Theorem 9. Xi are independent and identically distributed Weibull type random

variables and assume that we have the following conditions:

M1,N(n) = max
(
eβA(n)Xi

)
(81)

for i = 1, ..., N = [e]n and βA(n) = βn1/%
′

Then,

P

(
M1,N(n)

B(n)
< x

)
→ K(x) = e−x

−α

logM1,N(n) ∼= lnB(n)

for large n where lnB(n) = β%1/%n .

Proof. Let’s call βA(n) = A shortly which implies that n =
A%
′

β%
′ . Then,

P

(
M1,N(n)

B(n)
< x

)
=

[
P

(
eAXi

B(n)
< x

)]N
=

[
P

(
Xi <

ln(B(n)x)

A

)]N
=

[
1− exp

{
−A

−% ln%(B(n)x)

%

}]N
∼= exp

{
−exp

{
lnN − A−% ln%(B(n)x)

%

}}

Then, the asymptotic of the exponent can be computed using the binomial formula

lnN − A−% ln%(B(n)x)

%
= n− n1−%β−% ln%B(n)

(
1 + %

lnx

lnB(n)

)
/%

= n− n1−%β−% ln%B(n)/%+ n1−%β−% ln%−1B(n) lnx
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Plugging into this equation lnB(n) = β%1/%n, we obtain

P

(
M1,N(n)

B(n)
< x

)
→ −%

1/%
′

β
lnx

Then, we can state that logM1,N(n) ∼= lnB(n) for large n.

5.2.2 Computation of Random Energy

Lemma 10. Assume that we have a sequence of i.i.d. Weibull type random variables

X1, ..., XN (6). When we select βA(n) = βn1/%
′
, the statistical sum satisfies LLN for

0 < β < %1/%
′

= βcritical. Also, free energy can be quantified by the following formula

in this interval

χ(β) := 1 +
β%
′

%′

Proof. In the appendix, we have proven that, The moment generating function satis-

fies H(βA(n)) = H(βn1/%
′
) = nf(β) + o(n) for large n. Using the equivalent of H(t),

we obtain that

H(βn1/%
′

) ∼=
(βn1/%

′
)%
′

%′
=
β%
′
n

%′
(82)

Using Theorem 8, we must have the following condition for LLN for small ε:

nε−H((1 + ε)βA(n)) + (1 + ε)H(βA(n)) > 0

Using binomial formula

nε−H((1 + ε)βA(n)) + (1 + ε)H(βA(n)) = nε− (1 + ε)%
′ β%

′
n

%′
+ (1 + ε)

β%
′
n

%′

∼= nε−
(

1 + ε%
′
) β%′n

%′
+ (1 + ε)

β%
′
n

%′
= nε− ε

(
%
′ − 1

) β%′n
%′

(83)

for small ε. (83) should be positive for LLN which implies that β must satisfy in-
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equality 0 < β < %1/%
′
. Also, we formulated statistical sum in (77). When LLN

holds,

χ(β) = lim
n→∞

logZn(β)

n
= 1 + f(β) = 1 +

β%
′

%′

Theorem 11. ([3] on Page 48) When LLN is not satisfied which means β ≥ βcritical,

lnM1,N(n)

lnZN(β)

p→ 1

where n → ∞, M1,N(n) = max(eβA(n)Xi , i = 1, ..., N = [e]n), βA(n) is an increasing

function of n and Xi are i.i.d. Weibull type random variables.

Proof. The proof of this theorem can be found in paper G. Ben Arous, L. V. Bogachev

and S. A. Molchanov [5].

Free Energy for Weibull Type Distribution

Using Theorem 9 and Theorem 11, we can state that

χ(β) := lim
n→∞

lnZn(β)

n
= lim

n→∞

lnM1,N(n)

n

= lim
n→∞

lnB(n)

n
= β%1/% if β ≥ βcritical = %1/%

′

Combining this result and Lemma 10, the free energy can be calculated as follows:

χ(β) =


1 +

β%
′

%′
, if β < %1/%

′
= βcritical

β%1/%, if β ≥ βcritical
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This result is obtained using convergence in probability concepts. In the next section

we introduce the method of order statistics.

5.3 Free Energy Using Order Statistics

We compute free energy using order statistics. The central assumption in this

section is the random variables in the statistical sum (73) can be expressed as an

increasing function of standard exponentially distributed random variables.

5.3.1 Formulation of the Statistical Sum

We introduce exponential random variables that will be rearranged in the statistical

sum. Let

{Y1, Y2, ..., Yi, ..., YN} (84)

P{Yi > x} =


e−x, if x ≥ 0

1, o.w.

such thatXi = f(Yi) and f is a monotone increasing function of standard exponentially

distributed random variables, Yi . Also, we reorder the sequence in (84) to obtain

Y(1) > Y(2) > .... > Y(i) > ... > Y(N) (85)

the variational sequence of the sample (84). We make use of a proposition from

Feller Volume 2 [see W. Feller (1971), Section 1.6, p. 19] [10] to express each ordered
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random variable in (85) and we obtain

Y(1) = W1 +
W2

2
+ ............+

WN

N

Y(2) =
W2

2
+ ............+

WN

N

...................................................

Y(i) =
Wi

i
+ ...+

WN

N
(86)

...................................................

Y(N) =
WN

N

where {W1,W2, ...,Wi, ...,WN} is another set of i.i.d. standard exponential random

variables.

This helps us to drive the partition function in terms of standard exponential random

variables:

Zn(β) =
N∑
i=1

eβA(n)Xi =
N∑
i=1

eβA(n)f(Yi)

=
N∑
i=1

exp

{
βA(n)f

(
Wi

i
+ ...+

WN

N

)}
(87)

To be able to simplify the above expression,
Wi

i
+...+

WN

N
, we prove three propositions

to obtain its asymptotic equivalent:

Proposition 12. Suppose that {Y1, Y2, ..., Yl, ..., YN} are standard exponentially dis-

tributed random variables. Then, MYN = max(Y1, Y2, ..., YN) − lnN converges to the

standard Gumbel distribution as N →∞.

Proof. Let F (x) = 1− e−x for x ∈ [0,∞). When x ∈ R, the cumulative distribution
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function of MYN can be expressed as

P {MYN ≤ x} = P {max{Y1, Y2..., YN} ≤ x+ lnN}

= FN (x+ lnN)

= {1− exp{−x− lnN}}N

which converges to exp{−e−x} as N →∞.

Proposition 13. Let {W1,W2, ...,Wl, ...,WN} be a set of i.i.d. standard exponential

random variables. Then,
∞∑
l=i

Wl − 1

l

follows Gumbel distribution such that

P

{
∞∑
l=i

Wl − 1

l
≤ x

}
= exp

{
−e−x+γ

}
where γ is the Euler constant.

Proof. Let MYN = max(Y1, Y2, ..., YN) − lnN where {Y1, Y2, ..., Yl, ..., YN} are i.i.d.

standard exponentially distributed random variables. Using the representation in

(86), we can write for any x ∈ R that

P {MYN ≤ x}

= P

{
max(Y1, Y2, ..., YN)− 1− 1

2
− ...− 1

N
≤ x+ lnN − 1− 1

2
− ...− 1

N

}
= P

{
N∑
l=i

Wl − 1

l
≤ x+ lnN −

(
1 +

1

2
+ ...+

1

l
+ ...+

1

N

)}

converges to a standard Gumbel distribution as N →∞ which was proven in Propo-



42

sition 12. Note that

γ = lim
N→∞

[
lnN −

(
1 +

1

2
+ ...+

1

l
+ ...+

1

N

)]

where γ is the Euler constant. Then we can drive the the distribution function as

follows

P

{
∞∑
l=i

Wl − 1

l
≤ x

}
= exp

{
−e−x+γ

}
Note that E

[∑∞
l=i

Wl − 1

l

]
= 0 and V ar

(∑∞
l=i

Wl − 1

l

)
=

Π2

6

Proposition 14. Let {W1,W2, ...,Wi, ...,WN} be a set of i.i.d. standard exponential

random variables. Then the summation,
Wi

i
+ ...+

WN

N
, can be approximated by

Wi

i
+ ...+

WN

N
∼= lnN − ln i+

N∑
l=i

Wl − 1

l
= lnN − ln i+O(1) (88)

when N is large.

Proof. From Euler-Maclaurin formula we get the following approximation for large N

N∑
l=i

1

l
=

∫ N

i

1

x
dx+O(1) = lnN − ln i+O

(
1

N

)
+O

(
1

i

)
(89)

Using this result we get

Wi

i
+ ...+

WN

N
=

N∑
l=i

1

l
+

N∑
l=i

Wl − 1

l
= lnN − ln i+

N∑
l=i

Wl − 1

l
+ o(1) (90)

when N and i are large. Also Kolmogorov’s two series theorem implies that the series
N∑
l=i

Wl − 1

l
is convergent as

N∑
l=i

V ar

(
Wl − 1

l

)
and

N∑
l=i

E

[
Wl − 1

l

]
are convergent.

Also Proposition 13 states that
N∑
l=i

Wl − 1

l
converges to Gumbel distribution. This

proves the approximation (88).
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By substituting (88) into (87), the statistical sum is expressed as follows:

Zn(β) =
N∑
i=1

exp

{
βA(n)f

(
Wi

i
+ ...+

WN

N

)}

=
N∑
i=1

exp
{
βA(n)f

(
lnN − ln i+O(1)

)}
(91)

5.3.2 Computation of Limits

In this section, we compute free energy for i.i.d. random variables in the statistical

sum, (73), which are functions of exponential random variables such that Xi = f(Yi)

(84). We make use of the simplified statistical sum formula (91) and obtain the

asymptotic behavior of the free energy. At the very end, we show two phase transitions

for a mixed Weibull distribution.

5.3.3 Weibull Type Distribution

Let Xi = f(Yi) = Y
1/%
i %1/% are i.i.d. random variables because Yi’s are i.i.d standard

exponential random variables as in (84). It is easily seen that Xi’s have Weibull

distribution:

P{Xi > a} = P

{
Yi >

a%

%

}
= exp

{
−a

%

%

}
(92)
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where a ≥ 0. Also, we select A(n) = n1/%
′

in the statistical sum (73). The statistical

sum can be expressed as

Zn(β) =
N∑
i=1

exp{βA(n)Xi}

=
N∑
i=1

exp
{
βn1/%

′

%1/%
(
n− ln i+O(1)

)1/%}
(93)

by using (74), (88). Also, Euler-MacLaurin series gives us the approximate integral

of this series:

N∑
i=1

exp
{
βn1/%

′

%1/%(n− ln i+O(1))1/%
}

=

∫ N

1

exp
{
β%1/%n1/%

′

(n− lnx+O(1))1/%
}
dx+O(1) (94)

Note that for some c > 0, we can find bounds on ZN(β) such that

N1∑
i=1

exp
{
βn1/%

′

%1/% (n− ln i− c)1/%
}
< ZN(β) <

N∑
i=1

exp
{
βn1/%

′

%1/% (n− ln i+ c)1/%
}

where N1 = [en−c]. The integral in (94) is computed by replacing O(1) with c in

Appendix 6 using Laplace method. This helps us to find the lower and upper bounds

of ZN(β). As they only differ by a constant multiplier, these constant multipliers

cancel out in the limit so as to give free energy as:

χ(β) = lim
n→∞

logZn(β)

n
=


1 +

β%
′

%′
, if 0 < β < βc = %1/%

′
,

β%1/%, if β ≥ βc.

Note that χ(βc) = % and χ′(βc) = 1
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5.3.4 Relatively Heavy Tailed Distribution

Let xi = f(Yi) =
1 + Yi

ln(1 + Yi)
where Yi s are i.i.d random variables with standard

exponential distribution (84). Note that these random variables have heavier tails

than Weibull distribution.

P{Xi > a} = P

{
1 + Yi

ln(1 + Yi)
> a

}
= exp

{
−a ln a− a ln ln a+O(1)

}
(95)

We select A(n) = lnn in the statistical sum (73). By using (74), (88), the asymptotic

of the statistical sum can be expressed as

Zn(β) =
N∑
i=1

exp{βA(n)Xi} ∼=
N∑
i=1

exp

{
β lnn

1 + n− ln i

ln(1 + n− ln i)

}
∼=

N∑
i=1

exp {β (1 + n− ln i)} = eβn
N∑
i=1

eβ

iβ
(96)

The sequence of the sums,
N∑
i=1

eβ

iβ
, converges to the finite limit,

∞∑
i=1

eβ

iβ
iff β > 1.

When β < 1, we use Euler-MacLaurin series to approximate the asymptotic of the

the series in terms of an integral. It gives us:

N∑
i=1

eβ

iβ
∼= eβ

∫ N

1

1

iβ
dx ∼= eβ

exp{n(1− β)}
1− β

(97)

When β = 1, we again use Euler-MacLaurin series to approximate the asymptotic of

the the series in terms of an integral. It gives us:

N∑
i=1

eβ

i
∼= e

∫ N

1

1

i
dx ∼= e lnN (98)
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Then, free energy is given as:

χ(β) = lim
n→∞

logZn(β)

n
=


1, if 0 < β ≤ βc = 1,

β, if β > βc.

Also, note that χ(βc) = 1, χ′(βc) = 1 and they are continuous.

5.3.5 Relatively Light Tailed Double Exponential Distribution

Let Xi = f(Yi) = lnYi where Yi s are i.i.d random variables with standard expo-

nential distribution (84). Note that these random variables have lighter tails than

Weibull distribution.

P{Xi > a} = P {lnYi > a} = exp {−ea} (99)

for a ≥ 0. We select A(n) =
n

lnn
in the statistical sum (73). By using (74), (88),

the asymptotic of the statistical sum can be expressed as

Zn(β) =
N∑
i=1

exp{βA(n)Xi} ∼=
N∑
i=1

exp
{
β

n

lnn
ln(n− ln i)

}

We express the upper and lower bounds of χn(β) =
logZn(β)

n
for large n in the

following inequality,

logN1

n
+
β

n

lnn
ln(n− logN1)

n
<
logZn(β)

n
<
logN

n
+
β

n

lnn
ln(n)

n
(100)

where N1 = [eλn] for λ < 1. Simplification of this inequality gives us

λ+ β
n+ ln(1− λ)

n
<
logZn(β)

n
< 1 + β (101)
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for large n. Because λ is arbitrarily close to 1, we deduce that

lim
n→∞

logZn(β)

n
= 1 + β

for any β > 0.

5.4 Mixed Weibull Type Distribution

We repeat the experiment of selecting mixed Weibull type random variables. In

this experiment, we either choose Weibull type random variable with probability p or

shifted Weibull type random variable with probability q = 1− p. As a result of this

experiment, the random variables in the statistical sum (87) can be expressed as

X =


Y1, with probability p and P (Y1 > x) = exp

{
−x

%

%

}
an1/% + σY2, with probability q and P (Y2 > x) = exp

{
−x

%

%

}
Also, assume that we repeat this experiment N = [en] times. We obtain vn Weibull

and N − vn shifted Weibull random variables. Such a mixed distribution has the

following interpretation. We have N independent and identically distributed random

variables, {X1, X2, ..., Xi, ...XN}, in the statistical sum. The set of indexes is the union

of vn successes, Y j
1 , j = 1, 2, ..., vn, and N−vn failures, an1/%+σY k

2 , k = 1, 2, ..., N−vn.

Here vn has the binomial distribution B(N, p). Also,
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A(n) = n1/%
′
. Then we can express the statistical sum (87) as follows.

Zn(β) =
N∑
i=1

exp {βA(n)Xi}

=
vn∑
j=1

exp
{
βA(n)Y j

1

}
+

N−vn∑
k=1

exp
{
βA(n)

(
an1/% + σY k

2

)}
=

vn∑
j=1

exp
{
βA(n)Y j

1

}
+ exp {aβn}

N−vn∑
k=1

exp
{
βA(n)σY k

2

}
= Z1

n(β) + Z2
n(β)

It means that the exponent in the sum varies depending on the result of the experi-

ment. If Weibull type sample is selected in a single draw, exponent is βA(n) = βn1/%
′
.

If shifted Weibull type sample is selected in the same single draw, exponent is

σβA(n) = βn1/%
′
σ. When σ is different than 1, this gives 2 phase transitions in

free energy.

For mixed Weibull case, we have vn successes as a result of random sampling. We

assume that vn, Y j
1 , Y k

2 are independent. In the previous section 5.3.3, we obtained

free energy for Weibull case. We can still make use of this section’s results for Y j
1 ’s.

For Y k
2 ’s, we simply use the same formulation from 5.3.3 by replacing β with σβ.

Using the independence of the random variables, it can be stated that

Z1
n(β) =

vn∑
i=1

eβn
1/%
′
Xi ∼=

p[e]n∑
i=1

eβn
1/%
′
Xi

∼=


exp

{(
1 +

β%
′

%′

)
n

}
, if β < %1/%

′
= βcritical1

exp
{
β%1/%n

}
, if β ≥ βcritical1

In the case of shifted samples, we obtain:



49

Z2
n(β) = eaβn

[e]n−vn∑
i=1

eβn
1/%
′
σXi ∼= eaβn

(1−p)[e]n∑
i=1

eβσn
1/%
′
Xi

∼=


exp

{(
1 + aβ +

(βσ)%
′

%′

)
n

}
, if β <

%1/%
′

σ
= βcritical2

exp
{(
aβ + βσ%1/%

)
n
}
, if β ≥ βcritical2

To be able to calculate free energy, χ(β) = lim
n→∞

lnZn(β)

n
, we make use of the

following inequality

max(Z1
n(β), Z2

n(β)) < Zn(β) < 2 max(Z1
n(β), Z2

n(β))

ln max(Z1
n(β), Z2

n(β)) < lnZn(β) < ln 2 + ln max(Z1
n(β), Z2

n(β))

lim
n→∞

ln max(Z1
n(β), Z2

n(β))

n
< lim

n→∞

lnZn(β)

n
< lim

n→∞

ln 2 + ln max(Z1
n(β), Z2

n(β))

n

which implies that

lim
n→∞

lnZn(β)

n
= lim

n→∞

ln max(Z1
n(β), Z2

n(β))

n

For large n, when σ > 1

χ(β) = lim
n→∞

lnZn(β)

n

∼=



1 + max

(
β%
′

%′
, aβ +

(βσ)%
′

%′

)
, if β <

%1/%
′

σ
= βcritical2

max(1 +
β%
′

%′
, aβ + βσ%1/%), if βcritical2 ≤ β < %1/%

′
= βcritical1

βmax(%1/%, a+ σ%1/%), if βcritical1 ≤ β
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For large n, when σ < 1

χ(β) = lim
n→∞

lnZn(β)

n

∼=



1 + max

(
β%
′

%′
, aβ +

(βσ)%
′

%′

)
, if β < βcritical1

max

(
%1/%, 1 + aβ +

(βσ)%
′

%′

)
, if βcritical1 ≤ β < βcritical2

βmax
(
%1/%, a+ σ%1/%

)
, if βcritical2 ≤ β



CHAPTER 6: APPENDIX

Appendix A: Asymptotic Behavior of Weibull Integral for REM

6.1 Integral for Weibull

We claim that the follwing integral’s asymptotic equivalent for large n is as follows

ln I(β) = ln

∫ N

1

exp
{
β%1/%n1/%

′

(n− lnx+ c)1/%
}
dx

=


n

(
1 +

β%
′

%′

)
+ o(n), if 0 < β < βc = %1%

′
,

nβ%1/% + o(1), if β ≥ βc.

(102)

where N is defined in (74).

Proof. Let y = lnx− c and y = nz. These substitutions provide us

∫ N

1

exp
{
β%1/%n1/%

′

(n− lnx+ c)1/%
}
dx

= nec
∫ 1

0

exp
{
n
(
z + β%1/%(1− z)1/%

)}
dx

where we define g(z) = z + β%1/%(1− z)1/% and it follows that

g′(z) = 1− β

%1/%
′
(1− z)1/%

′

Then the conditions below are satisfied:

If β < %1/%
′

= βc, then g(z) has a maximum at zl = 1− β%
′

%
.

If β ≥ %1/%
′

then g(z) has maximum at zl = 0 as our integration region is restricted
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to (0, 1). Then, the asymptotic of the integral can be driven using Laplace Method.

It is expressed as:

ln I(β) =


n

(
1 +

β%
′

%′

)
+ o(n), if 0 < β < βc = %1/%

′
,

nβ%1/% + o(n), if β ≥ βc.
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Appendix B: Application of Laplace Method to Weibull and Double Exponential

Distribution

6.2 Weibull Distribution

Suppose that X has Weibull distribution (6). We are interested in finding the

asymptotic equivalent of the cumulant generating function (12). Using the substitu-

tion x = t%
′−1y, we obtain

E[etX ] =

∫ +∞

0

etXfX(x) d(x)

= t%
′
∫ +∞

0

y%−1 exp

{
t%
′
(
y − y%

%

)}
d(y)

Also, g(y) = y− y
%

%
has a maximum at y = 1 and the following conditions are satisfied:

g(1) = 1− 1

%

g
′
(1) = 0

g
′′
(1) = −%+ 1 < 0

Then we can find the asymptotic expression using Laplace method:

H(t) = logE[etX ] =
t%
′

%′
+
%
′

2
log(t) +

1

2
log(

2π

%− 1
) + o(1)

as t→∞. In the limit we can see that H0(t) = t%
′
/%
′
.

6.3 Double Exponential Distribution

1. We calculate cumulant generating function (12) for large t when X has double

exponential distribution (8). The density of this distribution is expressed as

fX(x) = exp{1 + x− ex}
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for x > 0. Use the substitution x = y + ln(t+ 1) to obtain

E[etX ] =

∫ +∞

0

etXfX(x) d(x)

= exp {1 + ln(t+ 1) + t ln(t+ 1)}
∫ +∞

− ln(t+1)

exp {(t+ 1)(y − ey)} dy

Also, g(y) := y − ey, has a maximum at y = 0 from g
′
(y) = 1− ey = 0. Then we

can apply Laplace method to obtain:

H(t) = logE[etX ] ∼= t ln(t)− t+
ln t

2
+ smaller terms as t→∞

2. We try to evaluate integrals of type

∫ +∞

−M1(t)

exp {M2(t)(y − ey)} 1{y≤K} dy

using Laplace transform where K < 0 is the maximum point of the region of

integration and M1(t),M2(t)→∞ as t→∞. For large t this integral is equivalent

to ∫ K

−M1(t)

exp {M2(t)(y − ey)} dy

Because g(y) = y − ey has a maximum at 0, g′(y) > 0 for negative y and the

maximum point is outside the interval of integration, the major contribution to

the integral comes from the neighborhood of the boundary point K. Then, the

Laplace method gives us

∫ K

−M1(t)

exp {M2(t)(y − ey)} dy ∼= exp
{
M2(t)(K − eK)

} 1

M2(t) | g′(K) |
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3. We evaluate integrals of type

∫ +∞

0

exp {M2(t)(y − ey)} 1{y>K} dy

using Laplace transform where K > 0 is the maximum point of the region of

integration and M2(t)→∞ as t→∞. For large t this integral is equivalent to

∫ ∞
K

exp {M2(t)(y − ey)} dy

Because g(y) = y − ey has a maximum at 0, g′(y) < 0 for positive y and the

maximum point is outside the interval of integration, the major contribution to

the integral comes from the neighborhood of the boundary point K. Then, the

Laplace method gives us

∫ ∞
K

exp {M2(t)(y − ey)} dy ∼= exp
{
M2(t)(K − eK)

} 1

M2(t) | g′(K) |

4. We drive the asymptotic equivalent of K =
lnB(t) + ln τ

t
− ln(at+ 1) for large t.

By (15),

K =
lnB(t) + ln τ

t
− ln(at+ 1) = lnλ+ ln t+

ln τ

t
− ln(at+ 1)

∼= ln(λ/a) +
ln τ

t
− ln

(
1 +

1

at

)

5. We want to simplify NE[Y a1{Y≤τ}] using the result, (35),

NE[Y a1{Y≤τ}]

=
N(t)

Ba(t)
exp{(at+ 1) ln(at+ 1)} exp

{
(at+ 1)(K − eK)

} e

(at+ 1) | g′(K) |

Assume that λ/a < 1. Using (15), (18), and K = ln(λ/a) +
ln τ

t
− ln

(
1 +

1

at

)
,
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we obtain

NE[Y a1{Y≤τ}] = eλt
(at+ 1)at+1

(λt)at
exp

{
(at+ 1)(K − eK)

} e

(at+ 1) | g′(K) |

= aet

(
aaeλ

λa

)t
exp

{
(at+ 1)(K − eK)

} e

(at+ 1) | g′(K) |

= aet

(
aaeλ

λa

)t(
λ

a

)at+1

τa−λe−1−tλ
e

(at+ 1)|g′(K)|

=
λτa−λe

|g′(K)|

where g(y) = y − exp{y} and |g′(K)| ∼= 1− λ/a

6. We want to simplify NE[Y 1{Y≤τ}] using the result (41),

NE[Y 1{Y≤τ}]−
A(t)

B(t)

=
N(t)

B(t)
exp{(t+ 1) ln(t+ 1)} exp

{
(t+ 1)(K − eK)

} e

(t+ 1) | g′(K) |

where A(t) is given in (16a) for 0 < λ < 1. Using (15), (18), and

K = lnλ+
ln τ

t
− ln

(
1 +

1

t

)

we obtain

NE[Y 1{Y >τ}] = eλt
(t+ 1)t+1

(λt)t
exp

{
(t+ 1)(K − eK)

} e

(t+ 1) | g′(K) |

= et

(
eλ

λ

)t
exp

{
(t+ 1)(K − eK)

} e

(t+ 1) | g′(K) |

= et

(
eλ

λ

)t
λt+1τ 1−λe−1−tλ

e

(t+ 1)|g′(K)|

=
λτ 1−λe

|g′(K)|

where g(y) = y − exp{y} and |g′(K)| ∼= 1− λ
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