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ABSTRACT

UNKYUNG LEE. Analysis of semiparametric regression models for the cumulative incidence
functions under the two-phase sampling designs. (Under the direction of DR. YANQING SUN)

Competing risks often arise where a subject may be exposed to two or more mutually exclusive

causes of failure. In the competing risks setting, the effects of covariates on the semiparmetric model

for cumulative incidence function can be assessed by using direct binomial regression approach. In

epidemiologic cohort studies, case-cohort study designs have been widely used to evaluate the effects

of covariates on failure times when the occurrence of the failure event is rare. Under the case-cohort

design, the covariate histories are investigated only for the subjects who experience the event of

interest (cases) during the follow-up period and for a relatively small random sample (the subcohort)

from the original cohort. In this dissertation, we study estimating procedures for the cumulative

incidence function based on competing risks data under case-cohort/two-phase sampling designs.

First, we introduce missing model for the cumulative incidence function. The estimation proce-

dure is based on the direct binomial regression model (Scheike et al., 2008), which enables us to

evaluate the effects of the covariates directly when there exists competing risks. We develop an

estimating equation for the missing model by using the inverse probability weighting of the com-

plete cases. We also study the asymptotic properties of the inverse probability weighting estimators.

The simulation studies show that the IPW methods have satisfactory finite-sample performance.

However, this method loses the efficiency because it still use only complete data of subjects.

Second, we proposed an estimating equation by using augmented inverse probability of complete

cases for the semiparametric model using identity link function. The AIPW method is doubly

robust and it can improve efficiency. The asymptotic properties of the propose AIPW estimators

are established. The finite-sample properties of the estimators are investigated by the simulation

studies. We use the auxiliary variables that may improve efficiency through their correlation with

the phase-two covariates.

The proposed estimating methods are applied to analyze data from the RV144 vaccine efficacy

trial.
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CHAPTER 1: INTRODUCTION

This chapter aims to review previous work and introduce our missing data on the cumulative

incidence function. In section 1.1, we review basic background for competing risks data, how to

summarize the competing risks probabilities and estimate those probabilities. In section 1.2, we

review literature on regression models to estimate covariate effects for the cumulative incidence

function, focusing on direct regression models such as Fine and Gray model (Fine and Gray, 1999)

and direct binomial model (Scheike et al., 2008). We also review case-cohort study design (Prentice,

1986), which is a form of two-phase sampling (Kulich and Lin, 2004). In section 1.3, we will allow

some covariates have missing data on the flexible direct binomial model proposed by Schike and

others (Scheike et al., 2008).

1.1 Competing Risks Data

The competing risks models are concerned with the situation where each individual may be

exposed to two or more mutually exclusive causes of failure. These causes may compete with each

other, but the eventual failure occurs due to exactly one of these causes of failure. Each of these

causes is called a competing risk.

Competing risks data have arisen in many research area such as biomedical, public health, ac-

tuarial science, social science and engineering. In cancer study, death due to cancer may be of

interest and deaths due to other causes such as surgical mortality and old age are competing risks

(Putter et al., 2007). The study of failures of engines fitted to heavy duty vehicles (Hinds, 1996) is

associated with five different competing risks. A competing risks model is also used in modeling the

unemployment time (Flinn and Heckman, 1983), where failure time is the waiting time till the end

of unemployment and reasons for leaving unemployment were considered as competing risks.

In the presence of competing risks data, a problem arises when the occurrence of the event of

interest is precluded by that of another event.
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1.1.1 Modeling Competing Risks Data

Let Tk be the kth latent failure time with k = 1, 2, . . . ,K and let Z be a possibly time dependent

covariate vector. Let T = min1≤k≤K{Tk} be the first observed failure time with the cause of failure

ε.

In early approaches, it is well known that there are identifiable problems in modeling competing

risks data in terms of latent failure time (Tsiatis, 1975). The problems arise because we only observe

the earliest of those latent failures T with failure type ε = k.

Let S(t1, . . . , tk) = P (T1 > t1, . . . , TK > tk) the joint survival distribution of the time to the k

different events and let Sk(t) = P (Tk > t) = S(0, . . . , 0, t, 0, . . . , 0) be the marginal distribution.

Tsiatis (1975) has proved that neither the joint survival distributions nor the marginal distributions

of the latent failure times are identifiable from the observed data if the competing risks are dependent.

The observed data (T, ε) cannot provide enough information to tell which one is the true underlying

distribution among two different marginal survival functions since they reproduce the same cause

specific subdistribution function. Moreover, it is not possible to test whether the assumption of

independence of the marginal failure time distributions is valid.

Alternatively, the cause-specific hazard and the cumulative hazard function have been proposed

to summarize the competing risks probabilities. These two functions completely specify the joint

distribution of the failure time T and the failure cause ε (Lawless, 2003) and both are directly

estimable from the competing risks data (Prentice et al., 1978). None of them makes any assumptions

about the relationship between the competing risks such as independence.

Under competing risks data, the cause-specific hazard function λk(t) for cause k is defined as

λk(t|Z) = lim
∆t→0

P (t ≤ T < t+ ∆t, ε = k|T ≥ t, Z)

∆t
, k = 1, ...,K, (1.1)

where represents that the instantaneous failure rate from cause k at time t in the presence of all

causes of K failure types, given covariates Z. The cumulative cause-specific hazard is defined by

Λk(t|Z) =

∫ t

0

λk(s|Z)ds. (1.2)
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Failure types are assume to be distinct, one of {1, . . . ,K}. The overall hazard function conditional

on a vector of covariates Z can be defined in terms of cause-specific hazard functions as

λ(t|Z) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t, Z)

∆t
=

K∑
k=1

λk(t|Z).

An equivalent identifiable quantity is the cumulative incidence function of cause k given covariates

Z is defined as

Fk(t|z) = P (T ≤ t, ε = k|Z), (1.3)

and it represents the probability of the subject failing from cause k before given time t in the presence

of all the competing risks. The total cumulative incidence function is

F (t|Z) = P (T ≤ t|Z) =

K∑
k=1

Fk(t|Z).

The overall survival function S(t|Z) can be expressed in terms of the cause specific hazard function

S(t|Z) = P (T > t|Z) = exp(−
∫ t

0

K∑
k=1

λk(s|Z)ds) = exp(−
K∑
k=1

Λk(s|Z)), (1.4)

which is interpreted as the probability of not having failed from any cause at time t.

From the definition of cause-specific hazard function (1.1),

λk(t|Z)∆t ≈ P (t ≤ T < t+ ∆t, ε = k|T ≥ t, Z).

This implies that

P (t ≤ T < t+ ∆t, ε = k|Z)

∆t
≈ P (T ≥ t)λk(t|Z) (1.5)

for a infinitesimal ∆t. The left-hand side of (1.5) is approximately the probability density function

for cause k when ∆t goes to 0. Therefore, by integrating both side of (1.5), the cumulative probability

of cause k in (1.3) can be expressed in terms of the cause specific hazards and the overall survival

function as

Fk(t|Z) =

∫ t

0

λk(s|Z)S(s−)ds. (1.6)

The cumulative incidence function is also called subdistribution function (Pintilie, 2007) because
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it is not a proper distribution function. More precisely, the cumulative probability of failing from

cause k remains less than one, as limt→∞ Fk(t) = P (ε = k). Other alternative names for this func-

tion are the cause-specific failure probability (Gaynor et al., 1993), the crude incidence curve (Korn

and Dorey, 1992) and absolute cause-specific risk (Benichou and Gail, 1990).

Unfortunately, the standard survival analysis methods such as Kaplan Meire estimator and Log-

rank test have been often misused to analyze competing risks in medical literature. For example, the

standard Kaplan-Meier estimator for the jth failure estimates Sj(t|Z) = exp(−Λj(t|Z)). However,

it cannot be interpreted as marginal survival function of the jth failure time. This only makes sense

when analyzing data with a single event of occurrence even in the case of independent censoring

(Lawless, 2003). Furthermore, the complement of the standard Kaplan-Meier estimator, which is

the probability of a subject failing from cause j before or at time t, is greater than equal to the

cumulative incidence function,

1− Sj(t|Z) =

∫ t

0

λj(s|Z) exp(−Λj(s))ds

≥
∫ t

0

λj(s|Z) exp(−
K∑
k=1

Λk(s))ds = Fj(t|Z) (1.7)

with equality at time t if there is no competition,
∑K
k=1,k 6=j Λk(s) = 0. This shows the bias of the

standard Kaplan-Meier estimator if it is used to estimate Fj(t|Z) (Putter et al., 2007).

These problems come from the violation of assumption on Kaplan-Meier estimator that the dis-

tributions of times to the competing events are independent of the distribution of time to the event

of interest. For example, we consider censored subjects who never failed from the event of interest.

Because of independence of censoring distribution assumption, the subjects who never experience

the event of interest are treated as if they could fail at a later time. In this situation, the standard

Kaplan-Meier estimator overestimates the probability of failure. The bias is greater when the hazard

of the competing events is larger (Putter et al., 2007).
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1.1.2 Estimation for Cumulative Incidence Function

The cumulative incidence function Fk(t) for cause k can be estimated using equation (1.6) in the

presence of competing risk data. Let 0 < t1 < t2 < · · · < tN be the ordered distinct time points at

which failures of any cause occur. Let dki is the number of failures from type k at time ti, i = 1 . . . N .

It is allowed for a different subject to fail from the same cause k at the same time ti. Let ni be the

risk set at time ti, which is the number of patients who were not censored and have not failed yet

from any cause up to time ti. The discretized version of the cause-specific hazard function (1.1) is

λk(ti|Z) = P (T = ti, ε = k|T > ti−1), (1.8)

and it can be estimated by

λ̂k(t|Z) =
dki
ni
, . (1.9)

which is the proportion of subjects at risk who fail from cause k. By using the standard Kaplan-

Meier estimator, the overall survival probability at time ti including all types of events defined in

(1.4) can be estimated by

Ŝ(ti) = Ŝ(ti−1)Ŝ(ti|ti−1) = Ŝ(ti−1)(1− λ̂(ti))

=
∏
i:ti≤t

(
1−

K∑
k=1

λ̂k(ti)

)

=
∏
i:ti≤t

(1− di
ni

), (1.10)

where di =
∑K
k=1 dki denotes the total number of failures from any cause at ti. Thus, by using (1.9)

and (1.10), the cumulative incidence function (1.3) of cause k can be estimated by

F̂k(t|Z) =
∑
i:ti≤t

λ̂k(ti|Z)Ŝ(ti−1). (1.11)

In the presence of competing risks, the interrelation among failure types is one of the distinct

problems in the analysis of failure times. The problem of testing the equality of two cause-specific

hazard rates has been studied by Bagai and Kochar (989a,b), Yip and Lam (1992), Neuhaus (1991),

Sen (1979), Aras and Deshpande (1992), Aly et al. (1994), Sun and Tiwari (1995),Sun (2001) and
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Gilbert et al. (2004) among others. Alternatively, Gray (1988), Benichou and Gail (1990), Fine and

Gray (1999), and McKeague et al. (2001) and Scheike et al. (2008) considered the problem on the

cumulative incidence functions.

1.2 Literature Review

It is important to study the covariate effects on the cumulative incidence function of a particular

failure since the cumulative incidence function is a proper summary statistics for analyzing competing

risks data (Zhang et al., 2008).

In the past, hazard-based regression models have been studied by many authors including Prentice

et al. (1978), Cheng et al. (1988), Shen and Cheng (1999), Lin and Ying (1994), and Scheike and

Zhang (2002, 2003). They used to model all cause-specific hazard functions and then estimate the

cumulative incidence function based on these cause-specific hazard functions. From these approaches,

it is quite easy to obtain estimation of the cumulative incidence function if the cause specific hazards

are correctly modeled. However, it is difficult to summarize the effect of covariates on the cumulative

incidence function in the presence of competing risks data in a simple way.

In section 1.2.1, we review Cox proportional regression model as one of the most popular hazard-

based regression models in the presence of competing risk. To overcome disadvantages of hazard-

based competing risks model, Fine and Gray (1999) model based on subdistribution hazard and

Direct binomial regression model Scheike et al. (2008) will be discussed in section 1.2.2.

1.2.1 Hazard Based Regression Model

Prentice et al. (1978) proposed Cox regression model for the cause-specific hazard λk(t|Z) with

possibly time dependent covariate vector Z by

λk(t|Z) = λk,0(t) exp(βTk Z), (1.12)

where λk,0(t) is an unspecified cause-specific baseline hazard rate and the vector βk represents

covariate effects on cause k. Since there is no structure on λk,0(t), then there is no need to make

any assumption on the distribution of the lifetimes of the baseline population. The covariate effects



7

in (1.12) are proportional for the cause-specific hazards. The model (1.12) treats failures from the

cause of interest k as events, and failures from causes other than k as censored observations. Under

independent censoring assumption, the cumulative incidence function for cause k given covariates Z

in the presence of all competing risks is

Fk(t|Z) =

∫ t

0

λk(s|Z) exp(−
K∑
k=1

∫ t

0

λk(s|Z))ds. (1.13)

The regression coefficients on the model (1.12) can be obtained by using standard likelihood methods.

However, the effects of the covariates on the cause-specific hazard rate cannot be translated

directly to an effect on the cumulative incidence function (1.13) under the model (1.12). The reason

is that the failures from competing events are ignored by treating them as censored observations

(∆ = 0) on the analysis of competing risks data, but the cumulative incidence function (1.13) for

cause k not only depends on the hazard of cause k, but also on the hazards of all other causes.

For example, the important covariate effects for the cause-specific hazards will highly influence the

cumulative incidence probability, but an effect on the cause specific hazard for a particular cause k

may have an adverse effect on the overall survival. Therefore, the significant covariate for all cause-

specific hazards may not affect the cumulative incidence probability for cause k. Also, it is possible

that some covariates influence the cumulative incidence function, but it may not be significantly

associated with any of the cause-specific hazards (Scheike and Zhang, 2008). Therefore, the effect

of covariates through modeling the cause specific hazards can not be simply used to predict the

cumulative incidence function.

1.2.2 Direct Modeling on Cumulative Incidence Function

To overcome those problems as mentioned in section 1.2.1, some new regression approaches have

been considered to evaluate the covariate effects on the cumulative incidence function directly.

Fine and Gray (1999) developed a regression model that directly links the regression coefficients

with the cumulative incidence function using subdistribution hazard introduced by Gray (1988).

They consider a semiparametric regression model with transformation g(u) = log{−log(1− u)} for
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the cumulative incidence function, which is

g{Fk(t|Z)} = hk,0(t) + βT
kZ, k = 1, ...,K, (1.14)

where hk,0(·) is a completely unspecified, invertible, and monotone increasing function and βk is a

p × 1 parameter vector related to cause k. The transformation g(u) = log{−log(1 − u)} leads to a

reasonable assumption that there is a constant difference between cumulative incidence functions for

two individuals with covariate vectors Z1 and Z2. That is, g{Fk(t|Z1)}−g{Fk(t|Z2)} = {Z1−Z2}Tβk

for all t.

To directly estimate the model (1.14), they used the subdistribution hazard (Gray, 1988) for

cause k

λ∗k(t|z) = lim
∆t→0

P (t ≤ T < t+ ∆t, ε = k|T ≥ t ∪ {T < t, ε 6= k})
∆t

=
dFk(t|z)/dt
1− Fk(t|z)

=
−dlog{1− Fk(t|z)}

dt
. (1.15)

This subdistribution hazard function for cause k represents the probability of a subject to fail from

cause k in a very small time interval ∆t, given the subject experienced no event until time t or

experienced an event other than k before time t. By the ordered distinct time points and definitions

in subsection 1.1.2, it can be estimated at time ti by

λ̂∗k(ti|z) =
dki
n∗i
, (1.16)

where dki denotes the number of failures of cause k at time ti and n∗i is the modified risk set including

all subjects who did not experience any event until time ti and all subjects that failed before ti from

a cause other than k. Thus, the modified risk set has subjects having already experienced events

other than cause k. Those subjects are always at future risks of event of interest cause k.

By using a semiparametric proportional hazards model with time varying covariates Z(t),

λ∗k(t|Z) = λ∗k,0(t|Z) exp(ZT(t)βk) (1.17)

where λ∗k,0(t|z) is a completely unspecified, nonnegative function in time t and by applying g(u) =
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log{−log(1−u)} transformation to (1.14) with hk,0(t) = log{
∫ t

0
λ∗k,0(t)}, they proposed the following

cumulative incidence function for cause k

Fk(t|Z) = 1− exp

[
−
∫ t

0

λ∗k,0(s) exp{βTk Z(s)}ds
]
, (1.18)

which enables us to assess the effect of the covariates on the cumulative incidence function directly.

With complete data, the standard partial likelihood method with modified risk set can be applied

(Fine and Gray, 1999). For right censored incomplete competing risks data, Fine and Gray (1999)

utilized inverse probability of censoring weighted (ICPW) method (Robins and Rotnitzky, 1992)

to construct an unbiased estimating function from the score function of the complete data partial

likelihood (Fine and Gray, 1999). This approach can be analyzed by using the ‘comprsk’ package

for R developed by Robert Gray.

However, the Fine and Gray model may not fit the data well even though it is easy to decide if

covariates significantly affect the cumulative incidence function for a specific cause of failure (Scheike

and Zhang, 2008). To remedy this problem, Scheike et al. (2008) have proposed a class of general

models containing the Fine and Gray model.

Scheike et al. (2008) proposed a fully nonparametric model to evaluate covariate effects directly

on the cumulative incidence function for cause k, that is

h{Fk(t;η)} = XT
i η(t), i = 1, ..., n (1.19)

where h(·) is a known link function and η(t) is time varying effects of the covariate Xi. The (p+1)−

dimensional regression coefficient η(t) is an unspecified function and Xi = (1, Xi1, . . . , Xip)
T. The

first component of Xi yields the time-dependent intercept. This model is very flexible since it allows

covariates to have time varying effects. The model (1.19) contains the Aalen’s generalized additive

model by using log link function h(x) = log(1 − x). They proposed a direct binomial regression

method for a regression analysis by using the inverse probability of censoring weighted response.
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They also proposed a class of general semiparametric models by

h{Fj(t|X,Z)} = {XT
i η(t)}g(γ, Zi, t), (1.20)

h{Fj(t|X,Z)} = XT
i η(t) + g(γ, Zi, t) (1.21)

where g is a known function, η(t) is the time varying effects of Xi = (1, Xi1, . . . , Xip)
T and γ is a

time invariant coefficient of Zi = (Zi1, . . . , Ziq)
T.

With log link function h(x) = log(1 − x) and g(γ, Zi, t) = exp(γTZi), the multiplicative model

(1.20) reduces to a Cox-Aalen model which contains the Cox model and Aalen’s additive model.

When x = 1, the model (1.20) reduces to Fine and Gray (1999) model. With log link function

h(x) = log(1 − x) and g(γ, Zi, t) = γTZit, the model (1.21) generates a partially semiparametric

additive model (McKeague and Sasieni, 1994). When x = 1, the model (1.21) reduces to the Lin

and Ying (1994) special additive model.

Scheike and Zhang (2008) also proposed estimating equations to estimate η(t) and γ simultane-

ously. They derived asymptotic results and studied the predicted cumulative incidence function for

a given set of covariate values. Scheike and Zhang (2008) considered a new simple goodness-of-fit

procedure for the proportional subdistribution hazards assumption.

One drawback for both direct binomial and subdistribution approaches is to estimate the censor-

ing distribution for each individual. Usually, the Kaplan-Meier estimator is utilized for the censoring

distribution. This non-augmented inverse probability weighting technique was firstly proposed by

Koul et al. (1981). By using the semiparametric efficiency theory in Bickel et al. (1993), Robins

and Rotnitzky (1992) showed that regression modeling of the censoring distribution improves ef-

ficiency of the inverse probability weighting technique. This is because each censored observation

carries information about the relationship between event time and covariates even if the censoring

is independent of the covariates.

We will allow covariates to have missing values in the general semiparametric additive model

(1.21) in subsection 1.3. We develop estimating equations to analyze the missing model in chapter

2 and chapter 3.
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1.2.3 Case-Cohort/Two Phase Sampling

Epidemiologic cohort studies and disease prevention trials often necessitate the follow-up of several

thousand subjects for a number of years and thus can be prohibitively expensive (Prentice, 1986).

The assembly of covariate histories for all cohort members result in much cost and effort in such

studies. Therefore, it is an important issue to reduce cost in those studies and achieve the same

goals as a cohort study.

Among several study designs proposed to reduce cost, the case-cohort design has been widely used

in those studies to assess the effects of possibly time-dependent covariates on a failure time. The

case-cohort design has been proposed by Prentice (1986). Under this design, the covariate histories

are investigated only for the subjects who experience the event of interest during the follow-up period

(the cases) and for a relatively small random sample (the subcohort) from the original cohort. This

design is very useful where the occurrence of the failure event is rare in large cohort studies since

it is unnecessary to investigate the covariates of event-free subjects more than it needs to be done.

The case-cohort data is a biased sample and thus applying standard methods for randomly sampled

data to the biased data may result in biased estimation (Sun et al., tted).

The case-cohort design is also a form of two-phase sampling. At the first phase, the study cohort

is randomly sampled from a general population. The first phase covariate data are observed on all

of the subjects in the cohort. There are treatment type, age and gender as examples. At the second

phase, the subcohort is randomly selected from the study cohort. Complete covariate histories are

assembled for the cases and the subcohort at this stage by collecting the second phase covariate

including all of the expensive covariates which are not measured at the first phase. Those covariates

are called the second phase covariate data.

The Cox (1972, 1975) proportional hazard model has been widely used in analysis of case cohort

data. Many authors have proposed statistical methods for case-cohort studies by modifying the full

data partial likelihood score function for the Cox model, giving the inverses of true or estimated

sampling probabilities to the score functions as weight functions, including Prentice (1986), Self and

Prentice (1988), Kalbfleisch and Lawless (1988), Lin and Ying (1993), Barlow (1994), Chen and
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Lo (1999), Sørensen and P.K. (2000), Borgan et al. (2000), Chen (2001), Kulich and Lin (2004),

and Samuelsen et al. (2007). The Cox model assumes that the hazard functions associated with

different covariate values are proportional over time. This assumption may be too restrictive and

the Cox model does not always fit data well in practice. Alternatively, the accelerated failure time

model and the proportional odds model have been studied by Chen (2001) and Kong and Cai (2009),

respectively.

Additive hazard model is another popular framework for the analysis of case-cohort data. This

is because the risk differences between different treatment can be easily derived from the regression

coefficients. It also gives a valuable public health interpretation. Kulich and Lin (2000) applied addi-

tive hazards model (Lin and Ying, 1993) to case-cohort study. Kang et al. (2013) recently proposed

an estimation method for case-cohort data with the simple additive model of Lin and Ying (1994)

that allows only constant covariate effects. Sun et al. (tted) proposed an estimation procedure for

the semiparametric additive hazards model with case-cohort/two-phase sampling data, which allows

the effects of some covriates to be time varying while specifying the effects of others to be constant.

They used the inverse probability weighting of complete-case technique of Horvitz and Thompson

(1952). With this approach, if a subject has a missing value for one covariate, then the observed

values of other covariates together with the observed failure/censoring time of the same subject are

not utilized. This leads to loss of efficiency. They also proposed an augmented estimating equation

on the basis of the inverse probability weighting of complete cases by adapting the theory of Robins

et al. (1994). By doing so, they showed the efficiency of the proposed estimators has been improved.

1.3 Model

Let Ti be the failure time for the ith subject, i = 1, . . . , n, and εi ∈ {1, 2, . . . , k} denote the

failure type. Let Xi = (1, Xi1, . . . , Xip)
T and Zi = (Zi1, . . . , Ziq)

T are (p + 1)- and q-dimensional

possibly time-dependent covariate vectors, respectively. Let Ci be the right censoring time for the

ith subject. Let ∆i = I(Ti ≤ Ci) be the indicator which is 1 when the observation is uncensored.

The observed n independent identically distributed data can be represented by Yi = (Xi, Zi, T̃i, ε̃i),
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where T̃i = min(Ti, Ci) and ε̃i = εi∆i. The value ε̃i = εi indicates that the system failure time is

observed at T̃i and the cause of failure is of type εi, where εi = 1, 2, . . . , k. Let [a, τ ] be the time

period from which data are collected. We assume that (Ti, εi) are independent of Ci given covariates

(Xi, Zi). In follow-up studies, the covariates of a subject are only meaningful in the time interval

when the subject is at-risk and still in the study, i.e., t ≤ T̃i.

Let F1(t|Xi, Zi) = P (Ti ≤ t, εi = 1|Xi, Zi) be the conditional cumulative incidence function given

covariates (Xi, Zi) for each ith subject. We consider the following the additive semiparametric model

for F1(t|Xi, Zi):

F1(t;Xi, Zi) = h{XT
i η(t) + g(γ, Zi, t)} (1.22)

where h(·) is a known link function, g(·) is a known function of (γ, Zi, t), η(t) is a (p+1)-dimensional

vector of time-dependent regression coefficients and γ is a q-dimensional vector of time-invariant co-

efficients. The first component of Xi yields the time-dependent intercept. Under model (1.22), the

effects of the covariates Xi change with time while the effects of Zi are time-invariant.

Suppose that Xi has two parts (X
(1)
i , X

(2)
i ). The covariates X

(1)
i and Zi are observed for all the

cohort members, but X
(2)
i is only observed for a subset(subcohort, phase two sample) of the study

subjects. Let ξi be the indicator of whether the subject i is selected into the phase-two sample.

The subject i with ξi = 1 has fully observed Xi and Zi. The subject i with ξi = 0 does not have

the observed values for X
(2)
i . Let Vi = {T̃i,∆i, ε̃i, X

(1)
i , Zi, Ai} where Ai denotes possible auxilary

variables that may be informative for selection of phase-two sample and / or phase-two covariates.

We assume that the probability a subject is missing the phase-two covariates X
(2)
i does not depend

on the values of these covariates P (ξi = 1|X(2)
i ,Vi) = P (ξi = 1|Vi). This assumption is the missing

at random (MAR) assumption (Rubin, 1976). However, the selection probability may depend on

any of the phase-one information Vi.

Let (Vi, X(2)
i , ξi), i = 1, 2, . . . , n be identically independent distributed data. The observed data

are (Vi, ξiX(2)
i , ξi), i = 1, 2, . . . , n. That is, {T̃i,∆i, ε̃i, Xi, Zi, Ai} are observed for a subject with

ξi = 1, and {T̃i,∆i, ε̃i, X
(1)
i , Zi, Ai} are observed if ξi = 0. The selection probability, defined as the

conditional probability that X
(2)
i is observed, is Si = P (ξi = 1|Vi). This selection probability Si
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may depend on outcomes ε̃i based on the competing causes of failure and the censoring indicator.

Under the competing risks model, classical case-cohort design implies that Si = 1 if ε̃i = 1 and

Si = P (ξi = 1|Vi, ε̃i 6= 1) < 1 if ε̃i 6= 1. A subject is referred to as the case if the failure time is

observed and the failure has cause 1; and the non-case, otherwise.



CHAPTER 2: ANALYSIS OF A SEMIPARAMETRIC CUMULATIVE INCIDENCE MODEL
WITH MISSING COVARIATES USING INVERSE PROBABILITY WEIGHTED METHOD

In this chapter, we analysis our missing model introduced in section 1.3 in chapter 1 by using

inverse probability weighting of complete cases proposed by Horvitz and Thompson (1952). The

estimation procedure is given in section 2.1. we estimate the selection probability and censoring

distribution. Based on direct binomial estimation on the weighted responses (Scheike et al., 2008),

we also develop estimating equation for the missing model. Asymptotic properties of the inverse

probability weighting estimators will be discussed in section 2.2. We conduct simulation studies

under the subdistribution models to evaluate the finite sample properties of the IPW methods in

section 2.3.

2.1 Estimation

2.1.1 Estimation Procedure

The selection probability Si is unknown in practice, but it can be estimated based on a parametric

model. Assume that ϕ(Vi, θ) is the parametric model for the probability of complete-case Si =

P (ξi = 1|Vi), where θ is a finite dimensional vector of parameters. For example, one can assume

that the logistic model is logit(ϕ1(Vi, θ1)) = θT1 Vi for those ε̃i = 1 and the different logistic model is

logit(ϕ2(Vi, θ2)) = θT2 Vi for those ε̃i 6= 1. Let θ = (θT1 , θ
T
2 )T. The parameter θ can be estimated by θ̂

as the maximizer of the observed data likelihood:

L(θ) = Πn
i=1{ϕ1(Vi, θ1)}ξiI(ε̃i=1){1− ϕ1(Vi, θ1)}(1−ξi)I(ε̃i=1)

·Πn
i=1{ϕ2(Vi, θ2)}ξiI(ε̃i 6=1){1− ϕ2(Vi, θ2)}(1−ξi)I(ε̃i 6=1) (2.1)

where I(D) is the indicator function of the set D.

Let Ni(t) = I(Ti ≤ t, εi = 1) be the counting process associated with cause 1 and let G(t|Xi, Zi) =
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P (Ci > t|Xi, Zi) be the conditional survival function of the censoring time for 0 ≤ t ≤ τ . Assume

that there exists a positive number 0 < δ ≤ 1 such that G(τ |x, z) ≥ δ > 0 for (x, z) in the range of

(Xi, Zi). Under conditional independence between Ci and (Ti, εi) given the covariates (Xi, Zi), we

have E(∆i|Xi, Zi, Ti, εi) = G(Ti|Xi, Zi). It follows that

E{ ∆iNi(t)

G(Ti|Xi, Zi)
|Xi, Zi} = E[E{ ∆iNi(t)

G(Ti|Xi, Zi)
|Ti, Xi, Zi, εi}|Xi, Zi]

= E[
1

G(Ti|Xi, Zi)
E{∆iNi(t)|Ti, Xi, Zi, εi}|Xi, Zi]

= E[Ni(t)|Xi, Zi]

= P (Ti ≤ t, εi = 1|Xi, Zi) = F1(t|Xi, Zi). (2.2)

We consider the estimating equation based on the weighted response ∆iNi(t)/G(Ti|Xi, Zi). In

practice, the censoring distribution G(t|xi, zi) is often unknown and can be estimated by the Kaplan-

Meier estimator or by using a regression model for censoring times such as a Cox regression model

or an additive Aalen regression model to improve efficiency. For simplicity, we use the Kaplan-Meier

estimator Ĝ(t) for G(t).

Asymptotic results of the maximum likelihood estimator θ̂ and the censoring distribution G(t)

will be discussed in section 2.2.

2.1.2 Inverse Probability Weighted Complete-Case Estimation

Following Horvitz and Thompson (1952), the inverse probability weighting of the complete cases

has been often used in missing data analysis.

Let Dη,i(t,η(t),γ) = ∂F1(t;Xi, Zi)/∂η(t) and Dγ,i(t,η(t),γ) = ∂F1(t;Xi, Zi)/∂γ. Let ψi(θ) =

ξi/ϕ(Vi, θ), where ϕ(Vi, θ) = I(ε̃i = 1)ϕ1(Vi, θ1) + I(ε̃i 6= 1)ϕ2(Vi, θ2). By modifying the estimating

equations of Scheike et al. (2008), the regression functions η(t) and parameters γ in model (1.22)

can be estimated based on the following estimating functions:

Uη(t,η(t),γ, θ̂) =

n∑
i=1

ψi(θ̂)Dη,i(t,η(t),γ)wi(t)

(
∆iNi(t)

Ĝ(Ti)
− F1(t;Xi,Zi)

)
, (2.3)

Uγ(τ,η(·),γ, θ̂) =

n∑
i=1

∫ τ

0

ψi(θ̂)Dγ,i(t,η(t),γ)wi(t)

(
∆iNi(t)

Ĝ(Ti)
− F1(t;Xi,Zi)

)
dt, (2.4)
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where wi(t) is a weight function.

Let W (t) = diag(wi(t)) and Ψ(θ) = diag(ψi(θ)). Let F 1(t,η(t),γ) be the n× 1 vector of the model

F1(t;Xi,Zi) in (1.22) for i = 1, . . . , n, denoting the ith element of the vector F 1(t,η(t),γ) as F1i(t).

R(t) be the n× 1 vector of weighted responses ∆iNi(t)/Ĝ(Ti), Dη(t,η(t),γ) and Dγ(t,η(t),γ) be

the n× (p+ 1) and n× q matrices with the ith rows equal to Dη,i(t,η(t),γ) and Dγ,i(t,η(t),γ),

respectively. The estimating equations given in (2.3) and (2.4) are equivalent to

Uη(t,η(t),γ, θ̂) = (Dη(t,η(t),γ))TW (t)Ψ(θ̂) {R(t)− F 1(t,η(t),γ)} , (2.5)

Uγ(τ,η(·),γ, θ̂) =

∫ τ

0

(Dγ(t,η(t),γ))TW (t)Ψ(θ̂) {R(t)− F 1(t,η(t),γ)} dt. (2.6)

Let l∞[0, τ ] be the set of uniformly bounded functions on [0, τ ] and B̃ = (l∞[0, τ ])p+1 ×Rq. The

estimating functions Uη,γ(η,γ, θ̂)={Uη(t,η(t),γ, θ̂),Uγ(τ,η(·),γ, θ̂)} are the mappings from B̃

to B̃. The inverse probability weighting of the complete-case estimators η̂(t) and γ̂ of η(t) and γ

solve the join estimating equation Uη,γ(η,γ, θ̂), that is, Uη,γ(η̂, γ̂, θ̂) = 0.

By mimicking the procedure of Scheike et al. (2008), the estimating equations (2.5) and (2.6) can

be solved by using an iterative algorithm. Consider the following Taylor expansion of F 1(t, η̂(t), γ̂)

around the values (η0(t),γ0):

F 1(t, η̂(t), γ̂) = F 1(t,η0(t),γ0) +Dη(t,η0(t),γ0) {η̂(t)− η0(t)}

+ Dγ(t,η0(t),γ0) {γ̂ − γ0}+ op(n
− 1

2 ). (2.7)

Replacing it into the score equations (2.5) and (2.6), and denoting Dη(t) = Dη(t,η0(t),γ0),

Dγ(t) = Dγ(t,η0(t),γ0) and F 1(t) = F 1(t,η0(t),γ0), we have

Uη(t, η̂(t), γ̂, θ̂) = DT
η(t)W (t)Ψ(θ̂)

[
R(t)−F 1(t)−Dη(t) {η̂(t)−η0(t)}−Dγ(t) {γ̂−γ0}

]
+ op(n

1
2 )

(2.8)

Uγ(τ, η̂(·), γ̂, θ̂) =

∫ τ

0

DT
γ(t)W (t)Ψ(θ̂)

[
R(t)−F 1(t)−Dη(t) {η̂(t)−η0(t)}−Dγ(t) {γ̂−γ0}

]
dt+ op(n

1
2 ).

(2.9)
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Solving equations (2.8) and (2.9) for η̂(t) and γ̂, the estimators for γ and η(t) are given by

γ̂ = γ0 +
{
Iγ(θ̂)

}−1

Bγ(θ̂) + op(n
− 1

2 ) (2.10)

η̂(t) = η0(t) (2.11)

+{Iη(t, θ̂)}−1{Dη(t)}TW (t)Ψ(θ̂)
{
R(t)−F 1(t)−Dγ(t){Iγ(θ̂)}−1Bγ(θ̂)

}
+ op(n

− 1
2 )

where

Iγ(θ) =

∫ τ

0

DT
γ(t)W (t)Ψ(θ)H(t, θ)Dγ(t) dt,

Bγ(θ) =

∫ τ

0

DT
γ(t)W (t)Ψ(θ)H(t, θ) {R(t)− F 1(t)} dt,

H(t, θ) = I −Dη(t)
[
Iη(t, θ)

]−1
DT
η(t)W (t)Ψ(θ),

Iη(t, θ) = DT
η(t)W (t)Ψ(θ)Dη(t). (2.12)

The estimators η̂(t) and γ̂ can be solved iteratively similar to Scheike et al. (2008) based on the

equations (2.10) and (2.11). Specifically, the (m+1)th iterative estimators are obtained by replacing

γ̂(m) and η̂(m)(t) for γ0 and η0(t) on the right side of (2.10) and (2.11) as the mth step estimators,

and replacing γ̂(m+1) and η̂(m+1)(t) for γ̂ and η̂(t) on the left side (2.10) and (2.11) as the (m+1)th

step estimators;

γ̂(m+1) = γ̂(m) +
{
I(m)
γ (θ̂)

}−1

B
(m)
γ (θ̂). (2.13)

η̂(m+1)(t) = η̂(m)(t)

+ {I(m)
η (t, θ̂)}−1{D(m)

η (t)}TW (t)Ψ(θ̂)
{
R(t)−F (m)

1 (t)−D(m)
γ (t){I(m)

γ (θ̂)}−1B
(i)
γ (θ̂)

}
, (2.14)

where I(m)
γ (θ̂), B

(m)
γ (θ̂), H(m)(t, θ̂) and I(m)

η (t, θ̂) are mth step estimators of Iγ(θ̂), Bγ(θ̂),

H(t, θ̂) and Iη(t, θ̂) obtained by plugging mth step estimators (η̂(m)(t), γ̂(m)) of (η(t),γ) into

Dη(t,η(t),γ), Dγ(t,η(t),γ) and F 1(t,η(t),γ). This approach can be implemented by using

‘timereg’ package for R developed by (Scheike and Zhang, 2008).
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2.2 Asymptotic Results

2.2.1 Asymptotic Results Concerning θ̂

The estimation method requires the following property on the maximal likelihood estimator θ̂

and the censoring distribution G(t).

Proposition 1. Let ϕ1(Vi, θ1) and ϕ2(Vi, θ2) be the parametric models for P (ξi = 1|Vi, ε̃i = 1) and

P (ξi = 1|Vi, ε̃i 6= 1), respectively. Assume that the logistic model logit(ϕ1(Vi, θ1)) = θT1 Vi holds for

those ε̃i = 1 and the different logistic model logit(ϕ2(Vi, θ2)) = θT2 Vi holds for those ε̃i 6= 1. Let

θ = (θT1 , θ
T
2 )T and let θ0 = (θT01, θ

T
02)T be the true value of θ. Then the maximum likelihood estimator

θ̂ satisfies

n
1
2 (θ̂ − θ0) = n−

1
2 [J (Vi, θ0)]

−1
n∑
i=1

U(Vi, θ0) + op(1), (2.15)

where the fisher information matrix

J(Vi, θ0) =

Eθ0
[
I(ε̃i = 1)

exp{θT01Vi}ViV
T
i

(1+expθ
T
01Vi )2

]
0

0 Eθ0

[
I(ε̃i 6= 1)

exp{θT02Vi}ViV
T
i

(1+expθ
T
02Vi )2

]
 , (2.16)

and

U(Vi, θ0) =


I(ε̃i = 1)[ξiVi − Vi exp{θT01Vi}

1+expθ
T
01Vi

]T

I(ε̃i 6= 1)[ξiVi − Vi exp{θT02Vi}
1+expθ

T
02Vi

]T

 .

Proof of Proposition 1 is shown in section4.1.

2.2.2 Asymptotic Results Concerning Ĝ(t)

Proposition 2. The estimator Ĝ(t) is asymptotically linear estimator of G(t) with influence func-

tion ICG such that

(1) Assume that the censoring time is independent of the covariates. If G(t) > 0, then

n
1
2 (Ĝ(t)−G(t)) = n−

1
2

−G(t)

n∑
j=1

∫ τ

0

I(Y•(s) > 0)
dMj

c(s)

y(s)

+ op(1) (2.17)
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where n−1Y•(s)
p→ y(s) as n

p→ ∞ with Y•(s) =
∑n
i=1 Yi(s) =

∑n
i=1 I(T̃i ≥ s), and Mj

c(s) =

I(T̃j ≤ s,∆j = 0)−
∫ s

0
Yj(u) d(− logG(u)) is the martingale associated with the censoring time.

(2) If the censoring time follows the Cox model depending on the covariates (Xi, Zi).

n
1
2 (Ĝ(t|Xi, Zi)−G(t|Xi, Zi)) = n−

1
2

−G(t|Xi, Zi)

n∑
j=1

∫ τ

0

I(Y•(s) > 0)
dMj

c(s)

y(s)

+ op(1),

(2.18)

where n−1Y•(s)
p→ y(s) as n

p→ ∞ with Y•(s) =
∑n
i=1 Yi(s)expβ

T
0Xi(s)+β

T
1Zi(s) and Mj

c(s) =

I(T̃j ≤ s,∆j = 0)−
∫ s

0
Yj(u)expβ

T
0Xi(u)+βT

1Zi(u) Λ0(u) with

Λ0(u) =
∑n
i=1

∫ u
0

dI(T̃j≤s,∆j=0)∑n
i=1 Yi(s)expβ

T
0Xi(s)+β

T
1Zi(s)

is the martingale associated with the censoring

time.

Proof of Proposition 2 is shown in section4.1.

2.2.3 Asymptotic Properties for IPW Estimator

We denote F1(t;Xi,Zi), Dη,i(t,η(t),γ) and Dγ,i(t,η(t),γ) by F 1i(t), Dη,i(t) and Dγ,i(t),

respectively. Let

Ai(θ) = ∂ψi(θ)/∂θ

k(t, θ) = E
{
DT
γ,i(t)wi(t)ψi(θ)Dη,i(t)

}[
E
{
DT
η,i(t)wi(t)ψi(θ)Dη,i(t)

}]−1

qγ(s, t, θ) = E

[{
DT
γ,j(t)− k(t, θ)DT

η,j(t)
}
wj(t)ψj(θ)

∆jNj(t)

G(Tj)
I(s ≤ T̃j ≤ t)

]
g(τ, θ) = E

{∫ τ

0

[
DT
γ,i(t)− k(t, θ)DT

η,i(t)
]
wi(t)Ai(θ)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

}
ζγ,i(t, θ) =

[
DT
γ,i(t)− k(t, θ)DT

η,i(t)
]
wi(t)ψi(θ)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
Mi

c(t) = I(T̃i ≤ t,∆i = 0)−
∫ t

0

Yi(s)d(− logG(s)), where Yi(s) = I(T̃i ≥ s)

y(t) = lim
n→∞

n−1
n∑
i=1

I(T̃i ≥ t), uniformly t ∈ [0, τ ]

κγ,i(t, θ) =

{∫ τ

0

qγ(s, t, θ)

y(s)
dM c

i (s)

}
(2.19)
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Theorem 2.1. Under Condition I in section 4.1,

√
n(γ̂ − γ0)

d→ N (0,Σγ) (2.20)

where Σγ = Qγ(θ0)−1E {W γ,i(τ, θ0)}⊗2
Qγ(θ0)−1 and where

W γ,i(τ, θ) =

∫ τ

0

ζγ,i(t, θ) dt+

∫ τ

0

κγ,i(t, θ) dt+ g(τ, θ) [J (Vi, θ)]−1
U(Vi, θ),

Qγ(θ) = E

{∫ τ

a

[
DT
γ,i(t)− k(t, θ)DT

η,i(t)
]
wi(t)ψi(θ)Dγ,i(t) dt

}
.

The asymptotic covariance matrix of
√
n(γ̂ − γ0) can be consistently estimated by

Σ̂γ = Q̂
−1

γ (θ̂)n−1
n∑
i=1

{
Ŵ γ,i(τ, θ̂)

}⊗2

Q̂
−1

γ (θ̂), (2.21)

where

Ŵ γ,i(τ, θ) =

∫ τ

0

ζ̂γ,i(t, θ) dt+

∫ τ

0

κ̂γ,i(t, θ) dt+ ĝ(τ, θ)
[
Ĵ(Vi, θ)

]−1

U(Vi, θ),

Q̂γ(θ) = n−1
n∑
i=1

∫ τ

0

[
D̂

T

γ,i(t)− K̂(t, θ)D̂
T

η,i(t)
]
wi(t)ψi(θ)D̂γ,i(t) dt,

where ζ̂γ,i(t, θ), κ̂γ,i(t, θ) and ĝ(τ, θ), defined in (4.29) in section 4.1, are the estimators of ζγ,i(t, θ),

κγ,i(t, θ) and g(τ, θ). Those estimators can be obtained by replacing ψi(θ) with ψi(θ̂) = ξi/ϕ(Vi, θ̂)

and by replacing F 1i(t),Dη,i(t),Dγ,i(t),k(t, θ), M c
i (t), qγ(s, t, θ), y(t) with F̂ 1i(t), D̂η,i(t), D̂γ,i(t),

K̂(t, θ), q̂γ(s, t, θ), ŷ(t), M̂i

c
(t) defined in (4.29), which can be estimated by inserting the estima-

tors θ̂,η̂(t), γ̂, Ĝ(t). For the logistic regression models for the selection probabilities Ai(θ) can be

estimated as

Ai(θ̂) = −ξiI(ε̃i = 1)ϕ′1(Vi, θ̂1)/ϕ2
1(Vi, θ̂1)− ξiI(ε̃i 6= 1)ϕ′2(Vi, θ̂2)/ϕ2

2(Vi, θ̂2)

= −ξiVi{I(ε̃i = 1) exp(−θ̂1Vi) + I(ε̃i 6= 1) exp(−θ̂2Vi)},

where ϕ′1(Vi, θ1) = dϕ1(Vi, θ1)/dθ1 and ϕ′2(Vi, θ2) = dϕ2(Vi, θ2)/dθ2.

Under the logistic models for the probabilities of the complete case given in Proposition 1,

Ĵ(Vi, θ̂) = diag(Ĵ1(Vi, θ̂1), Ĵ2(Vi, θ̂2))

where Ĵ1(Vi, θ1) = n−1
∑n
i=1 I(ε̃i = 1)

exp(θT1Vi)ViV
T
i

(1+exp(θT1Vi))2
and Ĵ2(Vi, θ2) = n−1

∑n
i=1 I(ε̃i 6= 1)

exp(θT2Vi)ViV
T
i

(1+exp(θT2Vi))2
,
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and

U(Vi, θ̂) =


U1(Vi, θ̂1)

U2(Vi, θ̂2)

 =


I(ε̃i = 1)

[
ξiVi − Vi exp(θ̂T1Vi)

1+exp(θ̂T1Vi)

]

I(ε̃i 6= 1)
[
ξiVi − Vi exp(θ̂T2Vi)

1+exp(θ̂T2Vi)

]

 .

Let

ζη,i(t, θ) = DT
η,i(t)wi(t)ψi(θ)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
,

qη(s, t, θ) = E

{
DT
η,j(t)wj(t)ψj(θ)

∆jNj(t)

G(Tj)
I(s ≤ T̃j ≤ t)

}
,

κη,i(t, θ) =

{∫ τ

0

qη(s, t, θ)

y(s)
dM c

i (s)

}
,

Qη,γ(t, θ) = E{DT
η,i(t)wi(t)ψi(θ)Dγ,i(t)}.

Theorem 2.2. Under Condition I in section 4.1,

√
n(η̂(t)− η0(t))) =

{
Qη(t, θ0)

}−1

n−
1
2

n∑
i=1

Wη,i(t, θ0) + op(1) (2.22)

uniformly in t ∈ [0, τ ], where

Wη,i(t, θ) =

{
ζη,i(t, θ) + κη,i(t, θ)−Qη,γ(t, θ)

{
Qγ(θ)

}−1

W γ,i(τ, θ)

}
, (2.23)

Qη(t, θ) = E{DT
η,i(t)wi(t)ψi(θ)Dη,i(t)}. (2.24)

Thus,
√
n(η̂(t) − η0(t)) converges weakly to a mean zero Gaussian process on t ∈ [0, τ ] with the

covariance matrix Ση = Q−1
η (t, θ0)E

{
Wη,i(t, θ0)

}⊗2
Q−1
η (t, θ0).

The asymptotic covariance matrix of
√
n(η̂(t)− η0(t)) can be consistently estimated by

Σ̂η = Q̂
−1

η (t, θ̂)n−1
n∑
i=1

{
Ŵη,i(t, θ̂)

}⊗2

Q̂
−1

η (t, θ̂).

where

Ŵη,i(t, θ) =

{
ζ̂η,i(t, θ) + κ̂η,i(t, θ)− Q̂η,γ(t, θ)

{
Q̂γ(θ)

}−1

Ŵ γ,i(τ, θ)

}
,

Q̂η(t, θ) = n−1
n∑
i=1

D̂
T

η,i(t)wi(t)ψi(θ)D̂η,i(t).
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where ζ̂η,i(t, θ), κ̂η,i(t, θ), Q̂η,γ(t, θ), defined in (4.42) in section 4.1, are the estimators of ζη,i(t, θ),

κη,i(t, θ), Qη,γ(t, θ). Similarly, those estimators can be obtained by replacing ψi(θ), F 1i(t),

Dη,i(t),Dγ,i(t), qη(s, t, θ), M c
i (t), y(s) with ψi(θ̂), F̂ 1i(t), D̂η,i(t), D̂γ,i(t), q̂η(s, t, θ), M̂i

c
(t),

ŷ(s) defined in (4.42) in section 4.1, which can be estimated by inserting the estimators θ̂, η̂(t), γ̂,

Ĝ(t). The estimators Q̂γ(θ) and Ŵ γ,i(τ, θ) are described in Theorem 2.1.

2.3 Simulations

In this section, simulation studies have been conducted to evaluate the finite sample properties

of the inverse probability weighted estimators of (η(t), γ) . In the simulation study, the cumulative

incidence function (1.22) has been considered with two different link functions. Let Xi and Zi be

Bernoulli random variables with P (Xi = 1) = 0.5 and P (Zi = 1) = 0.5X + 0.2 for a subjec i. The

covariate Xi are always observed and the covariate Zi can be missing. Let εi = k, k ∈ {1, 2} be the

types of failure and let the event of interest among two competing risks be the k = 1. We consider

the following semi-parametric models for the cumulative incidence function with cause 1:

log{1− F1i(t,Xi, Zi)} = −η0(t) exp(γ1Xi + γ2Zi), (2.25)

logit{F1i(t,Xi, Zi)} = η0(t) + γ1Xi + γ2Zi, (2.26)

for 0 ≤ t ≤ τ and τ = 3, where γ1 = −0.3, γ2 = 0.3, η0(t) = 0.2 × t for model (2.25) and

η0(t) = log( p(t)
1−p(t) ) with p(t) = 0.01 + β

√
t and β = 0.2 for model (2.26).

Given η(t), γ,X,Z, the conditional probability of observed failure for cause 1 is

F1i(τ) = 1− exp(−η0(τ) exp(γ1
Txi + γ2

Tzi)),

F1i(τ) =
exp(η0(τ) + γ1

Txi + γ2
Tzi)

1 + exp(η0(τ) + γ1
Txi + γ2

Tzi)
,

where 0 < t ≤ τ for each individual i = 1, 2, . . . , n and τ = 3 for model (2.25) and (2.26),

respectively. The types of failure εi for ith individual have been determined by generating a Bernoulli

random variable with the probability F1(τ), that is, P (εi = 1) = F1i(τ), i = 1, . . . , n . The failure
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time Ti is generated by conditional probability

F̃1i(t) = P (T1 ≤ t|εi = 1) =
F1i(t)

P (εi = 1)
=
F1i(t;x, z, η, γ)

F1i(τ)
=
F1i(t)

F1i(τ)
.

for ith individual and τ = 3.

Let Ci
∗ follow an uniform distribution on [0,3] for both models (2.25) and (2.26). The censoring time

Ci is generated by Ci = min(C∗i , τ). Let T̃i be the observed failure time defined as T̃i = min(Ti, Ci).

This gives approximately 45% subjects who are censored before τ = 3 for both models (2.25) and

(2.26). Let ε̃i = εi∆i where ∆i = I(Ti ≤ Ci).

We consider three simulation scenarios in terms of whether the missing probabilities depend on

the outcome variables ε̃i and how the phase-two covariate Zi is missing. The first two scenarios

are called phase-two sampling design: (I) The first scenario is classical case cohort sampling design,

where phase-two covariate Zi is sampled for all cases ε̃i = 1 and the information of the covariate

Zi will be missing for the non-cases ε̃i = 0 or 2; (II)The second scenario is generalized case-cohort

sampling design, which allows the phase-two covariate Zi to be missing for both cases and non-cases.

In the third scenario, (III) the missing probability does not depend on ε̃i and phase-two covariate

Zi is a simple random sample from the phase-one covariates.

Let m0 be the average of total missing probability. We consider m0 = 0.3 and 0.5 for each

sampling scenario. Let m1 and m2 be the average missing probabilities for the cases and the non-

cases, respectively. First, we consider m0 = 0.3 for each scenario in model (2.25). For scenario (I),

missing probability ϑ1i = P (ξi = 0|Vi, ε̃i = 1) = 0 for cases. For non-cases εi = 0 or 2, we assume

that the missing probability ϑ2i = P (ξi = 0|Vi, ε̃i 6= 1) follows the logistic regression model

logit(ϕ(Vi, θ2)) = θ20 + θ21T̃i + θ22Xi + θ23I(ε̃i = 2) (2.27)

We obtain the average missing probability m2 = 0.5 by choosing θ2 = (−2.0, 0.6, 0.8, 1.0) in model

(2.27) based on phase-one covariates. Similarly, in the same setting with m0 = 0.5, we have ϑ1i =

P (ξi = 0|Vi, ε̃i = 1) = 0 for cases. We have about m2 = 0.65 by choosing θ2 = (1.0, 0.3, 0.1, 0.3) in

(2.27).

For (II), the missing probability ϑki = P (ξi = 0|Vi, ε̃i = k) for both cases and non-cases can be
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obtained by the following the logistic regression model

logit(ϕ(Vi, θk)) = θk0 + θk1T̃i + θk2Xi + θk3I(ε̃i = 1) + θk4I(ε̃i = 2), (2.28)

,which gives m1 = 0.15 and m2 = 0.35 when θk = (−1.0, 0.1, 0.3,−1.0, 0.5). Similarly, for get-

ting m0 = 0.5 in the same setting, we have about m1 = 0.45 and m2 = 0.60 by choosing

θ2 = (1.0,−0.6,−0.4,−0.6, 0.3) in (2.27).

For (III), we use the following logistic model for the missing probability ϑi = P (ξi = 0|Vi):

logit(ϕ(Vi, θ)) = θ0 + θ1Xi. (2.29)

We have ϑi = 0.3 with θ = (−1.0, 0.1) in (2.29), yielding m0 = 0.3. The average of total missing

probability m0 = 0.5 can be obtained by choosing θ3 = (−0.1, 0.3) in (2.29).

Similar arguments can be applied for model (2.26). Under the average of total missing probability

m0 = 0.3, each sampling scenario has the average missing probabilities for case and non-case.

Let I, II and III be the classical case-cohort design, the generalized case-cohort design and the

simple random sampling, respectively. In the design I, we have about m2 = 0.40 by choosing

θ2 = (−1.5, 0.4, 0.2, 0.4). In the design II, we have about m1 = 0.15 and m2 = 0.30 when θk =

(−1.5, 0.2, 0.4,−0.5, 0.5). From III, we can get m0 = 0.3 by choosing θ = (−1.0, 0.2). Similarly,

we consider m0 = 0.5 for model (2.26). In the design I, we have about m2 = 0.65 by choosing

θ2 = (−0.5, 0.3, 0.5, 1.5). In the design II, we have about m1 = 0.60 and m2 = 0.50 when θk =

(0.5,−0.3,−0.1, 0.1,−0.3). From III, we can get m0 = 0.5 by choosing θ = (0.3,−0.5).

We denote the full estimators as Full when all the values of phase-two covariate Z are fully

observed and complete-case estimators as CC where subjects having missing covariate Z are removed.

The performances of the proposed IPW estimators for γ and η(t) for t ∈ [0, 3] are summarized by

the bias (Bias), the empirical standard error (SSE), the average of the estimated standard error

(ESE), the empirical coverage probability (CP) of 95% confidence interval. We take sample size

n = 550, 700, 900 and obtain the average of total missing probabilities as m0 = 0.3, and 0.5 by

choosing different missing probabilities (m1,m2) for cases and non-cases. We denote a classical case

cohort design as I, a generalized case cohort design as II and a simple random sampling design as



26

III. Each entry of the tables is estimated based on 1000 simulations runs.

Table 1 and 2 summarize the Bias, SEE, ESE, CP and REE of the proposed IPW estimator for

γ1 and γ2 under the three sampling designs I, II, and III for models (2.25) and (2.26). Those tables

show that the IPW is unbiased estimator. The empirical standard errors tend to decrease as the

sample size increases and the averages of the estimated standard errors are close to the empirical

standard errors. The relative efficiencies of the IPW estimator tend to increase as the sample size

increases. The coverage probabilities are close to the 95% nominal level. At the higher average of

total missing probability with m0 = 0.5, the empirical standard errors are much larger.

Table 3 and 4 compare the Bias, SSE and ESE of IPW estimator and those of complete case (CC)

estimator for γ1 and γ2 under model (2.25) and (2.26), respectively. The Full estimator is presented

as a gold standard. Table 3 shows that the biases of the CC estimator are larger than those of the

IPW estimator. It means that CC is not a consistent estimator. The CC estimator has the largest

bias when the missing probabilities for the cases and the non-cases differ the most in each average

of total missing probability. Table 4 shows that the empirical standard errors of each estimator

tend to be smaller as the sample size increases. However, the empirical standard errors of the IPW

estimator are worse than or similar to those of the complete-case (CC) estimator. It shows that the

variance of the IPW estimator is not efficient. This is because we still discard the information of

subjects when some of their covariates have been missing. It results in the loss of efficiencies of the

IPW estimator.

Figure 1 to 3 and figure 4 to 6 show that the comparison of the Full, IPW and CC estimators

for the cumulative time varying regression coefficient η0(t), t ∈ [0, 3] under model (2.25) and (2.26),

respectively. Under model (2.25) , the classical case-cohort, the generalized case-cohort and a simple

random sampling design in figure 1, 2 and 3, respectively. Under model (2.26), those sampling

designs have been considered in figure 4, 5 and 6, respectively. We take the sample size n = 550. In

each figure, (a) to (d) are the plots of the Bias, SSE, ESE and the coverage probability for η0(t) over

t ∈ [0, 3] with the average of total missing probability m0 = 30% and (e) to (h) are the plots of those

with m0 = 50%. The plots show that the IPW estimator is unbiased, comparable to Full estimators
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as if all the values of the covariate Z were observed. The biases of complete case (CC) estimator of

η0(t) are much larger, meaning that those estimators are inconsistent. However, under the simple

random sampling III, the biases of the CC estimator are small. This is because the design III is not

depending on outcomes ε̃i, giving small biases of all those estimators. The average of the estimated

standard errors (ESE) are close to the empirical standard errors (SSE). The coverage probabilities

of the IPW estimators are close to 0.95 nominal with the average of total missing probabilities

m0 = 0.3. However, the coverage probabilities of the IPW estimators are not very close to the 0.95

nominal with m0 = 0.5. This result shows that variances of the IPW are not good enough. It seams

to appeal another approach to improve the efficiency of the IPW estimators.

2.4 Application

The RV144 vaccine efficacy trial randomized 16,394 HIV negative volunteers to the vaccine (n =

8198) and placebo (n = 8196) groups. We apply the proposed estimating procedures for IPW

method to the vaccine group, which included 5035 men and 3163 women. Subjects enrolled in the

RV144 trial were vaccinated at weeks 0,4,12 and 24. 43 of 8198 vaccine recipients acquired the

primary endpoint of HIV infection after the Week 26 biomarker sampling time point through to the

end of follow-up at 42 months (?). Vaccine recipients were distributed in the Low, Medium, and

High baseline behavioral risk scores, defined as in (?) with 3863 Low, 2370 Medium, and 1965 High.

Three HIV gp 120 sequences were included in the vaccine construct; 92TH023 in the ALVAC

canarypox vector prime component; and A244 and MN in the AIDSVAX protein boost component.

The 92TH023 and A244 are subtype E HIVs whereas MN is subtype B. However, the analysis

focuses on the 92TH023 and A244 insert sequences. This is because the subtype E vaccine-insert

sequences are genetically much closer to the infecting (and regional circulating) sequences than MN,

meaning that the subtype E HIVs are more likely to stimulate protective immune responses. The

observed failure time T̃i is the time to HIV infection diagnosis, which is minimum of failure time or

right-censoring time.

Because vaccine recipients with higher levels of antibodies binding to the V1V2 portion of the HIV
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envelope protein had a significantly lower rate of HIV infection((?), (?), (?)), the V1V2 sub-region

of gp120 may have been involved in the partial vaccine efficacy administered by the vaccine regimen.

The region contains epitopes recognized by antibodies induced by the vaccine. Therefore, we study

the genetic distance of an infecting HIV V1V2 sequence to the corresponding V1V2 sequence in the

vaccine construct(using a multiple sequence alignment), which is called as marks.

For the analysis, two marks V are considered, based on the 92TH023 and A244 vaccine construct

sequences. The way of measuring in the genetic distances is described in ?. The distance V were

re-scaled to take values between 0 and 1. We denote these two genetic distance marks 92TH023V1V2

and A244V1V2 as V1i and V2i, respectively, for a subject i. We use each mark to form two causes

of failure by considering each of V1i and V2i one at a time. Let M1 be the median of the observed

mark V1i and M2 be the median of the observed mark V2i for each subject i.

The cause of failure ε1i for the mark V1i is generated by using the median mark M1 of V1i. We

define ε1i = 1 for uncensored subjects i if the mark V1i is less than M1; otherwise ε1i = 2. Similarly,

the cause of failure ε2i for the mark V2i is generated by using the median mark M2 of V2i. We define

ε2i = 1 for uncensored subjects i if the mark V2i is less than M2; otherwise ε2i = 2. If subjects are

censored, then εji = 0 for j = 1, 2.

The V1V2 seqeunce of the infecting HIVs has been investigated in (Liqi’s paper). They analysis

IgG and IgG3 biomarkers as correlates of 92TH023V1V2 and A244V1V2 mark-specific HIV infection

for the stratified mark-specific proportional hazards model under two-phase sampling.

Following the analysis in ?, we study IgG and IgG3 biomarkers as correlates of 92TH023V1V2 and

A244V1V2 mark-specific HIV infection for the cumulative incidence model based on competing risks

data. We use IPW method to analysis these subjects under two-phase sampling. In particular, paired

to the 92TH023V1V2 mark variable, we study the two biomarkers Week 26 IgG and IgG3 binding

antibodies to 92TH023V1V2, namely IgG-92TH023V1V2 and IgG3-92TH023V1V2; and, paired to

the A244V1V2 mark variable, we study Week 26 IgG and IgG3 binding antibodies to A244V1V2,

namely IgG-A244V1V2 and IgG3-A244V1V2. Therefore, we have four different immune responses

IgG-92TH023V1V2, IgG3-92TH023V1V2, IgG-A244V1V2 and IgG3-A244V1V2 for the analysis.
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The immune response biomarkers were measured for 34 of 43 HIV infected vaccine recipients with

HIV V1V2 sequence data and 212 of 8155 uninfected vaccine recipients at the Week 26 visit post

entry. These observed biomarkers were each standardized to have mean 0 and variance 1 for the

analysis.

Let Ri be the immune responses R11i , R12i , R21i , and R22i , respectively, for each analysis. Let δi

be infection status, whose value is 1 if a subject is infected HIV; and 0 if a subject is right censored

over a follow-up period of 42 months. Let ε1i = k be the causes of failure for immune responses R11i

and R12i , respectively, for k = 1, 2. Let ε2i = k be the causes of failure for immune responses R21i

and R22i , respectively, for k = 1, 2. Let B1i and B2i be the dummy variables for baseline behavioral

risk score groups Bi (High=1, Low=2, Medium=3), where B1i = 1 if a subject is in the low risk

score group; 0 otherwise, B2i = 1 if a subject is in the medium risk score group; 0 otherwise and

B1i = B2i = 0 if a subject is in the high risk group. The immune responses Ri can be missing for

both case and non-case subjects, and hence are phase two covariates. The baseline behavioral risk

scores Bi are measure for all subjects, and hence are phase one covariates.

We consider the following semiparametric additive model for the cumulative incidence function

by using log link function for h(x) = 1− exp(−x) in (1.22);

Fki(t;Xi, Zi) = 1− exp(−{η0(t) + η1(t)Ri + γ1B1it+ γ2B2it}) (2.30)

for k = 1, 2. Let ϑi = P (ξi = 1|Vi, δi) be the selection probabilities, where ξi is the indicator of the

immune response data, whose values are ξi = 1 if each of four immune response data Ri is measured;

otherwise ξi = 0. To predict the probability of observing the immune response Ri, the following

logistic regression model

logit(ϑi) = θ0 + θ1δi (2.31)

The selection probabilities ϑ̂i = P (ξi = 1|Vi, δi) is given by θ̂ = (−3.6235, 4.9526) with standard

errors (0.0696, 0.3813) of coefficients θ̂ in (2.31). The weights are estimated by ψ(θ̂i) = ξi/ϑ̂i.

We analysis the semiparametric additive model (2.30) with four different settings: (S1). The

model (2.30) is analyzed with immune response Ri = R11i for ε1i = 1. The IPW estimates of
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baseline behavioral risk score for B1i and B2i are (γ̂1, γ̂2) = (−0.00115,−0.00122) with standard

errors with (0.000739, 0.000735), yielding p-values (0.118737, 0.096528); Similarly, the model (2.30)

can be analyzed with immune response Ri = R11i for ε1i = 2. The IPW estimates of baseline

behavioral risk score for B1i and B2i are (γ̂1, γ̂2) = (−0.00015, 0.00065) with standard errors with

(0.000360, 0.000575), yielding p-values (0.66948, 0.25593);

(S2). The model (2.30) can be analyzed with immune response Ri = R12i for ε1i = 1. The

IPW estimates of B1i and B2i are (γ̂1, γ̂2) = (−0.00108,−0.00123) with standard errors (0.000751,

0.000738), yielding p-values (0.151167, 0.095754); The same model can be analyzed based on ε1i = 2.

The IPW estimates of B1i and B2i are (γ̂1, γ̂2) = (−0.00017, 0.00064) with standard errors (0.000342,

0.000571), yielding p-values (0.62405, 0.25967);

(S3). The model (2.30) can be analyzed with immune response Ri = R21i for ε2i = 1. The

IPW estimates of B1i and B2i are (γ̂1, γ̂2) = (−0.00036,−0.00038) with standard errors (0.000591,

0.000581), yielding p-values (0.54059, 0.51436); The same setting with ε2i = 2 can be also analyzed.

The IPW estimates ofB1i andB2i are (γ̂1, γ̂2) = (−0.00086,−0.00010) with standard errors (0.00050,

0.00067), yielding p-values (0.086647, 0.880498);

(S4). The model (2.30) for cases ε2i = 1 is analyzed with immune response Ri = R22i . The IPW

estimates of B1i and B2i for this analysis are (-0.00039, -0.00042) with standard errors (0.000611,

0.000592), yielding p-values (0.52576, 0.47455); The same model can be analyzed for ε2i = 2 . The

IPW estimates of B1i and B2i for this analysis are (-0.00082, -0.00009) with standard errors (0.00050,

0.00067), yielding p-values (0.097105, 0.892526).

Figure 7 to 10 compares IPW estimates of baseline cumulative coefficients η0(t) and cumulative

coefficients η1(t) with 95% pointwise confidence intervals for the four different immune responses

of Ri for εji = 1 and εji = 2, respectively, j = 1, 2. The analysis with R11i and R12i for ε1i = 1

have larger IPW estimates of baseline cumulative coefficients η0(t) than the analysis with R11i and

R12i for ε1i = 2. The analysis with R21i and R22i for ε2i = 1 has similar IPW estimates of baseline

cumulative coefficients η0(t) to the analysis with R21i and R22i for ε2i = 2.

For the IPW estimates of cumulative coefficients η1(t), while the effects of immune responses
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R12i(IgG3-92TH023V1V2) are close to zero over study time with εji = 1, j = 1, 2 in 8, the im-

mune responses R11i(IgG-92TH023V1V2), R21i(IgG-A244V1V2) and R22i(IgG3-A244V1V2) have

negative effects on the cumulative incidence function with εji = 1, j = 1, 2 in figure 7, 9 and 10.

However, the negative effects of R11i(IgG-92TH023V1V2) is less obvious than those negative effects

of R21i(IgG-A244V1V2) and R22i(IgG3-A244V1V2). On the other hands, none of four immune

responses Ri has significant negative effects on cumulative incidence function with εji = 2, j = 1, 2

over study time. By comparing figure 7 to 9 and comparing figure 8 to 10, IgG and IgG3 binding

antibodies responding to A244V1V2 than to 92TH023V1V2 have significantly negatively effects on

the cumulative incidence function, i.e A244 would be more relevant for protection.

Figure 11 to figure 14 show that the cumulative incidence function has been evaluated for εji = 1

and εji = 2, j = 1, 2, respectively, depending on the behavioral risks scores at the first, second and

third quartiles Q1, Q2 and Q3 of the observed the immune responses Ri. We expected to have larger

probability of getting infected by HIVs V1V2 sequences if one has higher behavioral risk scores. We

also expected to have lower probability of getting infected by HIVs with V1V2 sequences closer to

92TH023 or A244 (εji = 1, j = 1, 2) and have higher probability of getting infected by HIVs with

V1V2 sequences far away from 92TH023 or A244 (εji = 2, j = 1, 2).

Furthermore, since the numbers of behavioral risks scores for ε1i = 1 and ε1i = 2 are uneven,

figure 11 and 12 did not show the desirable results we have expected. For example, for mark

92TH023V1V2 with ε1i = 1, the number of observed behavioral risks scores are 9, 6, and 4 for

high, row and medium, respectively. However, for mark 92TH023V1V2 with ε1i = 2, the number

of observed behavioral risks scores are 3, 5, and 7 for high, row and medium, respectively. This

is because the probability of getting infection by HIVs with ε1i = 2 (3 for high) lower than the

probability of getting infection by HIVs with ε1i = 2 (9 for high), which can not be comparable.

For the mark A244V1V2 with ε1i = 1, the number of observed behavioral risks scores are 6, 7, and

5 for high, row and medium, respectively and for the mark A244V1V2 with ε1i = 2, the number of

observed behavioral risks scores are 6, 4, and 6 for high, row and medium, respectively, which are

relatively comparable. Therefore it is reasonable to look at the results on figure 13 and 14. Figure 13
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and 14 show that the subjects with higher behavioral risk scores have higher probability of getting

infected by HIVs with V1V2 sequences than the subjects with lower behavioral risks scores. On the

medium risk and high risks graphs, predicted probability of infection by HIVs with V1V2 sequence

with ε2i = 1 tends to have lower probability of infection by HIVs with V1V2 sequences with ε2i = 2.

These results imply that since IgG3 antibodies to 92TH023V1V2 does not have effect on cumula-

tive incidence function on Figure 8, other IgG subclasses besides type3 induced by 92TH023 would

have negative effects on the cumulative incidence function, then would be relevant for protection.

This seems that A244 was more important than 92TH023 for induction of protective IgG3 anti-

bodies. These results also imply that mark distances smaller than the median of observed marks

has more protection against the HIV infection than mark distances larger than the median marker.

Therefore, it supports the hypothesis that vaccine recipients exposed to HIVs with V1V2 sequences

close to A244 (smaller markers than the median marker) may be more likely to be protected by

antibodies than vaccine recipients exposed to HIVs with V1V2 sequences with larger markers than

the median marker.
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Table 3: The bias (Bias) for Full, IPW and CC estimators of γ1 and γ2 under model (2.25) and (2.26)
with average of total missing probabilities m0 = 0.3, 0.5 and about 45% censoring percentage based
on 1000 simulation for each sampling scenario where m1 and m2 are average of missing probabilities
for cases and non-cases, respectively.

Bias(γ1) Bias(γ2)

Model Sample m0 (m1,m2) n Full IPW CC Full IPW CC

(2.25) I 0.3 (0,0.40) 550 -0.0042 -0.0091 0.2548 0.0030 0.0123 -0.0025
700 -0.0054 -0.0108 0.2523 0.0070 0.0144 -0.0024
900 -0.0002 -0.0033 0.2627 0.0018 0.0035 -0.0108

II (0.15,0.35) 550 -0.0047 0.0626 0.0012 -0.0095
700 -0.0076 0.0612 0.0072 -0.0034
900 -0.0048 0.0628 0.0081 -0.0019

III 550 -0.0076 -0.0187 0.0074 0.0069
700 -0.0077 -0.0081 0.0065 0.0066
900 -0.0074 -0.0078 0.0061 0.0063

I 0.5 (0,0.65) 550 -0.0268 0.2674 0.0190 0.0260
700 -0.0029 0.3341 0.0208 -0.0753
900 -0.0107 0.2772 0.0171 0.0264

II (0.45,0.60) 550 0.0015 -0.0424 0.0013 -0.0082
700 -0.0205 -0.0533 0.0099 -0.0069
900 -0.0160 0.0532 0.0152 0.0020

III 550 -0.0121 -0.0160 0.0082 0.0092
700 -0.0099 -0.0117 0.0013 0.0022
900 0.0044 0.0020 -0.0013 0.0002

(2.26) I 0.3 (0,0.40) 550 -0.0078 -0.0112 0.0752 0.0119 0.0142 0.0180
700 0.0005 -0.0021 0.0759 -0.0073 -0.0034 0.0044
900 -0.0091 -0.0105 0.0708 -0.0011 -0.0010 0.0066

II (0.15,0.30) 550 -0.0051 0.0489 0.0113 0.0118
700 -0.0023 0.0534 -0.0090 -0.0085
900 -0.0073 0.0477 -0.0019 -0.0015

III 550 -0.0055 -0.0063 0.0105 0.0109
700 -0.0031 -0.0036 -0.0054 -0.0059
900 -0.0068 -0.0072 -0.0023 -0.0021

I 50% (0,0.65) 550 -0.0171 0.3192 0.0350 0.0448
700 -0.0035 0.3081 -0.0014 0.0114
900 -0.0180 0.3109 0.0074 0.0215

II (0.60,0.50) 550 -0.0077 0.0057 0.0136 0.0102
700 -0.0130 0.0024 0.0024 -0.0003
900 -0.0144 -0.0004 -0.0009 -0.0021

III (0.5,0.5) 550 -0.0196 -0.0124 0.0278 0.0236
700 -0.0065 -0.0028 0.0062 0.0061
900 -0.0136 -0.0108 -0.0035 -0.0042
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Figure 1: Comparison of Full, IPW, CC estimators for the basline cumulative coefficient η(t) under
(2.25) with m0 = 0.3, 0.5, n = 700 and about 45% censoring percentage based on 1000 simulation
for sampling design I. Left graphs are for m0 = 0.3. Right graphs are for m0 = 0.5. (a), (b):
The plots of the biases of the estimates. (c), (d): The plots of the empirical standard errors of the
estimates. (e), (f): The plots of the average of the estimated standard errors of the estimates. (g),
(h): The plots of the coverage probabilities of the estimators.
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Figure 2: Comparison of Full, IPW, CC estimators for the basline cumulative coefficient η(t) under
(2.25) with m0 = 30%, 50%, n = 700 and about 45% censoring percentage based on 1000 simulation
for sampling design II. Left graphs are for m0 = 0.3. Right graphs are for m0 = 0.5. (a), (b): The
plots of the biases of the estimates. (c), (d): The plots of the empirical standard errors of the
estimates. (e), (f): The plots of the average of the estimated standard errors of the estimates. (g),
(h): The plots of the coverage probabilities of the estimators.
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Figure 3: Comparison of Full, IPW, CC estimators for the basline cumulative coefficient η(t) under
(2.25) with m0 = 0.3, 0.5 n = 700 and about 45% censoring percentage based on 1000 simulation
for sampling design III. Left graphs are for m0 = 0.3. Right graphs are for m0 = 0.5. (a), (b):
The plots of the biases of the estimates. (c), (d): The plots of the empirical standard errors of the
estimates. (e), (f): The plots of the average of the estimated standard errors of the estimates. (g),
(h): The plots of the coverage probabilities of the estimators.
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Figure 4: Comparison of Full, IPW, CC estimators for the basline cumulative coefficient η(t) under
(2.26) with m0 = 0.3, 0.5, n = 700 and about 45% censoring percentage based on 1000 simulation
for sampling design I. Left graphs are for m0 = 0.3. Right graphs are for m0 = 0.5. (a), (b):
The plots of the biases of the estimates. (c), (d): The plots of the empirical standard errors of the
estimates. (e), (f): The plots of the average of the estimated standard errors of the estimates. (g),
(h): The plots of the coverage probabilities of the estimators.
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Figure 5: Comparison of Full, IPW, CC estimators for the basline cumulative coefficient η(t) under
(2.26) with m0 = 0.3, 0.5 and about 45% censoring percentage based on 1000 simulation for sampling
design II. Left graphs are for m0 = 0.3. Right graphs are for m0 = 0.5. (a), (b): The plots of the
biases of the estimates. (c), (d): The plots of the empirical standard errors of the estimates. (e),
(f): The plots of the average of the estimated standard errors of the estimates. (g), (h): The plots
of the coverage probabilities of the estimators.
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Figure 6: Comparison of Full, IPW, CC estimators for the basline cumulative coefficient η(t) under
(2.26) with m0 = 0.3, 0.5, n = 700 and about 55% censoring percentage based on 1000 simulation
for sampling design III. Left graphs are for m0 = 0.3. Right graphs are for m0 = 0.5. (a), (b):
The plots of the biases of the estimates. (c), (d): The plots of the empirical standard errors of the
estimates. (e), (f): The plots of the average of the estimated standard errors of the estimates. (g),
(h): The plots of the coverage probabilities of the estimators.
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Estimated Cumulative Coefficients for IgG−92TH023V1V2
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Figure 7: (a) and (b) show that comparison of the IPW estimates of baseline cumulative coefficients
η0(t) and the cumulative coefficients η1(t) with 95% pointwise confidence intervals for the immune
response Ri (IgG-92TH023V1V2) in model (2.30) for ε1i = 1 (red) and ε1i = 2 (grey), respectively .
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Estimated Cumulative Coefficients for IgG3−92TH023V1V2
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Figure 8: (a) and (b) show that comparison of the IPW estimates of baseline cumulative coefficients
η0(t) and the cumulative coefficients η1(t) with 95% pointwise confidence intervals for the immune
response Ri (IgG3-92TH023V1V2) in model (2.30) for ε1i = 1 (red) and ε1i = 2 (grey), respectively.
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Estimated Cumulative Coefficients for IgG−A244V1V2
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Figure 9: (a) and (b) show that comparison of the IPW estimates of baseline cumulative coefficients
η0(t) and the cumulative coefficients η1(t) with 95% pointwise confidence intervals for the immune
response Ri (IgG-A244V1V2) in model (2.30) for ε2i = 1 (red) and ε2i = 2 (grey), respectively.
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Estimated Cumulative Coefficients for IgG3−A244V1V2
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Figure 10: (a) and (b) show that comparison of the IPW estimates of baseline cumulative coefficients
η0(t) and the cumulative coefficients η1(t) with 95% pointwise confidence intervals for the observed
immune response Ri (IgG3-A244V1V2) in model (2.30) for ε2i = 1 (red) and ε2i = 2 (grey),
respectively.



47

Estimated C.I.F for IgG−92TH023V1V2
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Figure 11: Q1, Q2, Q3 are the first, second and third qualtie of the observed the immune response
Ri = R11i (IgG-92TH023V1V2), where Q1 = 0.09027, Q2 = 0.31310 and Q3 = 0.39230. (a), (b) and
(c) show the predicted cumulative incidence function F̂ for ε1i = 1 (red) and ε1i = 2 (grey) at each
level of behavioral risk score group(low, medium, high),respectively, based on the model (2.30).
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Estimated C.I.F for IgG3−92TH023V1V2
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Figure 12: Q1, Q2, Q3 are the first, second and third qualtie of the observed the immune response
Ri = R12i (IgG3-92TH023V1V2), where Q1 = −0.4677, Q2 = 0.1196 and Q3 = 0.6484. (a), (b) and
(c) show the predicted cumulative incidence function F̂ for ε1i = 1 (red) and ε1i = 2 (grey) at each
level of behavioral risk score group(low, medium, high),respectively, based on the model (2.30).
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Estimated C.I.F for IgG−A244V1V2
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Figure 13: Q1, Q2, Q3 are the first, second and third qualtie of the observed the immune response
Ri = R21i (IgG-A244V1V2), whereQ1 = −0.1530, Q2 = 0.3321 and Q3 = 0.5514. (a), (b) and (c)
show the predicted cumulative incidence function F̂ for ε2i = 1 (red) and ε2i = 2 (black) at each
level of behavioral risk score group(low, medium, high),respectively, based on the model (2.30).
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Estimated C.I.F for IgG3−A244V1V2
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Figure 14: Q1, Q2, Q3 are the first, second and third qualtie of the observed the immune response
Ri = R22i (IgG3-A244V1V2), where Q1 = −0.3851, Q2 = 0.08807 and Q3 = 0.5680. (a), (b) and
(c) show the predicted cumulative incidence function F̂ for ε2i = 1 (red) and ε2i = 2 (black) at each
level of behavioral risk score group(low, medium, high),respectively, based on the model (2.30).



CHAPTER 3: ANALYSIS A SEMIPARAMETRIC ADDITIVE MODEL WITH MISSING
COVARIATE USING AUGMENTED INVERSE PROBABILITY WEIGHTED COMPLETE

CASE METHOD

In this chapter, we propose an improved estimating equation by adapting the theory of Robins,

Rotnizky and Zhao (1994). In section 3.1, augmented IPW of complete case estimating equations

have been derived for a semiparametric additive model using identity link function in model (1.22).

We also describe the estimation procedure to obtain the augmented IPW estimators. In section 3.2,

asymptotic results have been investigated. Some simulation results for the AIPW estimator have

been discussed in section 3.3, showing that those estimator improve efficiency.

3.1 Augmented IPW of Complete Case Estimating Equation for a Semiparametric Additive

Model

We assume that the selection probability Si, the conditional expectations E{X(2)
i |Vi} and E{X(2)

i (X
(2)
i )T|Vi}

are known for those with missing covariates X
(2)
i .

Let

ei,η(t)(t) = E

[
Dη,i(t,η(t),γ)wi(t)

{
∆iNi(t)

Ĝ(Ti)
− F1(t;Xi,Zi)

}
|Vi

]
,

ei,γ(t) = E

[
Dγ,i(t,η(t),γ)wi(t)

{
∆iNi(t)

Ĝ(Ti)
− F1(t;Xi,Zi)

}
|Vi

]
,

where observed phase-one Vi = {T̃i,∆i, ε̃i, X
(1)
i , Zi, Ai}. Following the augmentation theory of

Robins, Rotnizky and Zhao (1994), we consider the following augmented IPW estimating equations

for (η(·),γ, θ̂):

Ũη(t,η(t),γ, θ̂) =

n∑
i=1

[
ψi(θ̂)Dη,i(t,η(t),γ)wi(t)

{
∆iNi(t)

Ĝ(Ti)
− F1(t;Xi,Zi)

}
+ (1− ψi(θ̂))ei,η(t)(t)

]
, (3.1)

Ũγ(τ,η(·),γ, θ̂) =

n∑
i=1

∫ τ

0

[
ψi(θ̂)Dγ,i(t,η(t),γ)wi(t)

{
∆iNi(t)

Ĝ(Ti)
− F1(t;Xi,Zi)

}
+ (1− ψi(θ̂))ei,γ(t)

]
dt.(3.2)
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In equation (3.1), the first part of the contribution, ψi(θ̂)Dη,i(t,η(t),γ)wi(t)

{
∆iNi(t)

Ĝ(Ti)
− F1(t;Xi,Zi)

}
,

represents the inverse probability weighting of complete case. The second part of the contribution,

(1 − ψi(θ̂))ei,η(t)(t), is the augmentation to the first part with the knowledge of the conditional

expectations E{X(2)
i |Vi} and E{X(2)

i (X
(2)
i )T|Vi} for the missing covariates. The contribution from

subject i with ξi = 0 only involves the conditional expectation ei,η(t)(t). A similar interpretation

applies to the equation (3.2).

The estimating functions given in (3.1) and (3.2) are equivalent to

Ũη(t,η(t),γ, θ̂) = (Dη(t,η(t),γ))TW (t)Ψ(θ̂) {R(t)− F 1(t,η(t),γ)}

+E
[
(Dη(t,η(t),γ))TW (t)(I −Ψ(θ̂)) {R(t)− F 1(t,η(t),γ)} |V

]
, (3.3)

Ũγ(τ,η(·),γ, θ̂) =

∫ τ

0

(Dγ(t,η(t),γ))TW (t)Ψ(θ̂) {R(t)− F 1(t,η(t),γ)} dt

+

∫ τ

0

E
[
(Dγ(t,η(t),γ))TW (t)(I −Ψ(θ̂)) {R(t)− F 1(t,η(t),γ)} |V

]
dt.(3.4)

Consider the following semiparametric additive model by using identity link function h(x) = x in

(1.22):

F1i(t;η,γ) = XT
i η(t) + g(γ, Zi, t). (3.5)

with the ith row vector Dη,i(t,η(t),γ) = XT
i , Dγ,i(t,η(t),γ) = ∂g(γ, Zi, t)/∂γ where XT

i =

(1, Xi1, · · · , Xip) and g(γ, Zi, t) is known function.

Note that

ei,η(t)(t) = E
[
XT
i |Vi

]
wi(t)

{
∆iNi(t)

Ĝ(Ti)
− g(γ, Zi, t)

}
− {η(t)}TE

[
XiX

T
i |Vi

]
wi(t),

ei,γ(t) = {∂g(γ, Zi, t)/∂γ}Twi(t)

{
∆iNi(t)

Ĝ(Ti)
− g(γ, Zi, t)− E

[
XT
i |Vi

]
η(t)

}
.

Let X = (X1, · · · , Xn)T and ∂g(γ, Z, t)/∂γ be the n×(p+1) and n×q matrices, respectively. Let

V = (V1, . . . ,Vn), Vx = (E{X1|V1}, · · · , E{Xn|Vn})T,Vxx(θ) =
∑n
i=1(1− ψi(θ))wi(t)E

[
XiX

T
i |Vi

]
,
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where

E{Xi|Vi} =


X

(1)
i

E{X(2)
i |Vi}

 ,

(3.6)

E
{
XiX

T
i |Vi

}
=


X

(1)
i (X

(1)
i )T X

(1)
i E{(X(2)

i )T|Vi}

E{X(2)
i |Vi}(X

(1)
i )T E{X(2)

i (X
(2)
i )T|Vi}

 for each i.

Let

aη(t, η(t), γ, θ) = V T
x W (t)(I −Ψ(θ)) {R(t)− g(γ, Z, t)} − Vxx(θ)η(t), (3.7)

aγ(τ, η(·), γ, θ) =

∫ τ

0

{∂g(γ, Z, t)

∂γ
}TW (t)(I −Ψ(θ)) {R(t)− Vxη(t)− g(γ, Z, t)} dt, (3.8)

where Vxx(θ) = E(XTW (t)(I −Ψ(θ))X|V).

The estimating equations are followed by (3.3) and (3.4) that

Ũη(t,η(t),γ, θ̂) = XTW (t)Ψ(θ̂) {R(t)− F 1(t,η(t),γ)}+ aη(t, η(t), γ, θ̂), (3.9)

Ũγ(τ,η(·),γ, θ̂) =

∫ τ

0

{∂g(γ, Z, t)

∂γ
}TW (t)Ψ(θ̂) {R(t)− F 1(t,η(t),γ)} dt+ aγ(τ, η(·), γ, θ̂). (3.10)

3.1.1 Estimation Procedure

Let µ1(Vi, α1) and µ2(Vi, α2) be the parametric models for E{X(2)
i |Vi} and E{X(2)

i (X
(2)
i )T|Vi},

respectively, where α1 and α2 are r1 and r2 dimensional vectors of parameters belonging to some

compact sets, and µ1(·, α1) and µ2(·, α2) are some smooth functions. For example, µ1(·, α1) and

µ2(·, α2) can be approximated by the first order or second order linear functions of the variables in

Vi or their transformations. In this case the parameters α1 and α2 can be estimated by α̂1 and α̂2

using the least square regressions of X
(2)
i on Vi and X

(2)
i (X

(2)
i )T on Vi, respectively, based on the

observations with ξi = 1.

By replacing E{X(2)
i |Vi} and E{X(2)

i (X
(2)
i )T|Vi} with µ1(Vi, α̂1) and µ2(Vi, α̂2), respectively,

and replacing Vx, Vxx(θ̂) by V̂x, V̂xx(θ̂) in aγ(τ, η(·), γ, θ̂) and aγ(τ, η(·), γ, θ̂) defined in (3.7) and
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(3.8), the estimators âη(t, η(t), γ, θ̂) and âγ(τ, η(·), γ, θ̂) of aη(t, η(t), γ, θ̂) and aγ(τ, η(·), γ, θ̂) can be

obtained, respectively,

âη(t, η(t), γ, θ̂) = V̂ T
x W (t)(I −Ψ(θ̂)) {R(t)− g(γ, Z, t)} − V̂xx(θ̂)η(t), (3.11)

âγ(τ, η(·), γ, θ̂) =

∫ τ

0

{∂g(γ, Z, t)

∂γ
}TW (t)(I −Ψ(θ̂))

{
R(t)− V̂xη(t)− g(γ, Z, t)

}
dt. (3.12)

Replacing (3.11) and (3.12) into the score functions (3.9) and (3.10), we obtain the following

augmented IPW estimating equation for η(t) and γ:

̂̃
Uη(t,η(t),γ, θ̂) = XTW (t)Ψ(θ̂) {R(t)− F 1(t,η(t),γ)}+ âη(t, η(t), γ, θ̂), (3.13)

̂̃
Uγ(τ,η(·),γ, θ̂) =

∫ τ

0

{∂g(γ, Z, t)

∂γ
}TW (t)Ψ(θ̂) {R(t)− F 1(t,η(t),γ)} dt+ âγ(τ, η(·), γ, θ̂).(3.14)

The augmented inverse probability weighted of the complete-case estimators η̂(t) and γ̂ of η(t) and

γ solve the equation
̂̃
Uη,γ(η̂, γ̂, θ̂) = 0, where

̂̃
Uη,γ(η,γ, θ̂)={ ̂̃Uη(t,η(t),γ, θ̂),

̂̃
Uγ(τ,η(·),γ, θ̂)}.

Similar to numerical algorithm in section 2.1.2, the estimating equations (3.13) and (3.14) can be

solved by using an iterative algorithm.

[Computational Algorithm] The estimators of η(t) and γ can be obtained though the

following algorithm.

1. Given inverse probability weighting estimators η(0)(t) and γ(0) as initial values.

2. Estimate Vx and Vxx(θ̂) by V̂x and V̂xx(θ̂).

3. Using Taylor expansion of F 1(t,η(t),γ) around the values (η̂(i)(t), γ̂(i)) at ith iteration, we

have

F 1(t,η(t),γ) ≈ F 1(t, η̂(i)(t), γ̂(i)) +Dη(t, η̂(i)(t), γ̂(i))
{
η(t)− η̂(i)(t)

}
+ Dγ(t, η̂(i)(t), γ̂(i))

{
γ − γ̂(i)

}
. (3.15)

4. Using (3.7) and (3.8), aη(t, η̂(i)(t), γ̂(i), θ̂) and aγ(τ, η̂(i)(·), γ̂(i), θ̂) are estimated by

âη(t, η̂(i)(t), γ̂(i), θ̂) = V̂ T
x W (t)(I −Ψ(θ̂))

{
R(t)− g(γ̂(i), Z, t)

}
− V̂xx(θ̂)η̂(i)(t), (3.16)

âγ(τ, η̂(i)(·), γ̂(i), θ̂) =

∫ τ

0

{∂g(γ̂(i), Z, t)

∂γ̂(i)
}TW (t)(I −Ψ(θ̂))

{
R(t)− V̂xη̂(i)(t)− g(γ̂(i), Z, t)

}
dt.(3.17)
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and we denote â
(i)
η (t, θ̂) = âη(t, η̂(i)(t), γ̂(i), θ̂) and â

(i)
γ (θ̂) = âγ(τ, η̂(i)(·), γ̂(i), θ̂).

5. Plugging (3.15), (3.16), and (3.17) into (3.13) and (3.14), respectively, to get the approximate

estimating equations

̂̃
Uη(t, η̂(i)(t), γ̂(i), θ̂)

≈ {D(i)
η (t)}TW (t)Ψ(θ̂)

[
R(t)−F (i)

1 (t)−D(i)
η (t)

{
η(t)−η̂(i)(t)

}
−D(i)

γ (t)
{
γ−γ̂(i)

}]
+â(i)

η (t, θ̂) = 0, (3.18)

̂̃
Uγ(τ, η̂(i)(·), γ̂(i), θ̂)

≈
∫ τ

0

{D(i)
γ (t)}TW (t)Ψ(θ̂)

[
R(t)−F (i)

1 (t)−D(i)
η (t)

{
η(t)−η̂(i)(t)

}
−D(i)

γ (t)
{
γ−γ̂(i)

}]
dt

+â(i)
γ (θ̂) = 0, (3.19)

whereD
(i)
η (t) = D

(i)
η (t, η̂(i)(t), γ̂(i)),D

(i)
γ (t) = D

(i)
γ (t, η̂(i)(t), γ̂(i)), and F

(i)
1 (t) = F 1(t, η̂(i)(t), γ̂(i)).

6. Solving equation (3.18) for η(t) to get

η(t) = η̂(i)(t) + {I(i)
η (t, θ̂)}−1{D(i)

η (t)}TW (t)Ψ(θ̂)
{
R(t)−F (i)

1 (t)−D(i)
γ (t)

{
γ − γ̂(i)

}}
+{I(i)

η (t, θ̂)}−1â(i)
η (t, θ̂). (3.20)

7. Plugging (3.20) into (3.19) and then solving (3.19) for γ − γ̂(i). Then the resulting estimate

of γ is γ̂(i+1) at (i+ 1)th step estimation. Specially, the (i+ 1)th step estimate for γ is

γ̂(i+1) = γ̂(i) +
{
I(i)
γ (θ̂)

}−1 {
B

(i)
γ (θ̂) + â(i)

γ (θ̂)−A(i)
η (θ̂)

}
, (3.21)
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where

I(i)
γ (θ̂) =

∫ τ

0

{D(i)
γ (t)}TW (t)Ψ(θ̂)H(i)(t, θ̂)D

(i)
γ (t) dt

B
(i)
γ (θ̂) =

∫ τ

0

{D(i)
γ (t)}TW (t)Ψ(θ̂)H(i)(t, θ̂)

{
R(t)− F (i)

1 (t)
}
dt

H(i)(t, θ̂) = I −D(i)
η (t)

[
I(i)
η (t, θ̂)

]−1

{D(i)
η (t)}TW (t)Ψ(θ̂)

I(i)
η (t, θ̂) = {D(i)

η (t)}TW (t)Ψ(θ̂)D
(i)
η (t)

A(i)
η (θ̂) =

∫ τ

0

K(i)(t, θ̂)â(i)
η (t, θ̂) dt

K(i)(t, θ̂) = {D(i)
γ (t)}TW (t)Ψ(θ̂)D

(i)
η (t)

[
I(i)
η (t, θ̂)

]−1

. (3.22)

8. The estimate of η(t) at (i+ 1)th iteration is obtained by plugging γ̂(i+1) into (3.20). Then the

(i+ 1)th step estimator for η(t) is

η̂(i+1)(t) = η̂(i)(t) + {I(i)
η (t, θ̂)}−1{D(i)

η (t)}TW (t)Ψ(θ̂)
{
R(t)−F (i)

1 (t)−D(i)
γ (t){I(i)

γ (θ̂)}−1

{
B

(i)
γ (θ̂) + â(i)

γ (θ̂)−A(i)
η (θ̂)

}}
+ {I(i)

η (t, θ̂)}−1â(i)
η (t, θ̂). (3.23)

9. Repeat steps 7 and 8 until convergence. We use the criteria of ||γ̂(i+1) − γ̂(i)|| < 10−4.

3.2 Asymptotic Properties

We derive the expressions for the proposed AIPW estimators and study asymptotic results for

those estimators.

Theorem 3.1. Assume that the models for the selection probability P (ξi = 1|Vi) and both the

conditional expectations E{X(2)
i |Vi} and E{X(2)

i (X
(2)
i )T|Vi} of the phase-two covariates are correctly

specified. The estimators of γ and η(t) obtained by solving equations (3.13) and (3.14) have the

following expressions:

γ̂ − γ0 =
{
Iγ(θ0)

}−1 {
Bγ(θ0) + ãγ(θ0)−Aη(θ0)

}
+ op(n

− 1
2 ), (3.24)

η̂(t)− η0(t) = {Iη(t, θ0)}−1{Dη(t)}TW (t)Ψ(θ0)
{
R(t)−F 1(t)−Dγ(t){Iγ(θ0)}−1

{
Bγ(θ0) + ãγ(θ0)−Aη(θ0)

}}
+ {Iη(t, θ0)}−1ãη(t, θ0) + op(n

− 1
2 ), (3.25)
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where

Aη(θ) =

∫ τ

0

K(t, θ)ãη(t, θ) dt

K(t, θ) = DT
γ(t)W (t)Ψ(θ)Dη(t)

[
Iη(t, θ)

]−1

ãη(t, θ) = V Tx W (t)(I −Ψ(θ)) {R(t)− g(γ̂, Z, t)} − Vxx(θ)η̂(t)

ãγ(θ) =

∫ τ

0

{∂g(γ0, Z, t)

∂γ0
}TW (t)(I −Ψ(θ̂)) {R(t)− Vxη̂(t)− g(γ̂, Z, t)} dt, (3.26)

and where Iγ(θ), Bγ(θ) and Iη(t, θ) are defined in (2.12). Proof of Theorem 3.1 is given in

section 4.1.

Let

q∗γ(s, t,γ, θ) = n−1
n∑
i=1

{∂g(γ, Zi, t)

∂γ
}Twi(t)(1− ψi(θ))

∆iNi(t)

G(Ti)
I(s ≤ T̃i ≤ t),

y(t) = lim
n→∞

n−1
n∑
i=1

I(T̃i ≥ s), uniformly t ∈ [0, τ ],

Mj
c(t) = I(T̃j ≤ t,∆j = 0)−

∫ t

0

I(T̃i ≥ s)d(− logG(s)),

κ∗γ,i(t,γ, θ) =

∫ τ

0

q∗γ(s, t,γ, θ)

y(s)
dM c

i (s),

ζ∗γ,i(t,η(t),γ, θ) =

n∑
i=1

∫ τ

0

{∂g(γ, Zi, t)

∂γ
}Twi(t)(1− ψi(θ))

{
∆iNi(t)

G(Ti)
− Vx,iη(t)− g(γ, Zi, t)

}
,

q∗η(s, t, θ) = n−1
n∑
i=1

V T
x,iwi(t)(1− ψi(θ))

∆iNi(t)

G(Ti)
I(s ≤ T̃i ≤ t),

κ∗η,i(t, θ) =

∫ τ

0

q∗η(s, t, θ)

y(s)
dMi

c(s),

ζ∗η,i(t,η(t),γ, θ) = n−1
n∑
i=1

{
V T
x,iwi(t)(1− ψi(θ))

{
∆iNi(t)

G(Ti)
− gi(γ, Zi, t)

}
− Vxx,iη(t)

}
.

Theorem 3.2. Under Condition I in Chapter 4.1, if the selection probability P (ξi = 1|Vi) or both

the conditional expectations E{X(2)
i |Vi} and E{X(2)

i (X
(2)
i )T|Vi} are correctly specified, then

n
1
2 (γ̂ − γ0)

d→ N(0,Σ∗γ),

where covariance matrix Σ∗γ = Qγ(θ0)−1E{W ∗
γ,i(τ,η0(·),γ0, θ0)}⊗2Qγ(θ0)−1, where Qγ(θ) is
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defined in Theorem 2.1 and where

W ∗
γ,i(τ,η(·),γ, θ) =

∫ τ

0

ζγ,i(t, θ)) dt+

∫ τ

0

κγ,i(t, θ) dt−
∫ τ

0

κ∗γ,i(t,γ, θ)dt+

∫ τ

0

ζ∗γ,i(t,η(t),γ, θ) dt

−
∫ τ

0

k(t, θ)
{
κ∗η,i(t, θ)− ζ

∗
η,i(t,η(t),γ, θ)

}
dt. (3.27)

The asymptotic covariance matrix of n
1
2 (γ̂ − γ0) can be consistently estimated by

Σ̂
∗
γ = Q̂

−1

γ (θ̂) n−1
n∑
i=1

{
Ŵ
∗
γ,i(τ, η̂(·), γ̂, θ̂)

}⊗2

Q̂
−1

γ (θ̂),

where

Ŵ
∗
γ,i(τ,η(·),γ, θ) =

∫ τ

0

ζ̂γ,i(t, θ) dt+

∫ τ

0

κ̂γ,i(t, θ) dt−
∫ τ

0

κ̂∗γ,i(t,γ, θ)dt+

∫ τ

0

ζ̂
∗
γ,i(t,η(t),γ, θ) dt

−
∫ τ

0

K̂(t, θ)
{
κ̂∗η,i(t, θ)− ζ̂

∗
η,i(t,η(t),γ, θ)

}
dt,

where Q̂γ(θ), ζ̂γ,i(t, θ), κ̂γ,i(t, θ) are described in Theorem 2.1, and where κ̂∗γ,i(t,γ, θ), ζ̂
∗
γ,i(t,η(t),γ, θ)

, κ̂∗η,i(t, θ) and ζ̂
∗
η,i(t,η(t),γ, θ) are the estimators of κ∗γ,i(t,γ, θ), ζ∗γ,i(t,η(t),γ, θ) , κ∗η,i(t, θ) and

ζ∗η,i(t,η(t),γ, θ). Similar arguments with Theorem 2.1, those estimators can be obtained by using

definition in (4.81) in section 4.2 and by replacing Vx and Vxx with V̂x and V̂xx, where the unknown

conditional expectations E(X
(2)
i |Vi) and E(X

(2)
i (X

(2)
i )T|Vi) in E(Xi|Vi) and E(Xi(Xi)

T|Vi) can be

obtained by µ1(Vi, α̂1) and µ2(Vi, α̂2).

Theorem 3.3. Under Condition I in section 4.1, if the selection probability P (ξi = 1|Vi) or both

the conditional expectations E{X(2)
i |Vi} and E{X(2)

i (X
(2)
i )T|Vi} are correctly specified, then

n
1
2 (η̂(t)− η0(t)) = {Qη(t, θ0)}−1 n−

1
2

n∑
i=1

W ∗
η,i(t,η0(t),γ0, θ0) + op(1). (3.28)

where Qη(t, θ) is defined in Theorem 2.2, and where

W ∗
η,i(t,η(t),γ, θ) = ζη,i(t, θ) + κη,i(t, θ)−Qη,γ(t, θ)

{
Qγ(θ)

}−1

n−
1
2

n∑
i=1

W ∗
γ,i(τ,η(·),γ, θ)

+κ∗η,i(t, θ)− ζ
∗
η,i(t,η(t),γ, θ). (3.29)

By using lemma 1 of Sun and Wu (2005), n
1
2 (η̂(t)−η0(t)) converges weakly to a mean-zero Gaussian

process on t ∈ [0, τ ] with the covariance matrix Σ∗η = Qη(t, θ0)−1E{W ∗
η,i(t,η0(t),γ0, θ0)}⊗2Qη(t, θ0)−1,
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which can be consistently estimated by

Σ̂
∗
η = Q̂

−1

η (t, θ̂)n−1
n∑
i=1

{
Ŵ
∗
η,i(t, η̂(t), γ̂, θ̂)

}⊗2

Q̂
−1

η (t, θ̂),

where

Ŵ
∗
η,i(t,η(t),γ, θ) = ζ̂η,i(t, θ) + κ̂η,i(t, θ)− Q̂η,γ(t, θ)

{
Q̂γ(θ)

}−1

n−
1
2

n∑
i=1

Ŵ
∗
γ,i(τ,η(·),γ, θ)

+κ̂∗η,i(t, θ)− ζ̂
∗
η,i(t,η(t),γ, θ),

where Q̂γ(θ) is defined in Theorem 2.1. Q̂η,γ(t, θ), Q̂η(t, θ),ζ̂η,i(t, θ), and κ̂η,i(t, θ) can be ob-

tained as described in Theorem 2.2, Ŵ
∗
γ,i(τ,η(·),γ, θ) is defined in Thorem 3.2, and κ̂∗η,i(t, θ), and

ζ̂
∗
η,i(t,η(t),γ, θ), defined in section 4.2, are the estimators of κ∗η,i(t, θ) and ζ∗η,i(t,η(t),γ, θ).

3.3 Simulations

In this chapter, a simulation study has been conducted to evaluate the finite sample properties

of the augmented inverse probability weighted estimators of (η(t),γ). Let X be a Bernoulli random

variable with P (X = 1) = 0.6 and Z be a Bernoulli random variable with P (Z = 1|X) = 0.4X+0.2.

The covariate X can be missing and the covariate Z is always observed. Let ε = k be the types of

failure and let k = 1 be the event of interest among two competing risks k ∈ {1, 2}. From model

(3.5), we consider the following semi-parametric additive model with identity link for the cumulative

incidence function with cause 1 :

F1(t, x, z) = η0(t) + η1(t)X + γZt, (3.30)

where η0(t) = 0.01× t, η1(t) = 0.03× t and γ = 0.1 where 0 ≤ t ≤ τ and τ = 3.

We consider the auxiliary covariate A, which may give information on missing covariate X. The

correlation coefficient ρ can be obtained from the relationship A = α1X + α2 with parameters α1

and α2. The correlation coefficients ρ = 0.5, 0.8 and 0.9 are given by the choice of (α1, α2) =

(0.5, 0.3), (0.8, 0.12) and (0.92, 0.05). Based on η(t), γ,X,Z, the conditional probability of failure
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for cause 1 is

F1i(τ) = η0(τ) + xTi η1(τ) + γTziτ where 0 < t ≤ τ

for each individual, where i = 1, 2, . . . , n and τ = 3. The types of failure εi = k for ith individual

have been determined by generating a Bernoulli random variable with the probability F1i(τ) =

P (εi = 1), i = 1, . . . , n. The failure time Ti is generated by conditional probability for cause 1:

F̃1i(t) = P (T1 ≤ t|εi = 1) =
F1i(t)

P (εi = 1)
=
F1i(t;x, z, η, γ)

F1i(τ)
=
F1i(t)

F1i(τ)
,

for ith individual and τ = 3.

Let C∗ follow an uniform distribution on [0,3]. The censoring time Ci is generated by Ci =

min(C∗i , τ). Let T̃i = min(Ti, Ci) be the observed failure time. It gives about 50% subjects who are

censored before τ = 3. Let ε̃i = εi∆i, where ∆i = I(Ti ≤ Ci).

Let Vi = {T̃i,∆i, ε̃i, Zi, Ai} be the phase one data for each individual i. Let Xi be the phase-

two covariate, which can be missing. We consider three simulation scenarios in terms of whether

the missing probabilities depend on the outcome variables ε̃i and how the phase-two covariate Xi

is missing. The first two scenarios are called phase-two sampling design: (I) The first scenario is

classical case cohort sampling design, where phase-two covariate Xi is sampled for all cases ε̃i = 1

and the information of the covariate Xi will be missing for the non-cases ε̃i = 0 or 2; (II)The second

scenario is generalized case-cohort sampling design, which allows the phase-two covariate Xi to be

missing for both cases and non-cases. In the third scenario, (III) the missing probability does not

depend on ε̃i and phase-two covariate Xi is a simple random sample from the phase-one covariates.

Let m0 be the average of total missing probability. We consider m0 = 30% and 60% for each

sampling scenario. Let m1 and m2 be the average missing probabilities for the cases and the non-

cases, respectively.

First, we consider m0 = 0.3 and ρ = 0.5, 0.8, 0.9 for each scenario. For scenario (I), missing

probability ϑ1i = P (ξi = 0|Vi, ε̃i = 1) = 0 for cases. For non-cases εi = 0 or 2, we assume that the

missing probability ϑ2i = P (ξi = 0|Vi, ε̃i 6= 1) follows the logistic regression model

logit(ϕm(Vi, θ2)) = θ20 + θ21Ai + θ22T̃i + θ23Zi + θ24I(ε̃i = 2) (3.31)
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based on phase-one covariates. We have about the average missing probability m2 = 0.36 by choosing

θ2 = (−1.5, 0.3, 0.4, 0.3, 0.5). We have the linear model with the observed non-cases covariates Ai,

Zi and log(T̃i) to estimate E{Xi|Vi, ε̃i 6= 1} and E{Xi
TXi|Vi, ε̃i 6= 1} for those with missing Xi:

E{Xi|Vi, ε̃i 6= 1} = φ10 + φ11Ai + φ12Zi + φ13log(T̃i) + φ14I(ε̃i = 2), (3.32)

E{Xi
TXi|Vi, ε̃i 6= 1} = φ20 + φ21Ai + φ22Zi + φ23log(T̃i) + φ24I(ε̃i = 2). (3.33)

where estimators of coefficients φ can be obtained by fitting linear model based on the observed

response variable Xi and the predictors Ai, Zi and log(T̃i) that are observed non-cases.

For (II), the missing probability ϑi = P (ξi = 0|Vi, ε̃i) for both cases and non-cases can be obtained

by the following the logistic regression model

logit(ϕm(Vi, θ)) = θ1 + θ2Ai + θ3T̃i + θ4Zi + θ5I(ε̃i = 1) + θ6I(ε̃i = 2), (3.34)

,which gives m1 = 0.2 and m2 = 0.3 when (θ) = (−1.2, 0.1, 0.1, 0.1,−0.5, 0.5). We use the following

linear models to estimate E{Xi|Vi, ε̃i} and E{Xi
TXi|Vi, ε̃i}:

E{Xi|Vi, ε̃i} = φ1 + φ2Ai + φ3Zi + φ4log(T̃i) + φ5I(ε̃i = 1) + φ6I(ε̃i = 2), (3.35)

for those missing Xi based on the observations that are case and non-cases and with observed value

of X.

For (III), we use the following logistic model for the missing probability ϑ3i = P (ξi = 0|Vi):

logit(ϕm(Vi, θ3)) = θ30 + θ31Ai + θ32Zi. (3.36)

We have ϑ3i = 0.3 with θ3 = (−0.5,−0.6, 0.2) in (3.36) and therefore, m0 = 0.3. To estimate

conditional expectations, we use linear models E{Xi|Vi} = φ10 + φ11Ai + φ12Zi + φ13log(T̃i) and

E{Xi
TXi|Vi} = φ20 + φ21Ai + φ22Zi + φ23log(T̃i) for those with missing Xi.

Similarly, we consider m0 = 0.6 and ρ = 0.5, 0.8, 0.9 for each scenario. For (I), we have m1 = 0

by ϑ1i = 0 and m2 = 0.65 by choosing (θ2) = (−1.5, 0.6, 0.6, 0.8, 2.5) in (3.31). Similar to (3.32)

and (3.33), conditional expectations for those missing Xi can be estimated by E{Xi|Vi, ε̃i 6= 1} and

E{Xi
TXi|Vi, ε̃i 6= 1}. For (II), we have about m1 = 0.45 for the cases and m2 = 0.60 for the non-
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cases by choosing θ = (−0.5, 0.3, 0.3, 0.4,−0.5, 1.0) in (3.34). Conditional expectations E{Xi|Vi, ε̃i},

E{Xi
TXi|Vi, ε̃i} can be estimated by (3.35). For (III), ϑ3i = 0.6 can be obtained by choosing

(θ3) = (−0.1, 0.5, 0.6) in (3.36). Similarly, E{Xi|Vi} and E{Xi
TXi|Vi} can be estimated by using

linear models with predictors Ai, Zi and log(T̃i).

We denote the full estimators as Full when all the values of phase-two covariate X are fully

observed, inverse probability weighted estimators as IPW obtained by the estimating procedure

in chapter 2.1.2, and complete-case estimators as CC where subjects having missing covariate X

are removed. The result of simulations for the proposed AIPW estimators for γ and η(t), where

t ∈ [0, 3], are summarized by the bias (Bias), the empirical standard error (SSE), the average of the

estimated standard error (ESE), the empirical coverage probability (CP) of 95% confidence interval

and the relative efficiency (REE), which is defined by SSE of the Full estimator divided by SSE of

AIPW estimator. We take sample size n = 600, 700, 900 and consider the total missing probability

as m0 = 0.3 and 0.6 by choosing different average missing probabilities (m1,m2) for cases and

non-cases. We denote a classical case cohort design as I, a generalized case cohort design as II

and a simple random sampling design as III. Each entry of the tables is estimated based on 1000

simulations runs.

Table 5 to ?? consider each sampling scenario with the average of total missing probability

m0 = 0.3 and the correlation coefficient ρ = 0.5, 0.8, 0.9. Table 5 summarizes the Bias, SSE,

ESE, CP and REE for the AIPW estimator of γ. Table 5 shows the AIPW estimator for γ with

correlation coefficients ρ = 0.5, 0.8, 0.9 performs well under three scenarios I, II and III. The biases

are small for each sample size. The empirical standard errors decrease as the sample size increases

and the averages of the estimated standard errors are very close to the empirical standard errors. The

coverage probabilities are close to the 95% norminal level. The relative efficiency of AIPW estimator

compared to the Full estimator tends to increase as the sample size increases. This tendency is more

obvious in scenario I and II than III. The efficiency of the AIPW estimator is very close to 1,

meaning that it can be comparable to that of the Full estimator. This is because the information on

other fully observable covariates of individuals can be used in the analysis of the AIPW estimating
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equation, even though the individuals have missing covariates.

Table 6 compares the Bias, SSE, ESE, CP for the AIPW estimator to those for Full, IPW and

CC estimators of γ. We use Full estimator as a gold standard. The biases of AIPW, IPW estimators

are very small as if all the covariates of X are fully observed. The complete case (CC) estimator

has much larger biases than the AIPW and IPW estimators have. However, the CC estimator has

smaller biases in sampling scenario III because missingness of phase-two covariate Xi does not de-

pend on outcome variable ε̃i and phase-two covariate Xi is a simple random sample from phase-one

covariates. The ESE for each estimator agrees to the SSE for the corresponding estimator, having

a tendency to decrease as the sample size increases. The empirical coverage probability of each

estimator is close to 95% nominal.

The similar results have been shown for each sampling scenario with the average of total missing

probability m0 = 0.6 and the correlation coefficient ρ = 0.5, 0.8, 0.9, summarized in table 7 to ??.

Table 7 shows that the Bias, SSE, ESE, CP and REE for the AIPW estimator of γ. The AIPW

estimator for γ is unbiased under scenario I, II and III with m0 = 0.6. At each scenario, as the sample

size increases, then the SSE decreases. The ESE are getting closer to the SSE. This phenomenon

is clear when the sample size increases. The coverage probabilities are close to 95% nominal level,

changing between 0.94 and 0.98. When the correlation is higher between auxiliary covariate and

phase-two covariate, the REE tends to be closer to 1. Table 8 compares the Bias, SSE, ESE, CP for

the AIPW estimator to those for Full, IPW, and CC estimators of γ. The biases of AIPW estimator

are as small as the biases of Full estimator are. The IPW and CC estimators have larger biases

than AIPW estimator has. The SSE of the AIPW estimator is smaller than the SSE of the IPW

estimator. The SSE of the IPW estimator is smaller than the SSE of the CC estimator. As the

sample size increase, the ESE of each estimator is closer to the SSE of the estimator. The empirical

coverage probability of each estimator is close to 95 % nominal.

Let AIPW-50, AIPW-80 and AIPW-90 estimators be the AIPW estimators corresponding the

correlation coefficients ρ = 0.5, 0.8, 0.9, respectively. Figure 15 though Figure 17 compares the Full,
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IPW, CC estimators with ρ = 0.5, AIPW-50, AIPW-80 and AIPW-90 estimators for the cumulative

coefficient η1(t) and the baseline cumulative coefficient η0(t). We take n = 600 with average of total

missing probability m0 = 0.3 and with 80% censoring for each scenario. The same setting with

m0 = 0.6 are plotted in Figure 18 though Figure 20.

Figure 15 compares those estimators under the classical case cohort design with the average

missing probability m1 = 0 for cases and m2 = 0.3 for non-cases. Figure 1 (a) and (b) plot the

biases of each of estimators for η1(t) and η0(t) for t ∈ [0, 3], respectively. Figure 1 (c) and (d) plot the

empirical standard errors and (e) and (f) plot the average of the estimated standard errors of each

of estimators for η1(t) and η0(t), respectively. Figure 1 (g) and (h) plot the coverage probabilities

of the those estimators.

The biases of AIPW-50, AIPW-80 and AIPW-90 estimators are very small comparable to the

bias of Full estimator. The bias of the IPW estimator is relatively small, but slightly larger than

the AIPW estimators. The complete case (CC) estimator for both η1(t) and η0(t) have much larger

biases than the AIPW and IPW estimators have. The averages of estimated standard errors for η1(t)

and η0(t) have good agreements to the empirical standard errors for those estimators by observing

plots in figure 1 (c),(e) and (d), (f), respectively. The SSE of the AIPW-50 estimator is slightly

smaller than the SSE of the IPW estimator when the correlation between the auxiliary variable

A and the phase-two covariate X is low with ρ = 0.5. However, the empirical standard errors of

the AIPW-80 and AIPW-90 estimators are much smaller than that of the IPW estimator. This is

because the auxiliary variable A carries more information on the phase-two covariate X with the

correlation coefficients ρ = 0.8 and 0.9. This phenomenon is more obvious where sampling design II

and III. The coverage probabilities for the AIPW-50, AIPW-80 and AIPW-90 estimators are close

to 95% nominal shown in Figure 1 (g) and (h).

The performances of those estimators under the sampling designs II and III in Figures 16 and

17. Those can be interpreted in a similar way to the sampling design I. However, in design III,

17 (a) and (b) show that all estimators have very small biases. There is no difference between the

performances of the IPW and CC estimators. Similarly, Figure 18 and 20 plot those estimators with
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m0 = 0.6. The behaviors of those estimators are very similar to or even much noticeable than those

with m0 = 0.3. Therefore, those can be interpreted in the similar way. By comparing figure 15 to 18

and figure 16 to 19, as the total missing probability increases, the performance of the complete case

(CC) gets worse under the phase two sampling designs I and II. The bias of the CC estimator with

m0 = 0.6 is much larger than that with m0 = 0.3. The SSE of the CC estimator with m0 = 0.6 is

much larger than those with m0 = 0.3. The performances of the AIPW estimators are robust even

with larger total missing probability m0 = 0.6 under all sampling designs. Figure 20 shows that SSE

of the IPW estimator is even larger than that of the CC estimator. When the sampling design III

does not depend on outcome variables ε̃i, the IPW estimator is not that useful. Even under design

III, the AIPW estimators perform well by improving efficiency. The higher correlation is between

the auxiliary values A and the missing values X, the better efficiency is gained.

3.4 Application

The RV144 vaccine efficacy trial randomized 16,394 HIV negative volunteers to the vaccine (n =

8198) and placebo (n = 8196) groups (ref.Liqi). We apply the proposed estimating procedures for

AIPW method to the vaccine group, which included 5035 men and 3163 women. Subjects enrolled

in the RV144 trial were vaccinated at weeks 0,4,12 and 24. 43 of 8198 vaccine recipients acquired

the primary endpoint of HIV infection after the Week 26 biomarker sampling time point through to

the end of follow-up at 42 months (ref.The New England Jounal of Medicine). Vaccine recipients

were distributed in the Low, Medium, and High baseline behavioral risk scores, defined as in (?)

with 3863 Low, 2370 Medium, and 1965 High.

Three HIV gp 120 sequences were included in the vaccine construct; 92TH023 in the ALVAC

canarypox vector prime component; and A244 and MN in the AIDSVAX protein boost component.

The 92TH023 and A244 are subtype E HIVs whereas MN is subtype B. However, the analysis

focuses on the 92TH023 and A244 insert sequences. This is because the subtype E vaccine-insert

sequences are genetically much closer to the infecting (and regional circulating) sequences than MN,

meaning that the subtype E HIVs are more likely to stimulate protective immune responses. The

observed failure time T̃i is the time to HIV infection diagnosis, which is minimum of failure time or
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right-censoring time.

Because vaccine recipients with higher levels of antibodies binding to the V1V2 portion of the HIV

envelope protein had a significantly lower rate of HIV infection ((?), (?), (?)), the V1V2 sub-region

of gp120 may have been involved in the partial vaccine efficacy administered by the vaccine regimen.

The region contains epitopes recognized by antibodies induced by the vaccine. Therefore, we study

the genetic distance of an infecting HIV V1V2 sequence to the corresponding V1V2 sequence in the

vaccine construct (using a multiple sequence alignment), which is called as marks.

For the analysis, two marks V are considered, based on the 92TH023 and A244 vaccine construct

sequences. The way of measuring in the genetic distances is described in ?. The distance V were

re-scaled to take values between 0 and 1. We denote these two genetic distance marks 92TH023V1V2

and A244V1V2 as V1i and V2i, respectively, for a subject i. We use each mark to form two causes

of failure by considering each of V1i and V2i one at a time. Let M1 be the median of the observed

mark V1i and M2 be the median of the observed mark V2i for each subject i.

The cause of failure ε1i for the mark V1i is generated by using the median mark M1 of V1i. We

define ε1i = 1 for uncensored subjects i if the mark V1i is less than M1; otherwise ε1i = 2. Similarly,

the cause of failure ε2i for the mark V2i is generated by using the median mark M2 of V2i. We define

ε2i = 1 for uncensored subjects i if the mark V2i is less than M2; otherwise ε2i = 2. If subjects are

censored, then εji = 0 for j = 1, 2.

The V1V2 seqeunce of the infecting HIVs has been investigated in ?. They analysis IgG and

IgG3 biomarkers as correlates of 92TH023V1V2 and A244V1V2 mark-specific HIV infection for the

stratified mark-specific proportional hazards model under two-phase sampling.

Following ?, we study IgG and IgG3 biomarkers as correlates of 92TH023V1V2 and A244V1V2

mark-specific HIV infection for the cumulative incidence model based on competing risks data. We

use AIPW method to analysis these subjects under two-phase sampling. In particular, paired to

the 92TH023V1V2 mark variable, we study the two biomarkers Week 26 IgG and IgG3 binding

antibodies to 92TH023V1V2, namely IgG-92TH023V1V2 and IgG3-92TH023V1V2; and, paired to

the A244V1V2 mark variable, we study Week 26 IgG and IgG3 binding antibodies to A244V1V2,
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namely IgG-A244V1V2 and IgG3-A244V1V2. Therefore, we have four different immune responses

IgG-92TH023V1V2, IgG3-92TH023V1V2, IgG-A244V1V2 and IgG3-A244V1V2 for the analysis.

The immune response biomarkers were measured for 34 of 43 HIV infected vaccine recipients with

HIV V1V2 sequence data and 212 of 8155 uninfected vaccine recipients at the Week 26 visit post

entry. These observed biomarkers were each standardized to have mean 0 and variance 1 for the

analysis.

Let Ri be the immune responses R11i , R12i , R21i , and R22i , respectively, for each analysis. Let δi

be infection status, whose value is 1 if a subject is infected HIV; and 0 if a subject is right censored

over a follow-up period of 42 months. Let ε1i = k be the causes of failure for immune responses R11i

and R12i , respectively, for k = 1, 2. Let ε2i = k be the causes of failure for immune responses R21i

and R22i , respectively, for k = 1, 2. Let B1i and B2i be the dummy variables for baseline behavioral

risk score groups Bi (High=1, Low=2, Medium=3), where B1i = 1 if a subject is in the low risk

score group; 0 otherwise, B2i = 1 if a subject is in the medium risk score group; 0 otherwise and

B1i = B2i = 0 if a subject is in the high risk group. The immune responses Ri can be missing for

both case and non-case subjects, and hence are phase two covariates. The baseline behavioral risk

scores Bi are measure for all subjects, and hence are phase one covariates.

We consider the following semiparametric additive model for the cumulative incidence function

by using identity link function for h(x) = x:

F1(t;Xi, Zi) = η0(t) + η(t)Ri + γ2B1it+ γ3B2it (3.37)

Let ϑi = P (ξi = 1|Vi, δi) be the selection probability with ξi be the indicator of the immune

response data, whose values are ξi = 1 if each of four immune response Ri is measured at each

analysis; otherwise ξi = 0. To predict the probability of observing the immune response Ri, we use

a logistic regression model with

logit(ϑi) = θ0 + θ1δi (3.38)

The estimated selection probabilities ϑ̂i is estimated by θ = (−3.6235, 4.9526) with standard errors

(0.06959, 0.38127) in the model (3.38). The weights are given by ψ(θ̂i) = ξi/ϑ̂i.
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To implement the AIPW method, we use the following linear models:

E{Ri|Vi, δi} = ς10 + ς11B1i + ς12B2i + ς13 log(T̃i) + ς14δi + ς15δi ∗ log(T̃i),

E{R⊗2
i |Vi, δi} = ς20 + ς21B1i + ς22B2i + ς23 log(T̃i) + ς24δi + ς25δi ∗ log(T̃i). (3.39)

We analysis the semiparametric additive model (2.30) with four different settings: (S1). The

model (3.37) is analyzed with the immune response Ri = R11i for ε1i=1. The estimated the first mo-

ment E{Ri|Vi, δi} and the second moment E{R⊗2
i |Vi, δi} can be estimated by ς̂1 = (0.2538,−0.2678, 0.0118,−0.0963,−0.2691, 0.0050)

and ς̂2 = (−0.5754, 1.3439,−0.2953, 0.8834,

1.1671,−0.7601) in linear models (3.39). This gives AIPW estimates ofB1i, B2i as γ̂ = (−0.00156,−0.00157)

with standard error of (0.000895, 0.000978) , yielding p-value=(0.081469, 0.107513) for testing γ =

0; Similarly, the model (3.37) is analyzed with the immune response Ri = R11i for ε1i = 2.

This gives AIPW estimates of B1i, B2i as γ̂ = (−0.0005566,−0.0001040) with standard error of

(0.0004189, 0.0006799) , yielding p-value=(0.18394, 0.87838) for testing γ = 0;

(S2). The model (3.37) is analyzed with immune response Ri = R12i for ε1i. The estimated the

first moment E{Ri|Vi, δi} and the second moment E{R⊗2
i |Vi, δi} are estimated by ς̂1 = (0.3166,−0.3996,−0.1080,−0.0979,−0.1440, 0.1683)

and ς̂2 = (0.5267, 0.6413, 0.1473,

0.1257, 0.3857,−0.5138) in (3.39). This gives the AIPW estimates ofB1i, B2i γ̂ = (−0.001488,−0.001582)

with standard error of (0.000886, 0.000982) , yielding p-value=(0.093214, 0.107275) for testing γ = 0;

Similarly, the model (3.37) is analyzed with immune response Ri = R12i for ε1i = 2. This gives the

AIPW estimates of B1i, B2i γ̂ = (−0.000581,−0.000116) with standard error of (0.000411, 0.000676)

, yielding p-value=(0.15749, 0.86411) for testing γ = 0;

(S3). The model (3.37) with immune response Ri = R21i is analyzed for ε2i = 1. The conditional

expectations are obtained by ς̂1 = (0.2110,−0.2858,−0.0593,−0.0290,−0.2944,−0.0026) and ς̂2 =

(−0.4441, 1.1693,−0.2345, 0.7951, 1.2254,−0.5539) in model (3.39). Our method gives the AIPW

estimates of B2i, B3i as γ̂ = (−0.000835,−0.000808) with standard error of (0.000570, 0.000626) ,

yielding p-value=(0.14261, 0.19699) for testing γ = 0; Similarly, the model (3.37) with immune re-

sponse Ri = R21i is analyzed for ε2i = 1. Our method gives the AIPW estimates of B2i, B3i as γ̂ =
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(−0.00124,−0.000809) with standard error of (0.000722, 0.000822) , yielding p-value=(0.08619, 0.32526)

for testing γ = 0;

(S4). The model (3.37) with immune response Ri = R22i is analyzed for cases ε2i = 1. The

conditional expectations are obtained by ς̂1 = (0.3217,−0.4299,−0.1495,−0.0622,−0.2350, 0.0670)

and ς̂2 = (0.3486, 0.5998,−0.0997, 0.3130,

0.9022,−0.6895) in model (3.39). This setting gives AIPW estimates ofB1i, B2i as γ̂ = (−0.000864,−0.000852)

with standard error of (0.000577, 0.000651) , yielding p-value=(0.13433, 0.19080) for testing γ = 0;

Similarly, the model (3.37) with immune response Ri = R22i is analyzed for cause ε2i = 1. This

setting gives AIPW estimates of B1i, B2i as γ̂ = (−0.0012116,−0.0008022) with standard error of

(0.000713, 0.000825) , yielding p-value=(0.089439, 0.330911) for testing γ = 0.

Figure 21 to 24 compares AIPW estimates of baseline cumulative coefficients η0(t) and cumulative

coefficients η1(t) with 95% pointwise confidence intervals for the four different immune responses of

Ri for εji = 1 and εji = 2, respectively, j = 1, 2.

The analysis with R11i and R12i for ε1i = 1 have larger AIPW estimates of baseline cumulative

coefficients η0(t) than the analysis with R11i and R12i for ε1i = 2. The analysis with R21i and R22i

for ε2i = 1 has smaller AIPW estimates of baseline cumulative coefficients η0(t) than the analysis

with R21i and R22i for ε2i = 2.

For the AIPW estimates of cumulative coefficients η1(t), while the effects of immune responses

R12i(IgG3-92TH023V1V2) are close to zero over study time with εji = 1, j = 1, 2, the immune re-

sponses R11i(IgG-92TH023V1V2), R21i(IgG-A244V1V2) and R22i(IgG3-A244V1V2) have negative

effects on the cumulative incidence function with εji = 1, j = 1, 2. However, the negative effects of

R11i(IgG-92TH023V1V2) on cumulative incidence function is less obvious than those negative effects

of R21i(IgG-A244V1V2) and R22i(IgG3-A244V1V2) on cumulative incidence function. On the other

hands, none of four immune responses Ri has significant negative effects on cumulative incidence

function with εji = 2, j = 1, 2 over study time. By comparing figure 21 to 23 and comparing figure

22 to 24, IgG and IgG3 binding antibodies responding to A244V1V2 than to 92TH023V1V2 have

significantly negative effects on the cumulative incidence function, i.e A244 would be more relevant
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for protection.

Figure 25 to figure 28 show that the cumulative incidence function has been evaluated for εji = 1

and εji = 2, j = 1, 2, respectively, depending on the behavioral risks scores at the first, second and

third quartiles Q1, Q2 and Q3 of the observed the immune responses Ri. We expected to have larger

probability of getting infected by HIVs V1V2 sequences if one has a higher behavioral risk score.

We also expected to have lower probability of getting infected by HIVs with V1V2 sequences closer

to 92TH023 or A244 (εji = 1, j = 1, 2) and have higher probability of getting infected by HIVs with

V1V2 sequences far away from 92TH023 or A244 (εji = 2, j = 1, 2).

However, figure 25 and 26 did not show the desirable results we have expected since the numbers

of behavioral risks scores for ε1i = 1 and ε1i = 2 are uneven. For example, for mark 92TH023V1V2

with ε1i = 1, the number of behavioral risks scores are 11, 6, and 4 for high, row and medium,

respectively. However, for mark 92TH023V1V2 with ε1i = 2, the number of observed behavioral

risks scores are 6, 8, and 8 for high, row and medium, respectively. Therefore, two figures can not

be comparable.

However, for the mark A244V1V2 with ε1i = 1, the number of behavioral risks scores are 8, 8,

and 5 for high, row and medium, respectively and for the mark A244V1V2 with ε1i = 2, the number

of behavioral risks scores are 9, 6, and 7 for high, row and medium, respectively, which are relatively

comparable. Therefore it is reasonable to look at the results on Figure 27 and 28. Figure 27 and 28

shows that the subjects with higher behavioral risk scores have higher probability of getting infected

by HIVs with V1V2 sequences than the subjects with lower behavioral risks scores. For the low risk

group, predicted probability of infection by HIVs with V1V2 sequence with ε2i = 2 is higher than

predicted probability of infection by HIVs with V1V2 sequence with ε2i = 1 by the time 1.8. After

that, two predicted probability of infection are similar. For the medium risk and high risks graphs,

predicted probability of infection by HIVs with V1V2 sequence with ε2i = 1 tends to have lower

probability of infection by HIVs with V1V2 sequences with ε2i = 2.

These results imply that since IgG3 antibodies to 92TH023V1V2 does not have effect on cumula-

tive incidence function on figure 22, other IgG subclasses besides type3 induced by 92TH023 would
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have negative effects on the cumulative incidence function, then would be relevant for protection.

This seems that A244 was more important than 92TH023 for induction of protective IgG3 anti-

bodies. These results also imply that mark distances smaller than the median of observed marks

has more protection against the HIV infection than mark distances larger than the median marker.

Therefore, it supports the hypothesis that vaccine recipients exposed to HIVs with V1V2 sequences

close to A244 (smaller markers than the median marker) may be more likely to be protected by

antibodies than vaccine recipients exposed to HIVs with V1V2 sequences with larger markers than

the median marker.
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Table 5: Bias, empirical standard error(SSE), average of the estimated standard error(ESE), em-
pirical coverage probability(CP) of 95% confidence intervals, and relative efficiencies(REE) for the
AIPW estimator of γ under model (3.30) with ρ = 0.5, 0.8, 0.9 and with average of total missing
probability m0 = 0.3 and about 50% censoring based on 1000 simulations for each sampling scenario,
I, II or III, where m1 and m2 are the average missing probabilities for the cases and the non-cases,
respectively.

γ

Sampling ρ m0 (m1,m2) n Bias SSE ESE CP

I 0.5 0.3 (0, 0.36) 500 0.0022 0.0216 0.0220 0.952
700 0.0025 0.0186 0.0186 0.953
900 0.0018 0.0159 0.0163 0.956

II (0.20, 0.30) 500 0.0019 0.0217 0.0221 0.953
700 0.0024 0.0190 0.0187 0.953
900 0.0018 0.0160 0.0164 0.955

III 500 0.0019 0.0220 0.0224 0.954
700 0.0024 0.0192 0.0189 0.943
900 0.0019 0.0163 0.0166 0.956

I 0.8 0.3 (0, 0.36) 500 0.0021 0.0215 0.0220 0.955
700 0.0024 0.0187 0.0186 0.952
900 0.0018 0.0159 0.0163 0.955

II (0.20, 0.30) 500 0.0019 0.0216 0.0220 0.954
700 0.0024 0.0187 0.0186 0.952
900 0.0018 0.0160 0.0164 0.958

III 500 0.0019 0.0219 0.0222 0.952
700 0.0024 0.0188 0.0187 0.945
900 0.0018 0.0162 0.0165 0.958

I 0.9 0.3 (0, 0.30) 500 0.0021 0.0214 0.0220 0.958
700 0.0024 0.0986 0.0186 0.953
900 0.0018 0.0159 0.0163 0.952

II (0.20, 0.30) 500 0.0020 0.0215 0.0220 0.959
700 0.0024 0.0187 0.0186 0.954
900 0.0018 0.0159 0.0163 0.953

III 500 0.0020 0.0216 0.0220 0.961
700 0.0024 0.0187 0.0186 0.950
900 0.0019 0.0161 0.0163 0.951
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Table 7: Bias, empirical standard error(SSE), average of the estimated standard error(ESE), em-
pirical coverage probability(CP) of 95% confidence intervals, and relative efficiencies(REE) for the
AIPW estimator of γ under model (3.30) with ρ = 0.5, 0.8, 0.9 and with average of total missing
probability m0 = 0.6 and about 50% censoring based on 1000 simulations for each sampling scenario,
I, II or III, where m1 and m2 are the average missing probabilities for the cases and the non-cases,
respectively.

γ

Sampling ρ m0 (m1,m2) n Bias SSE ESE CP

I 0.5 0.6 (0, 0.65) 500 0.0030 0.0226 0.0262 0.978
700 0.0029 0.0193 0.0218 0.968
900 0.0022 0.0167 0.0189 0.972

II (0.45, 0.60) 500 0.0019 0.0228 0.0237 0.967
700 0.0018 0.0195 0.0199 0.954
900 0.0019 0.0166 0.0175 0.967

III 500 0.0023 0.0242 0.0242 0.957
700 0.0030 0.0196 0.0204 0.960
900 0.0017 0.0179 0.0180 0.948

I 0.8 0.6 (0, 0.65) 500 0.0025 0.0219 0.0264 0.980
700 0.0026 0.0191 0.0219 0.969
900 0.0020 0.0163 0.0190 0.979

II (0.45, 0.60) 500 0.0021 0.0225 0.0232 0.959
700 0.0026 0.0187 0.0197 0.961
900 0.0017 0.0166 0.0173 0.949

III 500 0.0026 0.0231 0.0236 0.953
700 0.0027 0.0188 0.0199 0.958
900 0.0017 0.0172 0.0175 0.950

I 0.9 0.6 (0, 0.65) 500 0.0022 0.0216 0.0264 0.977
700 0.0025 0.0187 0.0219 0.972
900 0.0019 0.0161 0.0190 0.984

II (0.45, 0.60) 500 0.0023 0.0222 0.0231 0.963
700 0.0026 0.0184 0.0195 0.963
900 0.0019 0.0164 0.0171 0.952

III 500 0.0026 0.0226 0.0232 0.952
700 0.0027 0.0184 0.0196 0.962
900 0.0018 0.0167 0.0172 0.947
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Figure 15: Comparison of Full, IPW, CC, AIPW-50, AIPW-80, AIPW-90 estimators for the base-
line cumulative coefficient η0(t) for average of total missing probability m0 = 0.3 and m0 = 0.6,
respectively, under (3.30) with sampling scenario I. For m0 = 0.3, m1 = 0 and m2 = 0.36. For
m0 = 0.6, m1 = 0 and m2 = 0.65. These results are based on 1000 simulations with n = 700
and 50% censoring. (a) (b): The plots of the biases of the estimates of η0(t) for m0 = 0.3 and
m0 = 0.6.(c)(d):The plots of the empirical standard errors of the estimates of η0(t) for m0 = 0.3
and m0 = 0.6. (e)(f): The plots of the average of the estimated standard errors of the estimates of
η0(t) for m0 = 0.3 and m0 = 0.6. (g)(h): The plots of the coverage probabilities of the estimators
of η0(t) for m0 = 0.3 and m0 = 0.6.
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Figure 16: Comparison of Full, IPW, CC, AIPW-50, AIPW-80, AIPW-90 estimators for the cumu-
lative coefficient η1(t) for average of total missing probability m0 = 0.3 and m0 = 0.6, respectively,
under (3.30) with sampling scenario I. For m0 = 0.3, m1 = 0 and m2 = 0.36. For m0 = 0.6, m1 = 0
and m2 = 0.65. These results are based on 1000 simulations with n = 700 and 50% censoring. (a),
(b): The plots of the biases of the estimates of η1(t) for m0 = 0.3 and m0 = 0.6.(c), (d):The plots
of the empirical standard errors of the estimates of η1(t) for m0 = 0.3 and m0 = 0.6. (e), (f): The
plots of the average of the estimated standard errors of the estimates of η1(t) for m0 = 0.3 and
m0 = 0.6. (g), (h): The plots of the coverage probabilities of the estimators of η1(t) for m0 = 0.3
and m0 = 0.6.
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Figure 17: Comparison of Full, IPW, CC, AIPW-50, AIPW-80, AIPW-90 estimators for the base-
line cumulative coefficient η0(t) for average of total missing probability m0 = 0.3 and m0 = 0.6,
respectively, under (3.30) with sampling scenario II. For m0 = 0.3, m1 = 0.2 and m2 = 0.3. For
m0 = 0.6, m1 = 0.45 and m2 = 0.65. These results are based on 1000 simulations with n = 700
and 50% censoring. For m0 = 0.3, m1 = 0.2 and m2 = 0.3. (a), (b): The plots of the biases of the
estimates of η0(t) for m0 = 0.3 and m0 = 0.6.(c), (d):The plots of the empirical standard errors of
the estimates of η0(t) for m0 = 0.3 and m0 = 0.6. (e), (f): The plots of the average of the estimated
standard errors of the estimates of η0(t) for m0 = 0.3 and m0 = 0.6. (g)(h): The plots of the
coverage probabilities of the estimators of η0(t) for m0 = 0.3 and m0 = 0.6.
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Figure 18: Comparison of Full, IPW, CC, AIPW-50, AIPW-80, AIPW-90 estimators for the cumu-
lative coefficient η1(t) for average of total missing probability m0 = 0.3 and m0 = 0.6, respectively,
under (3.30) with sampling scenario II. For m0 = 0.3, m1 = 0.2 and m2 = 0.3. For m0 = 0.6,
m1 = 0.45 and m2 = 0.65. These results are based on 1000 simulations with n = 700 and 50%
censoring. For m0 = 0.3, m1 = 0.2 and m2 = 0.3. (a),(b): The plots of the biases of the estimates of
η1(t) for m0 = 0.3 and m0 = 0.6.(c),(d):The plots of the empirical standard errors of the estimates of
η1(t) for m0 = 0.3 and m0 = 0.6. (e),(f): The plots of the average of the estimated standard errors
of the estimates of η1(t) for m0 = 0.3 and m0 = 0.6. (g),(h): The plots of the coverage probabilities
of the estimators of η1(t) for m0 = 0.3 and m0 = 0.6.
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Figure 19: Comparison of Full, IPW, CC, AIPW-50, AIPW-80, AIPW-90 estimators for the base-
line cumulative coefficient η0(t) for average of total missing probability m0 = 0.3 and m0 = 0.6,
respectively, under (3.30) with sampling scenario III. These results are based on 1000 simulations
with n = 700 and 50% censoring. (a), (b): The plots of the biases of the estimates of η0(t) for
m0 = 0.3 and m0 = 0.6.(c), (d):The plots of the empirical standard errors of the estimates of η0(t)
for m0 = 0.3 and m0 = 0.6. (e), (f): The plots of the average of the estimated standard errors of
the estimates of η0(t) for m0 = 0.3 and m0 = 0.6. (g), (h): The plots of the coverage probabilities
of the estimators of η0(t) for m0 = 0.3 and m0 = 0.6.
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Figure 20: Comparison of Full, IPW, CC, AIPW-50, AIPW-80, AIPW-90 estimators for the cumu-
lative coefficient η1(t) for average of total missing probability m0 = 0.3 and m0 = 0.6, respectively,
under (3.30) with sampling scenario III. These results are based on 1000 simulations with n = 700
and 50% censoring. (a), (b): The plots of the biases of the estimates of η1(t) for m0 = 0.3 and
m0 = 0.6.(c), (d):The plots of the empirical standard errors of the estimates of η1(t) for m0 = 0.3
and m0 = 0.6. (e), (f): The plots of the average of the estimated standard errors of the estimates of
η1(t) for m0 = 0.3 and m0 = 0.6. (g), (h): The plots of the coverage probabilities of the estimators
of η1(t) for m0 = 0.3 and m0 = 0.6.
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Figure 21: (a) and (b) show the comparison of the AIPW estimates of baseline cumulative coefficients
η0(t) and the cumulative coefficients η1(t) with 95% pointwise confidence intervals for the immune
response Ri (IgG-92TH023V1V2) in model (3.37) for ε1i = 1 and ε1i = 2, respectively.



83

estimated cumulative coefficients

(a)

t

η̂
0
(t

)

0.2 1 1.8 2.6 3.5

−
0

.0
0

1
0

.0
0

5
0

.0
1

0
.0

1
5

ε1 = 1

ε1 = 2

(b)

t

η̂
1
(t

)

0.2 1 1.8 2.6 3.5

−
0

.0
0

4
−

0
.0

0
2

0
0

.0
0

2

Figure 22: (a) and (b) show the comparison of the AIPW estimates of baseline cumulative coefficients
η0(t) and the cumulative coefficients η1(t) with 95% pointwise confidence intervals for the immune
response Ri (IgG3-92TH023V1V2) in model (3.37) for ε1i = 1 and ε1i = 2, respectively.
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Figure 23: (a) and (b) show the comparison of the AIPW estimates of baseline cumulative coefficients
η0(t) and the cumulative coefficients η1(t) with 95% pointwise confidence intervals for the immune
response Ri (IgG-A244V1V2) in model (3.37) for ε2i = 1 and ε2i = 2, respectively.
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Figure 24: (a) and (b) show the comparison of the AIPW estimates of baseline cumulative coefficients
η0(t) and the cumulative coefficients η1(t) with 95% pointwise confidence intervals for the immune
response Ri (IgG3-A244V1V2) in model (3.37) for ε2i = 1 and ε2i = 2, respectively.
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Figure 25: Q1 = 0.09027, Q2 = 0.31310 and Q3 = 0.39230 are quartiles of the predicted immune
response Ri (IgG-92TH023V1V2) using AIPW method. (a), (b) and (c) shows that the predicted
cumulative incidence function F̂ for ε1i = 1 (red) and ε1i = 2 (grey), respectively, at each level of
behavioral risk score groups (low, medium and high) based on the model (3.37).
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Figure 26: Q1 = −0.4677, Q2 = 0.1196 and Q3 = 0.6484 are quartiles of the predicted immune
response Ri (IgG3-92TH023V1V2) using AIPW method. At three quartiles of immune responses,
the graphs show the predicted cumulative incidence function F̂1i with each level of behavioral risk
score groups (low, medium and high) based on the model (3.37) .
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Figure 27: Q1 = −0.1530, Q2 = 0.3321 and Q3 = 0.5514 are quartiles of the predicted immune
response Ri (IgG-A244V1V2) using AIPW method. At three quartiles of immune responses, the
graphs show the predicted cumulative incidence function F̂1i with each level of behavioral risk score
groups (low, medium and high) based on the model (3.37) .
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Figure 28: Q1 = −0.38510, Q2 = 0.08807 and Q3 = 0.56800 are quartiles of the predicted immune
response Ri (IgG3-A244V1V2) using AIPW method. At three quartiles of immune responses, the
graphs show the predicted cumulative incidence function F̂1i with each level of behavioral risk score
groups (low, medium and high) based on the model (3.37).
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CHAPTER 4: PROOFS OF THE THEOREMS

4.1 Proofs of the Theorems in Chapter 2

Condition I.

I.1. The regression function η(t) is right-continuous with left-handed limits on [a, τ ].

I.2. The link function h(·) is three times continuously differentiable and invertible, and ∂h(·)/∂x is

bounded away from zero. The weight function w(t) is a bounded, deterministic and continuous

function.

I.3. ϕ(Vi, θ) = I(ε̃i = 1)ϕ1(Vi, θ) + I(ε̃i 6= 1)ϕ1(Vi, θ) is twice differentiable with respect to ϕ and

ϕ′(Vi, θ) = dϕ(Vi, θ)/dθ is uniformly bounded and bounded away from zero, i.e., ϕ(Vi, θj) ≥

ε > 0.

I.4. The estimator θ̂ satisfies n
1
2 (θ̂ − θ0) = n−

1
2 [J (θ0)]

−1∑n
i=1 U(Vi, θ0) + op(1), where J (θ0) is

the positive definite fisher information matrix and U(Vi, θ0), i = 1, . . . , n, are iid mean zero

random variables.

I.5. The estimator Ĝ(t) is asymptotically linear with influence function ICG such that

n
1
2 (Ĝ−G)(t, x, z) = n−

1
2

n∑
i=1

ICG(t, x, z;Yi) + op(1),

uniformly in (t, x, z).

I.6. Assume that G(t) is continuous. If τ ∈ (0,∞] is such that Y (τ)
p→ ∞ as n → ∞, then

sup0≤t≤τ |Ĝ(t)−G(t)| p→ 0 as n
p→∞, where Y (t) = I {T ≥ t} at risk process.

Proof of Proposition 1

Let

log L1(θ1) =

n∑
i=1

I(ε̃i = 1)
[
ξi{θT1 Vi} − log{1 + exp(θT1 Vi)}

]
,
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log L2(θ2) =

n∑
i=1

I(ε̃i 6= 1)
[
ξi{θT2 Vi} − log{1 + exp(θT2 Vi)}

]
.

From the likelihood defined in (2.1), we have the following log-likelihood function

log L(θ) = log L1(θ1) + log L2(θ2).

By taking derivative with respect to θ = (θT1 , θ
T
2 )T, the score functions are

U(Vi, θ) =

U1(Vi, θ1)

U2(Vi, θ2)

 =

 ∂ log L(θ)
∂θ1

∂ log L(θ)
∂θ2

 =


∑n
i=1 I(ε̃i = 1)

[
ξiVi − Vi expθ

T
1Vi

1+expθ
T
1Vi

]T
∑n
i=1 I(ε̃i 6= 1)

[
ξiVi − Vi expθ

T
2Vi

1+expθ
T
2Vi

]T
 ,

which has zero at θ̂. The second-order partial derivatives of log L(θ) is

H(θ) =

−
∑n
i=1 I(ε̃i = 1)

expθ
T
1Vi ViVT

i

(1+expθ
T
1Vi )2

0

0 −
∑n
i=1 I(ε̃i 6= 1)

expθ
T
2Vi ViVT

i

(1+expθ
T
2Vi )2

 , (4.1)

which is negative on H(θ). Moerover, the Jacobian of H(θ) is obviously positive. Thus, the log

likelihood function log L(θ) has a local maximum at θ̂ = (θ̂1, θ̂2). Therefore, the selection probability

Si can be estimated by its parametric model Ŝi = ϕ(Vi, θ̂).

Since θ̂ is maximum likelihood estimator of log L(θ), the θ̂ is consistent estimator of the true value

θ0. Moreover, by using Taylor series expansion,

U(Vi, θ̂) = U(Vi, θ0) +
∂

∂θ
U(Vi, θ0)(θ̂ − θ0) + op(n

− 1
2 ), (4.2)

where U(Vi, θ̂) = 0. By the standard arguments of asymptotic normality for M-estimators, it can

be shown that we have the following asymptotic linear expression such that

√
n(θ̂ − θ0) = n−

1
2 [J (Vi, θ0)]

−1
n∑
i=1

U(Vi, θ0) + op(1), (4.3)

and its limiting distribution

√
n(θ̂ − θ0)

d→ N
(
0, J−1(Vi, θ0)

)
, (4.4)
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where the fisher information matrix

J(Vi, θ0) =

E
[
I(ε̃i = 1)

expθ
T
01Vi ViVT

i

(1+expθ
T
01Vi )2

]
0

0 E

[
I(ε̃i 6= 1)

expθ
T
02Vi ViVT

i

(1+expθ
T
02Vi )2

]
 .

(4.5)

and

U(Vi, θ0) =


∑n
i=1 I(ε̃i = 1)

[
ξiVi − Vi expθ

T
1Vi

1+expθ
T
1Vi

]T
∑n
i=1 I(ε̃i 6= 1)

[
ξiVi − Vi expθ

T
2Vi

1+expθ
T
2Vi

]T
 .

Proof of Proposition 2

(1) By the corollary 3.2.1 of (Fleming and H arrington, 2013), we have, for any t ∈ [0, τ ] such that

G(t) > 0,

n
1
2 (Ĝ(t)−G(t)) = n

1
2

{
−G(t)

∫ τ

0

Ĝ(s−)

G(s)
I(Y (s) > 0)

dM(s)

Y (s)

}
+ op(1),

= n
1
2

{
−G(t)

∫ τ

0

I(Y (s) > 0)
dM(s)

Y (s)

}
+ n

1
2

{
G(t)

∫ τ

0

(
1− Ĝ(s−)

G(s)

)
I(Y (s) > 0)

dM(s)

Y (s)

}
+ op(1) (4.6)

By Lenglart’s inequality, the second term of (4.6) is

P

(
sup

0≤t≤τ

{
n

1
2G(t)

∫ τ

0

(
1− Ĝ(s−)

G(s)

)
I(Y (s) > 0)

dM(s)

Y (s)

}2

≥ ε

)

≤ η

ε
+ P

{
nG2(t)

∫ τ

0

(
1− Ĝ(s−)

G(s)

)
2 I(Y (s) > 0)

Y 2(s)
Y (s)dΛ(s) ≥ η

}
≤ η

ε
+ P

{
G2(t)

nI(Y (τ) > 0)Λ(τ)

Y (τ)
≥ η

}
+ P (Y (τ) = 0)

≤ η

ε
(4.7)

since Y (τ)
p→∞ as n

p→∞.



101

Therefore, we have

n
1
2 (Ĝ(t)−G(t)) = n

1
2

{
−G(t)

∫ τ

0

I(Y (s) > 0)
dM(s)

Y (s)

}
+ op(1)

= n−
1
2

{
−G(t)

∫ τ

0

I(Y (s) > 0)
dM(s)

y(s)

}
+ op(1) (4.8)

where n−1Y (s) = n−1
∑n
i=1 Yi(s)

p→ y(s) with s ∈ [0, τ ].

(2) It is easy to derive when the censoring time follows the Cox model with hazard function

λ(t) = λ0(t) exp(β0Xi + β1Zi) where baseline λ0(t) and possibly time dependent covariates Xi

and Zi.

Proof of Theorem 2.1

Let Dη(t), Dγ(t), R(t), F 1(t), Iγ(θ̂), Bγ(θ̂), H(t, θ̂), Iη(t, θ̂) are all evaluated at the true value

{η0(t),γ0} of {η(t),γ}, where Iγ(θ̂), Bγ(θ̂)H(t, θ̂), Iη(t, θ̂) are corresponding terms for (2.12).

By (2.10), we have

n
1
2 (γ̂ − γ0) = {n−1 Iγ(θ̂)}−1n−

1
2Bγ(θ̂) + op(1). (4.9)

Let A(θ) = ∂Ψ(θ)/∂θ. The Taylor expansion of Ψ(θ̂) around the true value θ0 is

Ψ(θ̂) = Ψ(θ0) +A(θ0)(θ̂ − θ0) + op(n
− 1

2 ). (4.10)

Let K(t, θ̂) = DT
γ(t)W (t)Ψ(θ̂)Dη(t)

[
Iη(t, θ̂)

]−1

and evaluate at the true values {η0(t),γ0}. By

plugging H(t, θ̂) in the formula for Bγ(θ̂) in (2.12), we have

n−
1
2Bγ(θ̂) = n−

1
2

∫ τ

0

DT
γ(t)W (t)Ψ(θ̂)

{
I −Dη(t)

[
Iη(t, θ̂)

]−1

DT
η(t)W (t)Ψ(θ̂)

}
{R(t)− F 1(t)} dt

= n−
1
2

∫ τ

0

{
DT
γ(t)−DT

γ(t)W (t)Ψ(θ̂)Dη(t)
[
Iη(t, θ̂)

]−1

DT
η(t)

}
W (t)Ψ(θ̂) {R(t)− F 1(t)} dt

= n−
1
2

∫ τ

0

{
DT
γ(t)−K(t, θ̂)DT

η(t)
}
W (t)Ψ(θ̂) {R(t)− F 1(t)} dt. (4.11)

By plugging (4.10) into (4.11) and decomposing {R(t)− F 1(t)} into
{

∆iNi(t)

Ĝ(Ti)
− ∆iNi(t)

G(Ti)
+ ∆iNi(t)

G(Ti)
− F 1i(t)

}
,
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then (4.11) can be split into the following four terms

n−
1
2Bγ(θ̂) = n−

1
2

n∑
i=1

∫ τ

0

[
DT
γ,i(t)−K(t, θ̂)DT

η,i(t)
]
wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

+n−
1
2

n∑
i=1

∫ τ

0

[
DT
γ,i(t)−K(t, θ̂)DT

η,i(t)
]
wi(t)Ai(θ0)(θ̂ − θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

+n−
1
2

n∑
i=1

∫ τ

0

[
DT
γ,i(t)−K(t, θ̂)DT

η,i(t)
]
wi(t)ψi(θ0)

{
∆iNi(t)

Ĝ(Ti)
− ∆iNi(t)

G(Ti)

}
dt

+n−
1
2

n∑
i=1

∫ τ

0

[
DT
γ,i(t)−K(t, θ̂)DT

η,i(t)
]
wi(t)Ai(θ0)(θ̂ − θ0)

{
∆iNi(t)

Ĝ(Ti)
− ∆iNi(t)

G(Ti)

}
dt

+op(1). (4.12)

The fourth term of (4.12) is shown to be equal to op(1) in Appendix A. That is,

n−
1
2

n∑
i=1

∫ τ

0

[
DT
γ,i(t)−K(t, θ̂)DT

η,i(t)
]
wi(t)Ai(θ0)(θ̂ − θ0)

{
∆iNi(t)

Ĝ(Ti)
− ∆iNi(t)

G(Ti)

}
dt = op(1).

(4.13)

Denote the first term of (4.12) by

B̃γ(θ̂) = n−
1
2

n∑
i=1

∫ τ

0

[
DT
γ,i(t)−K(t, θ̂)DT

η,i(t)
]
wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt.

It is shown in the Appendix A that

n−
1
2

n∑
i=1

∫ τ

0

[
K(t, θ̂)− k(t, θ0)

]
DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt = op(1). (4.14)

Let

ζγ,i(t, θ) =
[
DT
γ,i(t)− k(t, θ)DT

η,i(t)
]
wi(t)ψi(θ)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
. (4.15)

It follows by (4.14) that

B̃γ(θ̂) = n−
1
2

n∑
i=1

∫ τ

0

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

−n− 1
2

n∑
i=1

∫ τ

0

[
K(t, θ̂)− k(t, θ0)

]
DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

= n−
1
2

n∑
i=1

∫ τ

0

ζγ,i(t, θ0) dt+ op(1), (4.16)
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Denote the second term of (4.12) by

Dγ(θ̂) = n−
1
2

n∑
i=1

∫ τ

0

[
DT
γ,i(t)−K(t, θ̂)DT

η,i(t)
]
wi(t)Ai(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt (θ̂ − θ0).

By similar argument in (4.14), we have

Dγ(θ̂) = n−
1
2

n∑
i=1

∫ τ

0

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)Ai(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt (θ̂ − θ0) + op(1).

By the law of large numbers,

n−1
n∑
i=1

∫ τ

0

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)Ai(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

p→ g(τ, θ0). (4.17)

It follows by (2.15) in proposition 1 and (4.17) that

Dγ(θ̂) = n
1
2 (θ̂ − θ0) (g(τ, θ0) + op(1)) + op(1).

= g(τ, θ0)n
1
2 (θ̂ − θ0) + op(1).

= g(τ, θ0)

{
n−

1
2 J−1 (Vi, θ0)

n∑
i=1

U(Vi, θ0)

}
+ op(1). (4.18)

Now consider the third term of (4.12). Let

∆γ(θ̂) = n−
1
2

n∑
i=1

∫ τ

0

[
DT
γ,i(t)−K(t, θ̂)DT

η,i(t)
]
wi(t)ψi(θ0)∆iNi(t)

{
G(Ti)− Ĝ(Ti)

Ĝ(Ti)G(Ti)

}
dt.

With similar arguments in (4.14), we have

∆γ(θ̂) = n−
1
2

n∑
i=1

∫ τ

0

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)ψi(θ0)∆iNi(t)

{
G(Ti)− Ĝ(Ti)

Ĝ(Ti)G(Ti)

}
dt+ op(1).

(4.19)

Using (2.17) in proposition 2, we have

n
1
2 ∆iNi(t)

Ĝ(Ti)−G(Ti)

Ĝ(Ti)G(Ti)
= n−

1
2 ∆iNi(t)

−I(T̃i ≤ t)
G(Ti)

n∑
j=1

∫ τ

0

I(s ≤ T̃i)
dMj

c(s)

y(s)
+ op(1). (4.20)

By plugging (4.20) into (4.19), we have

∆γ(θ̂) = n−
1
2

n∑
j=1

∫ τ

0

∫ τ

0

n−1
n∑
i=1

{
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
}
wi(t)ψi(θ0)

∆iNi(t)

G(Ti)
I(s ≤ T̃i ≤ t) dt

dM c
j(s)

y(s)
+ op(1).
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By law of large numbers,

n−1
n∑
j=1

{
DT
γ,j(t)− k(t, θ0)DT

η,j(t)
}
wj(t)ψj(θ0)

∆jNj(t)

G(Tj)
I(s ≤ T̃j ≤ t)

p→ qγ(s, t, θ0).

Let

κγ,i(t, θ) =

∫ τ

0

qγ(s, t, θ)

y(s)
dM c

i (s). (4.21)

Thus, we have

∆γ(θ̂) = n−
1
2

n∑
i=1

∫ τ

0

κγ,i(t, θ0)dt+ op(1). (4.22)

Let

B̃γ(θ) = n−
1
2

n∑
i=1

∫ τ

0

ζγ,i(t, θ) dt,

∆γ(θ) = n−
1
2

n∑
i=1

∫ τ

0

κγ,i(t, θ) dt,

Dγ(θ) = g(τ, θ)

{
n−

1
2 J−1 (Vi, θ)

n∑
i=1

U(Vi, θ)

}
. (4.23)

It follows by (4.12), (4.13), (4.16), (4.18), (4.22) and (4.23) that

n−
1
2Bγ(θ̂) = B̃γ(θ0) + ∆γ(θ0) + Dγ(θ0) + op(1). (4.24)

By plugging the expression of H(t, θ̂) into Iγ(θ̂) from (2.12), we have

n−1 Iγ(θ̂) =

∫ τ

a

[
DT
γ(t)−K(t, θ̂)DT

η(t)
]
W (t)Ψ(θ̂)Dγ(t) dt. (4.25)

Let

n−1Iγ(θ) = n−1
n∑
i=1

∫ τ

a

[
DT
γ,i(t)− k(t, θ)DT

η,i(t)
]
wi(t)ψi(θ)Dγ,i(t) dt

Qγ(θ) = E

{∫ τ

a

[
DT
γ,i(t)− k(t, θ)DT

η,i(t)
]
wi(t)ψi(θ)Dγ,i(t) dt

}
.

It is shown in the Appendix A that

n−1 Iγ(θ̂) = n−1Iγ(θ0) + op(1)

p→ Qγ(θ0). (4.26)
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Let

W γ,i(τ, θ) =

∫ τ

0

ζγ,i(t, θ) dt+

∫ τ

0

κγ,i(t, θ) dt+ g(τ, θ) [J (Vi, θ)]−1
U(Vi, θ).

It follows by (4.9), (4.24), (4.26) that
√
n(γ̂ − γ0) is asymptotically equivalent to the following

identically independent distributed decomposition

n
1
2 (γ̂ − γ0) =

{
Qγ(θ0)

}−1

n−
1
2

n∑
i=1

{W γ,i(τ, θ0)}+ op(1). (4.27)

Since ζγ,i(t, θ0) has mean zero by (2.2), κγ,i(t, θ0) is mean zero local square martingale, and the

score function U(Vi, θ0) has mean zero, by the law of large numbers, n−1
∑n
i=1 {W γ,i(τ, θ0)} has

mean zero. By the central limit theorem, n−
1
2

∑n
i=1W γ,i(τ, θ0) converges in distribution to a mean

zero normal random vector with covariance matrix E {W γ,i(τ, θ0)}⊗2
.

By slutsky’s theorem, we have

√
n(γ̂ − γ0)

d→ N (0,Σγ) , (4.28)

where Σγ = Qγ(θ0)−1E {W γ,i(τ, θ0)}⊗2
Qγ(θ0)−1.

Let F̂ 1i(t), D̂η,i(t) and D̂γ,i(t) be the estimator of F 1i(t), Dη,i(t) and Dγ,i(t) by plugging

estimators η̂(t) and γ̂ into F1i(t,η(t),γ), Dη,i(t,η(t),γ), Dγ,i(t,η(t),γ) , respectively, and let

Ai(θ̂) = ∂ψi(θ̂)/∂θ where ψi(θ̂) = ξi/ϕ(Vi, θ̂).
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Let

Îη(t, θ) = n−1
n∑
i=1

D̂
T

η,i(t)wi(t)ψi(θ)D̂η,i(t)

K̂(t, θ) = n−1
n∑
i=1

D̂
T

γ,i(t)wi(t)ψi(θ)D̂η,i(t)
[
Îη(t, θ)

]−1

,

ζ̂γ,i(t, θ) =
[
D̂

T

γ,i(t)− K̂(t, θ)D̂
T

η,i(t)
]
wi(t)ψi(θ)

{
∆iNi(t)

Ĝ(Ti)
− F̂ 1i(t)

}
,

q̂γ(s, t, θ) = n−1
n∑
j=1

{
D̂

T

γ,j(t)− K̂(t, θ)D̂
T

η,j(t)
}
wj(t)ψj(θ)

∆jNj(t)

Ĝ(Tj)
I(s ≤ T̃j ≤ t),

ŷ(t) = n−1
n∑
i=1

I(T̃i ≥ t)

M̂j

c
(s) = I(T̃j ≤ s,∆j = 0)−

∫ s

0

I(T̃j ≥ u) d(− log Ĝ(u))

κ̂γ,i(t, θ) =

∫ τ

0

q̂γ(s, t, θ)

ŷ(s)
dM̂ c

i (s),

ĝ(τ, θ) = n−1
n∑
i=1

∫ τ

0

[
D̂

T

γ,i(t)− K̂(t, θ)D̂
T

η,i(t)
]
wi(t)Ai(θ)

{
∆iNi(t)

Ĝ(Ti)
− F̂ 1i(t)

}
dt. (4.29)

The asymptotic covariance matrix of
√
n(γ̂ − γ0) can be consistently estimated by

Σ̂γ = Q̂
−1

γ (θ̂)n−1
n∑
i=1

{
Ŵ γ,i(τ, θ̂)

}⊗2

Q̂
−1

γ (θ̂),

where

Ŵ γ,i(τ, θ) =

∫ τ

0

ζ̂γ,i(t, θ) dt+

∫ τ

0

κ̂γ,i(t, θ) dt+ ĝ(τ, θ)
[
Ĵ(θ)

]−1

U(Vi, θ),

Q̂γ(θ) = n−1
n∑
i=1

∫ τ

0

[
D̂

T

γ,i(t)− K̂(t, θ)D̂
T

η,i(t)
]
wi(t)ψi(θ)D̂γ,i(t) dt. (4.30)

Proof of Theorem 2.2.

From (2.11), we have

√
n(η̂(t)− η0(t))

=
[
n−1Iη(t, θ̂)

]−1

n−
1
2DT
η(t)W (t)Ψ(θ̂)

{
R(t)− F 1(t)−Dγ(t)

{
Iγ(θ̂)

}−1

Bγ(θ̂)

}
+ op(1). (4.31)

We consider the expression n−
1
2DT
η(t)W (t)Ψ(θ̂)

{
R(t)− F 1(t)−Dγ(t)

{
Iγ(θ̂)

}−1

Bγ(θ̂)

}
. It
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can be decomposed into two terms

n−
1
2DT
η(t)W (t)Ψ(θ̂)

{
R(t)− F 1(t)−Dγ(t)

{
Iγ(θ̂)

}−1

Bγ(θ̂)

}
= n−

1
2DT
η(t)W (t)Ψ(θ̂) {R(t)− F 1(t)}

−n− 1
2DT
η(t)W (t)Ψ(θ̂)Dγ(t)

{
Iγ(θ̂)

}−1

Bγ(θ̂). (4.32)

The first term of (4.32) can be decomposed into four terms

n−
1
2DT
η(t)W (t)Ψ(θ̂) {R(t)− F 1(t)}

= n−
1
2

n∑
i=1

DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}

+n−
1
2

n∑
i=1

DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

Ĝ(Ti)
− ∆iNi(t)

G(Ti)

}

+n−
1
2

n∑
i=1

DT
η,i(t)wi(t)(ψi(θ̂)−ψi(θ0))

{
∆iNi(t)

G(Ti)
− F 1i(t)

}

+n−
1
2

n∑
i=1

DT
η,i(t)wi(t)(ψi(θ̂)−ψi(θ0))

{
∆iNi(t)

Ĝ(Ti)
− ∆iNi(t)

G(Ti)

}
+ op(1). (4.33)

It is shown in the Appendix A that the third and the fourth term are op(1), that is,

n−
1
2

n∑
i=1

DT
η,i(t)wi(t)(ψi(θ̂)−ψi(θ0))

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
= op(1), (4.34)

n−
1
2

n∑
i=1

DT
η,i(t)wi(t)(ψi(θ̂)−ψi(θ0))

{
∆iNi(t)

Ĝ(Ti)
− ∆iNi(t)

G(Ti)

}
= op(1). (4.35)

It follows that

n−
1
2DT
η(t)W (t)Ψ(θ̂) {R(t)− F 1(t)}

= n−
1
2

n∑
i=1

ζη,i(t, θ0) + n−
1
2

n∑
i=1

κη,i(t, θ0) + op(1), (4.36)
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where

ζη,i(t, θ) = DT
η,i(t)wi(t)ψi(θ)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
,

qη(s, t, θ) = E

{
DT
η,j(t)wj(t)ψj(θ)

∆jNj(t)

G(Tj)
I(s ≤ T̃j ≤ t)

}
,

κη,i(t, θ) =

{∫ τ

0

qη(s, t, θ)

y(s)
dM c

i (s)

}
y(s) = lim

n→∞
n−1

n∑
i=1

I(T̃i ≥ s), where s ∈ [0, τ ].

Now we consider the second term of (4.32). Note that

n−1
n∑
i=1

DT
η,i(t)wi(t)ψi(θ0)Dγ,i(t)

p→ Qη,γ(t, θ0).

where Qη,γ(t, θ) = E
{
DT
η,i(t)wi(t)ψi(θ)Dγ,i(t)

}
. It follows by (4.9) and (4.27) that

−n− 1
2DT
η(t)W (t)Ψ(θ̂)Dγ(t)

{
Iγ(θ̂)

}−1

Bγ(θ̂)

= −n−1DT
η(t)W (t)Ψ(θ̂)Dγ(t)

{
n−1Iγ(θ̂)

}−1

n−
1
2Bγ(θ̂)

=
{
Qη,γ(t, θ0) + op(1)

}{
Qγ(θ0)

}−1
{
n−

1
2

n∑
i=1

W γ,i(τ, θ0)

}
+ op(1).

= Qη,γ(t, θ0)
{
Qγ(θ0)

}−1
{
n−

1
2

n∑
i=1

W γ,i(τ, θ0)

}
+ op(1). (4.37)

It follows by (4.32), (4.36) and (4.37) that

n−
1
2DT
η(t)W (t)Ψ(θ̂)

{
R(t)− F 1(t)−Dγ(t)

{
Iγ(θ̂)

}−1

Bγ(θ̂)

}
= n−

1
2

n∑
i=1

Wη,i(t, θ0) + op(1), (4.38)

where

Wη,i(t, θ) =

{
ζη,i(t, θ) + κη,i(t, θ)−Qη,γ(t, θ)

{
Qγ(θ)

}−1

W γ,i(τ, θ)

}
. (4.39)

From (2.12), we have

Iη(t, θ̂) =

n∑
i=1

DT
η,i(t)wi(t)ψi(θ̂)Dη,i(t).
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It is shown in the Appendix A that

n−1Iη(t, θ̂) = n−1Iη(t, θ0) + op(1)

p→ Qη(t, θ0), (4.40)

where Qη(t, θ) = E{DT
η,i(t)wi(t)ψi(θ)Dη,i(t)}.

By plugging (4.38) and (4.40) into (4.31),
√
n(η̂(t) − η0(t)) is asymptotically equivalent to the

following identically independent distributed decomposition

√
n(η̂(t)− η0(t))) =

{
Qη(t, θ0)

}−1

n−
1
2

n∑
i=1

Wη,i(t, θ0) + op(1). (4.41)

By the functional central limit theorem for empirical process, n−
1
2

∑n
i=1Wη,i(t, θ0) converges in

distribution to a normal random vector with zero-mean and covariance matrix E
{
Wη,i(t, θ0)

}⊗2
.

By the slutsky’s theorem and an application of Theorem 19.5 of van der Vaart(1998),
√
n(η̂(t)−η0(t))

converges weakly to a mean zero Gaussian process on t ∈ [0, τ ] with the covariance matrix Ση =

Q−1
η (t, θ0)E

{
Wη,i(t, θ0)

}⊗2
Q−1
η (t, θ0).

Let

ζ̂η,i(t, θ) = D̂
T

η,i(t)wi(t)ψi(θ)

{
∆iNi(t)

Ĝ(Ti)
− F̂ 1i(t)

}
,

q̂η(s, t, θ) = n−1
n∑
j=1

D̂
T

η,j(t)wj(t)ψj(θ)
∆jNj(t)

Ĝ(Tj)
I(s ≤ T̃j ≤ t),

ŷ(t) = n−1
n∑
i=1

I(T̃i ≥ t),

M̂j

c
(s) = I(T̃j ≤ s,∆j = 0)−

∫ s

0

I(T̃j ≥ u) d(− log Ĝ(u)),

κ̂η,i(t, θ) =

∫ τ

0

q̂η(s, t, θ)

ŷ(s)
dM̂ c

i (s),

Q̂η,γ(t, θ) = n−1
n∑
i=1

D̂
T

η,i(t)wi(t)ψi(θ)D̂γ,i(t). (4.42)

The asymptotic covariance matrix of
√
n(η̂(t)− η0(t)) can be consistently estimated by

Σ̂η = Q̂
−1

η (t, θ̂)n−1
n∑
i=1

{
Ŵη,i(τ, θ̂)

}⊗2

Q̂
−1

η (t, θ̂),
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where

Ŵη,i(t, θ) =

{
ζ̂η,i(t, θ) + κ̂η,i(t, θ)− Q̂η,γ(t, θ)

{
Q̂γ(θ)

}−1

Ŵ γ,i(τ, θ)

}
,

Q̂η(t, θ) = n−1
n∑
i=1

D̂
T

η,i(t)wi(t)ψi(θ)D̂η,i(t).

and where
{
Q̂γ(θ)

}−1

and Ŵ γ,i(τ, θ) are defined in (4.30).

4.2 Proofs of the Theorems in Chapter 3

Proof of Theorem 3.1

We have the following estimating equations from (3.13) and (3.14)

̂̃
Uη(t,η(t),γ, θ̂) = DT

η(t)W (t)Ψ(θ̂) {R(t)− F 1(t,η(t),γ)}+ âη(t, η(t), γ, θ̂), (4.43)

̂̃
Uγ(τ,η(·),γ, θ̂) =

∫ τ

0

DT
γ(t)W (t)Ψ(θ̂) {R(t)− F 1(t,η(t),γ)} dt+ âγ(τ, η(·), γ, θ̂). (4.44)

For model (3.5), Dη(t) is the n × (p + 1) matrix of X = (X1, · · · , Xn)T with the ith row vector

Dη,i(t,η(t),γ) = XT
i = (1, Xi1, · · · , Xip) , Dγ(t) is the the n × q matrix of ∂g(γ, Z, t)/∂γ with

the ith row vector Dγ,i(t,η(t),γ) = ∂g(γ, Zi, t)/∂γ, and where âη(t, η(t), γ, θ̂) and âγ(τ, η(·), γ, θ̂)

are defined in (3.11) and (3.12) with V̂x = (Ê{X1|V1}, · · · , Ê{Xn|Vn})T and V̂xx(θ̂) =
∑n
i=1(1 −

ψi(θ̂))wi(t)Ê
[
XiX

T
i |Vi

]
.

Let

Ũη(t,η(t),γ, θ) = DT
η(t)W (t)Ψ(θ) {R(t)− F 1(t,η(t),γ)}+ ãη(t, η(t), γ, θ), (4.45)

Ũγ(τ,η(·),γ, θ) =

∫ τ

0

DT
γ(t)W (t)Ψ(θ) {R(t)− F 1(t,η(t),γ)} dt+ ãγ(τ, η(·), γ, θ), (4.46)

where

ãη(t, η(t), γ, θ) = V Tx W (t)(I −Ψ(θ)) {R(t)− g(γ, Z, t)} − Vxx(θ)η(t),

ãγ(τ, η(·), γ, θ) =

∫ τ

0

{∂g(γ, Z, t)

∂γ
}TW (t)(I −Ψ(θ)) {R(t)− Vxη(t)− g(γ, Z, t)} dt,
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where Vx = (E{X1|V1}, · · · , E{Xn|Vn})T and Vxx(θ) =
∑n
i=1(1− ψi(θ))wi(t)E

[
XiX

T
i |Vi

]
.

By adapting the theory of Robins, Rotnizky and Zhao (1994), if either P (ξi = 1|Vi) or E{X(2)
i |Vi}

and E{X(2)
i (X

(2)
i )T|Vi} is correctly specified, we have θ̂

p→ θ0, âη(t, η(t), γ, θ̂)
p→ ãη(t, η(t), γ, θ0)

âγ(τ, η(·), γ, θ̂) p→ ãγ(τ, η(·), γ, θ0). It follows that the estimating equation (4.43) and (4.44) are

asymptotically equivalent to (4.45) and (4.46). That is,

̂̃
Uη(t,η(t),γ, θ̂) = Ũη(t,η(t),γ, θ0) + op(n

1
2 ),

̂̃
Uγ(τ,η(·),γ, θ̂) = Ũγ(τ,η(·),γ, θ0) + op(n

1
2 ).

By using the Taylor expansion in (2.7) and replacing it into the estimation equations (4.45) and

(4.46), we have

Ũη(t, η̂(t), γ̂, θ0) = DT
η(t)W (t)Ψ(θ0)

[
R(t)−F 1(t)−Dη(t) {η̂(t)−η0(t)}−Dγ(t) {γ̂−γ0}

]
+ãη(t, θ0) + op(n

1
2 ) = 0, (4.47)

Ũγ(τ, η̂(·), γ̂, θ̂) =

∫ τ

0

DT
γ(t)W (t)Ψ(θ0)

[
R(t)−F 1(t)−Dη(t){η̂(t)−η0(t)}−Dγ(t) {γ̂−γ0}

]
dt

+ãγ(θ0) + op(n
1
2 ) = 0. (4.48)

where Dη(t) = Dη(t,η0(t),γ0), Dγ(t) = Dγ(t,η0(t),γ0), F 1(t) = F 1(t,η0(t),γ0), ãη(t, θ0) =

ãη(t, η̂(t), γ̂, θ0) and ãγ(θ0) = ãγ(τ, η̂(·), γ̂, θ0).

From (4.47), it can be solved for {η̂(t)−η0(t)}. That is,

DT
η(t)W (t)Ψ(θ0)Dη(t) {η̂(t)−η0(t)} = DT

η(t)W (t)Ψ(θ0)
[
R(t)−F 1(t)−Dγ(t) {γ̂−γ0}

]
+ ãη(t, θ0),

η̂(t)−η0(t) =
[
Iη(t, θ0)

]−1
DT
η(t)W (t)Ψ(θ0)

[
R(t)−F 1(t)−Dγ(t) {γ̂−γ0}

]
+
[
Iη(t, θ0)

]−1
ãη(t, θ0) + op(n

1
2 ), (4.49)

where Iη(t, θ) = DT
η(t)W (t)Ψ(θ)Dη(t).

By solving (4.48) for {γ̂−γ0},∫ τ

0

DT
γ(t)W (t)Ψ(θ0)Dγ(t) {γ̂−γ0} dt =

∫ τ

0

DT
γ(t)W (t)Ψ(θ0) [R(t)−F 1(t)] dt

−
∫ τ

0

DT
γ(t)W (t)Ψ(θ0)Dη(t) {η̂(t)−η0(t)} dt+ ãγ(θ0) + op(n

− 1
2 ).(4.50)
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By substituting (4.49) into (4.50),

∫ τ

0

DT
γ(t)W (t)Ψ(θ0)Dγ(t) {γ̂−γ0} dt

=

∫ τ

0

DT
γ(t)W (t)Ψ(θ0)[R(t)−F 1(t)] dt

−
∫ τ

0

DT
γ(t)W (t)Ψ(θ0)Dη(t)

[
Iη(t, θ0)

]−1
DT
η(t)W (t)Ψ(θ0) [R(t)−F 1(t)]

+

∫ τ

0

DT
γ(t)W (t)Ψ(θ0)Dη(t)

[
Iη(t, θ0)

]−1
DT
η(t)W (t)Ψ(θ0)Dγ(t) {γ̂−γ0}

−
∫ τ

0

DT
γ(t)W (t)Ψ(θ0)Dη(t)

[
Iη(t, θ0)

]−1
ãη(t, θ0)dt+ ãγ(θ0) + op(n

1
2 ). (4.51)

By combining like terms of {γ̂−γ0} and R(t)−F 1(t) in (4.51), we have

∫ τ

0

DT
γ(t)W (t)Ψ(θ0)

[
I −Dη(t)

[
Iη(t, θ0)

]−1
DT
η(t)W (t)Ψ(θ0)

]
Dγ(t) {γ̂−γ0} dt

=

∫ τ

0

DT
γ(t)W (t)Ψ(θ0)

[
I −Dη(t)

[
Iη(t, θ0)

]−1
DT
η(t)W (t)Ψ(θ0)

]
[R(t)−F 1(t)]

−
∫ τ

0

DT
γ(t)W (t)Ψ(θ0)Dη(t)

[
Iη(t, θ0)

]−1
ãη(t, θ0)dt+ ãγ(θ0) + op(n

1
2 ). (4.52)

Let

Aη(θ) =

∫ τ

0

K(t, θ)ãη(t, θ) dt

K(t, θ) = DT
γ(t)W (t)Ψ(θ)Dη(t)

[
Iη(t, θ)

]−1

Using (2.12), (4.52) can be reduced to

Iγ(θ0) {γ̂−γ0} = Bγ(θ0)−Aη(θ0)+ ãγ(θ0) + op(n
1
2 ).

Thus, we have

γ̂−γ0 =
[
Iγ(θ0)

]−1 {
Bγ(θ0)−Aη(θ0)+ ãγ(θ0)

}
+ op(n

− 1
2 ). (4.53)

Again by substituting (4.53) into (4.49), we have

η̂(t)− η0(t) = {Iη(t, θ0)}−1{Dη(t)}TW (t)Ψ(θ0)
{
R(t)−F 1(t)−Dγ(t){Iγ(θ0)}−1

{
Bγ(θ0) + ãγ(θ0)−Aη(θ0)

}}
+ {Iη(t, θ0)}−1ãη(t, θ0) + op(n

− 1
2 ).



113

Proof of Theorem 3.2

From (3.24), we have

n
1
2 (γ̂ − γ0) =

{
1

n
Iγ(θ0)

}−1

n−
1
2

{
Bγ(θ0) + ãγ(θ0)−Aη(θ0)

}
+ op(1). (4.54)

Consider n−
1
2Bγ(θ0) in (4.54). Using (2.12), with similar arguments to (4.11), we have

n−
1
2Bγ(θ0) = n−

1
2

∫ τ

0

{
DT
γ(t)−K(t, θ0)DT

η(t)
}
W (t)Ψ(θ0) {R(t)− F 1(t)} dt.

With similar argument to (4.12), it can be decomposed by

n−
1
2Bγ(θ0) = n−

1
2

n∑
i=1

∫ τ

0

[
DT
γ,i(t)−K(t, θ0)DT

η,i(t)
]
wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

+n−
1
2

n∑
i=1

∫ τ

0

[
DT
γ,i(t)−K(t, θ0)DT

η,i(t)
]
wi(t)ψi(θ0)

{
∆iNi(t)

Ĝ(Ti)
− ∆iNi(t)

G(Ti)

}
dt (4.55)

By using consistency of K(t, θ0) shown in (A.3) in Appendix 4.2, we have

n−
1
2Bγ(θ0) = n−

1
2

n∑
i=1

∫ τ

0

ζγ,i(t, θ0) dt+ n−
1
2

n∑
i=1

∫ τ

0

κγ,i(t, θ0) dt+ op(1). (4.56)

where ζγ,i(t, θ) and κγ,i(t, θ0) are defined in (4.15) and (4.21), respectively.

Consider ãγ(θ0) is defined in Theorem 3.1. The term n−
1
2 ãγ(θ0) can be decomposed into four parts

n−
1
2 ãγ(θ0) = n−

1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0))

{
∆iNi(t)

Ĝ(Ti)
− ∆iNi(t)

G(Ti)

}
dt

+ n−
1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0))

{
∆iNi(t)

G(Ti)
− Vx,iη0(t)− g(γ0, Zi, t)

}
dt

− n−
1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0))Vx,i {η̂(t)− η0(t)} dt

− n−
1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0)) {g(γ̂, Zi, t)− g(γ0, Zi, t)} dt (4.57)

It is shown in the Appendix A that the third and fourth terms of the above equation are equal to

op(1), respectively. That is,

− n−
1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0))Vx,i {η̂(t)− η0(t)} dt = op(1), (4.58)

− n−
1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0)) {g(γ̂, Zi, t)− g(γ0, Zi, t)} dt = op(1). (4.59)
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Consider the first term of (4.57). By using (4.20) and the law of large numbers,

n−1
n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0))

∆iNi(t)

G(Ti)
I(s ≤ T̃i ≤ t)

p→ q∗γ(s, t,γ0, θ0). (4.60)

It follows that

n−
1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0))

{
∆iNi(t)

Ĝ(Ti)
− ∆iNi(t)

G(Ti)

}
dt

= −n− 1
2

n∑
j=1

∫ τ

0

∫ τ

0

n−1
n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0))

∆iNi(t)

G(Ti)
I(s ≤ T̃i ≤ t)

dMj
c(s)

y(s)
dt+ op(1).

= −n− 1
2

n∑
i=1

∫ τ

0

{
q∗γ(s, t,γ0, θ0)

y(s)
+ op(1)

}
dM c

i (s) + op(1)

= −n− 1
2

n∑
i=1

∫ τ

0

κ∗γ,i(t,γ0, θ0)dt+ op(1), (4.61)

where κ∗γ,i(t,γ, θ) =
∫ τ

0
{q∗γ(s, t,γ, θ)/y(s)}dM c

i (s).

Now consider the second term of (4.57).

n−
1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0))

{
∆iNi(t)

G(Ti)
− Vx,iη0(t)− g(γ0, Zi, t)

}
dt

= n−
1
2

∫ τ

0

n∑
i=1

ζ∗γ,i(t,η0(t),γ0, θ0) dt, (4.62)

where ζ∗γ,i(t,η(t),γ, θ) = {∂g(γ,Zi,t)
∂γ }Twi(t)(1− ψi(θ))

{
∆iNi(t)
G(Ti)

− Vx,iη(t)− g(γ, Zi, t)
}
.

Therefore, it follows by (4.57), (4.58), (4.59), (4.61) and (4.62) that

n−
1
2 ãγ(θ0) = −n− 1

2

n∑
i=1

∫ τ

0

κ∗γ,i(t,γ0, θ0)dt+ n−
1
2

n∑
i=1

∫ τ

0

ζ∗γ,i(t,η0(t),γ0, θ0)dt+ op(1).(4.63)

Consider −n− 1
2Aη(θ0) in (4.54). From (3.26), we have

−n− 1
2Aη(θ0) =

∫ τ

0

K(t, θ0)ãη(t, θ0) dt. (4.64)
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To finish this, first we consider i.i.d expression for ãη(t, θ0). It can be decomposed into four terms

n−
1
2 ãη(t, θ0) = n−

1
2

n∑
i=1

V T
x,iwi(t)(1− ψi(θ0))

{
∆iNi(t)

Ĝ(Ti)
− ∆iNi(t)

G(Ti)

}

+ n−
1
2

n∑
i=1

[
V T
x,iwi(t)(1− ψi(θ0))

{
∆iNi(t)

G(Ti)
− g(γ0, Zi, t)

}
− Vxx,i(θ0)η0(t)

]

− n−
1
2

n∑
i=1

V T
x,iwi(t)(1− ψi(θ0)) {g(γ̂, Zi, t)− g(γ0, Zi, t)}

− n−
1
2

n∑
i=1

Vxx,i(θ0) {η̂(t)− η0(t)} . (4.65)

It is shown in the Appendix A that the third and fourth terms of (4.65) are shown to be equal to

op(1), respectively. That is,

− n−
1
2

n∑
i=1

V T
x,iwi(t)(1− ψi(θ0)) {g(γ̂, Zi, t)− g(γ0, Zi, t)} = op(1), (4.66)

− n−
1
2

n∑
i=1

Vxx,i(θ0) {η̂(t)− η0(t)} = op(1). (4.67)

Consider the first term of (4.65). By using (4.20) and the law of large numbers,

n−1
n∑
j=1

V T
x,jwj(t)(1− ψj(θ0))

∆jNj(t)

G(Tj)
I(s ≤ T̃j ≤ t)

p→ q∗η(s, t, θ0). (4.68)

It follows that

n−
1
2

n∑
i=1

V T
x,iwi(t)(1− ψi(θ0))

{
∆iNi(t)

Ĝ(Ti)
− ∆iNi(t)

G(Ti)

}

= −n− 1
2

n∑
i=1

∫ τ

0

n−1
n∑
j=1

V T
x,jwj(t)(1− ψj(θ0))

∆jNj(t)

G(Tj)
I(s ≤ T̃j ≤ t)

dMi
c(s)

y(s)

= −n− 1
2

n∑
i=1

∫ τ

0

q∗η(s, t, θ0)

y(s)
dMi

c(s) + op(1)

= −n− 1
2

n∑
i=1

κ∗η,i(t, θ0) + op(1), (4.69)

where κ∗η,i(t, θ) =
∫ τ

0
{q∗η(s, t, θ)/y(s)}dMi

c(s).
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Consider the second term of (4.65). We have,

n−
1
2

n∑
i=1

[
V T
x,iwi(t)(1− ψi(θ0))

{
∆iNi(t)

G(Ti)
− g(γ0, Zi, t)

}
− Vxx,i(θ0)η0(t)

]

= n−
1
2

n∑
i=1

ζ∗η,i(t,η0(t),γ0, θ0), (4.70)

where ζ∗η,i(t,η(t),γ, θ) = V Tx,iwi(t)(1− ψi(θ))
{

∆iNi(t)
G(Ti)

− g(γ, Zi, t)
}
− Vxx,i(θ)η(t).

It follows by (4.65), (4.66), (4.67), (4.69) and (4.70) that

n−
1
2 ãη(t, θ0) = −n− 1

2

n∑
i=1

{
κ∗η,i(t, θ0)− ζ∗η,i(t,η0(t),γ0, θ0)

}
+ op(1) (4.71)

Note that K(t, θ0)
p→ k(t, θ0). From (4.64) and (4.71), we have

−n− 1
2Aη(θ0) = n−

1
2

∫ τ

0

k(t, θ0)ãη(t, θ0) dt+ n−
1
2

∫ τ

0

{K(t, θ0)− k(t, θ0)} ãη(t, θ0) dt

= n−
1
2

∫ τ

0

k(t, θ0)ãη(t, θ0) dt+ op(1)

= −n− 1
2

n∑
i=1

∫ τ

0

k(t, θ0)
{
κ∗η,i(t, θ0)− ζ∗η,i(t,η0(t),γ0, θ0)

}
dt+ op(1). (4.72)

It follows by (4.26), (4.54),(4.56), (4.63), (4.72) that

n
1
2 (γ̂ − γ0) =

{
n−1Iγ(θ0)

}−1
n−

1
2

{
Bγ(θ̂) + ãγ(θ0)−Aη(θ0)

}
=

{
Qγ(θ0)

}−1

n−
1
2

n∑
i=1

W ∗
γ,i(τ,η0(·),γ0, θ0) + op(1), (4.73)

where Qγ(θ) is defined in Theorem 2.1, and where

W ∗
γ,i(τ,η(·),γ, θ) =

∫ τ

0

ζγ,i(t, θ) dt+

∫ τ

0

κγ,i(t, θ) dt−
∫ τ

0

κ∗γ,i(t,γ, θ)dt+

∫ τ

0

ζ∗γ,i(t,η(t),γ, θ)dt

−
∫ τ

0

k(t, θ0)
{
κ∗η,i(t, θ0)− ζ∗η,i(t,η0(t),γ0, θ0)

}
dt. (4.74)

Since ζγ,i(t, θ0) and κγ,i(t, θ0) has mean zero from Theorem 2.1, and since κ∗γ,i(t,γ, θ0) has mean

zero local square martingale and, by missing at random assumption, ζ∗η,i(t,η0(t),γ0, θ0) has mean

zero, then, by the standard central limit theorem, n−1
∑n
i=1W

∗
γ,i(τ,η0(·),γ0, θ0) has mean zero

normal random vector with covariance matrix E{W ∗
γ,i(τ,η0(·),γ0, θ0)}⊗2 .

By slutsky’s theorem, we have

n
1
2 (γ̂ − γ0)

d→ N(0,Σ∗γ), (4.75)
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where Σ∗γ = Qγ
−1(θ0)E{W ∗

γ,i(τ,η0(·),γ0, θ0)}⊗2Qγ
−1(θ0).

Let

q̂∗γ(s, t,γ, θ) = n−1
n∑
i=1

{∂g(γ, Zi, t)

∂γ
}Twi(t)(1− ψi(θ))

∆iNi(t)

Ĝ(Ti)
I(s ≤ T̃i ≤ t)

ŷ(t) = n−1
n∑
i=1

I(T̃i ≥ t)

M̂i

c
(t) = I(T̃j ≤ t,∆j = 0)−

∫ t

0

I(T̃j ≥ s) d(− log Ĝ(s))

κ̂∗γ,i(t, θ) =

∫ τ

0

q̂∗γ(s, t,γ, θ)

ŷ(s)
dM̂ c

i (s)

ζ̂
∗
γ,i(t,η(t),γ, θ) dt = n−1

n∑
i=1

∫ τ

0

{∂g(γ, Zi, t)

∂γ
}Twi(t)(1− ψi(θ))

{
∆iNi(t)

Ĝ(Ti)
− V̂x,iη(t)− g(γ, Zi, t)

}
dt.

(4.76)

The asymptotic covariance matrix of n
1
2 (γ̂ − γ0) can be consistently estimated by

{
Q̂
−1

γ (θ̂)
}
n−1

n∑
i=1

{
Ŵ
∗
γ,i(τ, η̂(·), γ̂, θ̂)

}⊗2 {
Q̂
−1

γ (θ̂)
}
,

where Q̂γ(θ) is defined in (4.30), and where

Ŵ
∗
γ,i(τ,η(·),γ, θ) =

∫ τ

0

ζ̂γ,i(t, θ) dt+

∫ τ

0

κ̂γ,i(t, θ) dt−
∫ τ

0

κ̂∗γ,i(t,γ, θ)dt+

∫ τ

0

ζ̂
∗
γ,i(t,η(t),γ, θ)dt

−
∫ τ

0

K(t, θ)
{
κ∗η,i(t, θ)− ζ

∗
η,i(t,η(t),γ, θ)

}
dt. (4.77)

Proof of Theorem 3.3

From (3.25),

n
1
2 (η̂(t)− η0(t)) =

{
n−1Iη(t, θ0)

}−1
[
n−

1
2 {Dη(t)}TW (t)Ψ(θ0) {R(t)−F 1(t)}

−n− 1
2 {Dη(t)}TW (t)Ψ(θ0)

{
Dγ(t){Iγ(θ0)}−1

{
Bγ(θ0) + ãγ(θ0)−Aη(θ0)

}}
+ n−

1
2 ãη(t, θ0)

]
+ op(1). (4.78)

Consider −n− 1
2 {Dη(t)}TW (t)Ψ(θ0)

{
Dγ(t){Iγ(θ0)}−1

{
Bγ(θ0) + ãγ(θ0)−Aη(θ0)

}}
.
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Note that n−1{Dη(t)}TW (t)Ψ(θ0)Dγ(t)
p→ Qη,γ(t, θ0). It follows by (4.73) that

−n−1{Dη(t)}TW (t)Ψ(θ0)
{
Dγ(t){n−1Iγ(θ0)}−1n−

1
2

{
Bγ(θ0) + ãγ(θ0)−Aη(θ0)

}}
= −Qη,γ(t, θ0)

{
Qγ(θ0)

}−1

n−
1
2

n∑
i=1

W ∗
γ,i(τ,η0(·),γ0, θ0) + op(1). (4.79)

It follows by (4.36), (4.71), (4.79) that (4.78) is

n
1
2 (η̂(t)− η0(t)) = {n−1Iη(t, θ̂)}−1 n−

1
2

n∑
i=1

W ∗
η,i(t,η0(t),γ0, θ0) + op(1), (4.80)

where

W ∗
η,i(t,η0(t),γ0, θ0) = ζη,i(t, θ0) + κη,i(t, θ0)−Qη,γ(t, θ0)

{
Qγ(θ0)

}−1

n−
1
2

n∑
i=1

W ∗
γ,i(τ,η0(·),γ0, θ0)

−κ∗η,i(t, θ0) + ζ∗η,i(t,η0(t),γ0, θ0).

By using (4.40), we have the following i.i.d decomposition

n
1
2 (η̂(t)− η0(t)) = {Qη(t, θ0)}−1 n−

1
2

n∑
i=1

W ∗
η,i(t,η0(t),γ0, θ0) + op(1).

Let

q̂∗η(s, t, θ) = n−1
n∑
i=1

V̂ Tx,iwi(t)(1− ψi(θ))
∆iNi(t)

Ĝ(Ti)
I(s ≤ T̃i ≤ t)

ŷ(t) = n−1
n∑
i=1

I(T̃i ≥ t)

M̂j

c
(t) = I(T̃j ≤ t,∆j = 0)−

∫ t

0

I(T̃j ≥ s) d(− log Ĝ(s))

κ̂∗η,i(t, θ) =

∫ τ

0

q̂∗η(s, t, θ)

ŷ(s)
dM̂j

c
(s)

ζ̂
∗
η,i(t,η(t),γ, θ) = n−1

n∑
i=1

{
V̂ Tx,iwi(t)(1− ψi(θ))

{
∆iNi(t)

Ĝ(Ti)
− gi(γ, Zi, t)

}
− V̂xx,i(θ)η(t)

}

(4.81)

By using lemma 1 of Sun and Wu (2005), n
1
2 (η̂(t)−η0(t)) converges weakly to a mean-zero Gaussian

process on t ∈ [0, τ ] with the covariance matrix Σ∗η = Qη(t, θ0)−1E{W ∗
η,i(t,η0(t),γ0, θ0)}⊗2Qη(t, θ0)−1,

which can be consistently estimated by

Σ̂
∗
η = Q̂

−1

η (t, θ̂)n−1
n∑
i=1

{
Ŵ
∗
η,i(t, η̂(t), γ̂, θ̂)

}⊗2

Q̂
−1

η (t, θ̂),
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where

Ŵ
∗
η,i(t,η(t),γ, θ) = ζ̂η,i(t, θ) + κ̂η,i(t, θ)− Q̂η,γ(t, θ)

{
Q̂γ(θ)

}−1

n−
1
2

n∑
i=1

Ŵ
∗
γ,i(τ,η(·),γ, θ)

−κ̂∗η,i(t, θ) + ζ̂
∗
η,i(t,η(t),γ, θ),

and where Q̂γ(θ) is defined in (4.30), Q̂η,γ(t, θ), Q̂η(t, θ),ζ̂η,i(t, θ), and κ̂η,i(t, θ) are defined in

(4.42) and Ŵ
∗
γ,i(τ,η(·),γ, θ̂) is defined in (4.77).
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APPENDIX A: PROOFS IN CHAPTER 4

Lemmas

Lemma A.1. Suppose Xn
d→ X. Then, Xn = Op(1).

Proof of Lemma A.1

Given ε > 0, we choose sufficiently large k so that P (|X| > k) < ε. By the assumption,

P (|Xn| > k) → P (|X| > k). There exists some m such that for n ≥ m, P (|Xn| > k) < ε. We also

choose sufficiently large k1 so that P (|Xi| > ε) < ε, for i = 1, ...,m− 1. Then, for k0 = max(k, k1),

we have P (|Xn| > k0) < ε for all n.

Proof of 4.13

Let the fourth term of (4.12) be

Cγ(θ̂) = n−
1
n

n∑
i=1

∫ τ

0

[
DT
γ,i(t)−K(t, θ̂)DT

η,i(t)
]
wi(t)Ai(θ0)∆iNi(t)

{
G(Ti)− Ĝ(Ti)

Ĝ(Ti)G(Ti)

}
dt(θ̂ − θ0).

By using (A.3), it can be divided into two parts

Cγ(θ̂) = n−
1
2

n∑
i=1

∫ τ

0

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)Ai(θ0)∆iNi(t)

{
G(Ti)− Ĝ(Ti)

Ĝ(Ti)G(Ti)

}
dt(θ̂ − θ0)

−n− 1
2

n∑
i=1

∫ τ

0

[
K(t, θ̂)− k(t, θ0)

]
DT
η,i(t)wi(t)Ai(θ0)∆iNi(t)

{
G(Ti)− Ĝ(Ti)

Ĝ(Ti)G(Ti)

}
dt(θ̂ − θ0).(A.1)

In order to prove related K(t, θ̂) term, we use the following properties. First, since n
1
2 (θ̂− θ0) =

Op(1), by using Delta method, we have

n
1
2 (K(t, θ̂)−K(t, θ0)) = Op(1). (A.2)

Second, from definition ofK(t, θ0),K(t, θ0) =
[

1
n

∑n
i=1D

T
γ,i(t)wi(t)ψi(θ0)Dη,i(t)

] [
1
n

∑n
i=1D

T
η,i(t)wi(t)ψi(θ0)Dη,i(t)

]−1

.

By law of large numbers, we have

K(t, θ0)
p→ k(t, θ0). (A.3)

It follows by uniform consistency of Ĝ(t) in condition (I.6) and (A.1), the first term of (A.1) is,
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for G(τ) > 0,

n
1
2 (θ̂ − θ0) n−1

n∑
i=1

∫ τ

0

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)Ai(θ0)∆iNi(t)

{
G(Ti)− Ĝ(Ti)

Ĝ(Ti)G(Ti)

}
dt

≤ Op(1)× n−1
n∑
i=1

∫ τ

0

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)Ai(θ0)∆iNi(t)

{
1

Ĝ(τ)G(τ)

}
sup

0≤t≤τ
|G(t)− Ĝ(t)| dt

= Op(1)op(1)

= op(1). (A.4)

It follows by (A.2), (A.3) and (I.6) that the last term of (A.1) is equal to

−n− 1
2

n∑
i=1

∫ τ

0

[
K(t, θ̂)− k(t, θ0)DT

η,i(t)
]
wi(t)Ai(θ0)∆iNi(t)

{
G(Ti)− Ĝ(Ti)

Ĝ(Ti)G(Ti)

}
dt(θ̂ − θ0)

= −(θ̂ − θ0)× n− 1
2

n∑
i=1

∫ τ

0

[
K(t, θ̂)−K(t, θ0)

]
DT
η,i(t)wi(t)Ai(θ0)∆iNi(t)

{
G(Ti)− Ĝ(Ti)

Ĝ(Ti)G(Ti)

}
dt

−n 1
2 (θ̂ − θ0)× n−1

n∑
i=1

∫ τ

0

[K(t, θ0)− k(t, θ0)]DT
η,i(t)wi(t)Ai(θ0)∆iNi(t)

{
G(Ti)− Ĝ(Ti)

Ĝ(Ti)G(Ti)

}
dt

= −op(1)×Op(1)× n−1
n∑
i=1

∫ τ

0

DT
η,i(t)wi(t)Ai(θ0)∆iNi(t)

{
G(Ti)− Ĝ(Ti)

Ĝ(Ti)G(Ti)

}
dt

−Op(1)× op(1)× n−1
n∑
i=1

∫ τ

0

DT
η,i(t)wi(t)Ai(θ0)∆iNi(t)

{
G(Ti)− Ĝ(Ti)

Ĝ(Ti)G(Ti)

}
dt. (A.5)

By the similar argument to (A.4) and Slutsky’s theorem, the above equation reduce to op(1). It

follows by (A.1), (A.4) and (A.5) that the fourth term of (4.12) is Cγ(θ̂)
p→ 0 uniformly in t ∈ [0, τ ].

Proof of 4.14 From (4.14), we have

n−
1
2

n∑
i=1

∫ τ

0

[
K(t, θ̂)− k(t, θ0)

]
DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

= n−
1
2

n∑
i=1

∫ τ

0

[
K(t, θ̂)−K(t, θ0)

]
DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

+n−
1
2

n∑
i=1

∫ τ

0

[K(t, θ0)− k(t, θ0)]DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt (A.6)

By (2.2), we note that

n−1
n∑
i=1

∫ τ

0

∂K(t, θ)

∂θ
DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt
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has mean zero. By the central limit theorem and Lemma A.1, we have

n−
1
2

n∑
i=1

∫ τ

0

∂K(t, θ)

∂θ
DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt = Op(1)

By the Taylor expansion of K(t, θ̂) around the true value θ0, the second term of A.6 is equal to

n−
1
2

n∑
i=1

∫ τ

0

[
K(t, θ̂)−K(t, θ0)

]
DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

= n−
1
2

n∑
i=1

∫ τ

0

[
∂K(t, θ)

∂θ
(θ̂ − θ0) + op(n

− 1
2 )

]
DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

= (θ̂ − θ0)× n− 1
2

n∑
i=1

∫ τ

0

∂K(t, θ)

∂θ
DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

+op(1)× n−1
n∑
i=1

∫ τ

0

DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

= op(1)×Op(1) + op(1)

= op(1)

With similar arguments, by the central limit theorem, we have

n−
1
2

n∑
i=1

∫ τ

0

DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt = Op(1)

It follows by Slutsky’s theorem that the second term of (A.6) is equal to

n−
1
2

n∑
i=1

∫ τ

0

[K(t, θ0)− k(t, θ0)]DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

= op(1)× n− 1
2

n∑
i=1

∫ τ

0

DT
η,i(t)wi(t)ψi(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
dt

= op(1)×OP (1)

= op(1)

where K(t, θ0)− k(t, θ0) = op(1) uniformly in t ∈ [0, τ ].
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Proof of 4.26 From (4.25), it can be decomposed into two parts.

n−1Iγ(θ̂) = n−1
n∑
i=1

∫ τ

0

[
DT
γ,i(t)−K(t, θ̂)DT

η,i(t)
]
wi(t)ψi(θ̂)Dγ,i(t) dt

= n−1
n∑
i=1

∫ τ

0

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)ψi(θ̂)Dγ,i(t) dt (A.7)

−n−1
n∑
i=1

∫ τ

0

[
K(t, θ̂)− k(t, θ0)

]
DT
η,i(t)wi(t)ψi(θ̂)Dγ,i(t) dt (A.8)

= n−1
n∑
i=1

∫ τ

0

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)ψi(θ̂)Dγ,i(t) dt+ op(1). (A.9)

By using (4.10), (A.9) can be decomposed as

n−1
n∑
i=1

∫ τ

a

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)ψi(θ0)Dγ,i(t) dt

+n−1
n∑
i=1

∫ τ

a

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)

(
Ai(θ0)(θ̂ − θ0) + op(n

− 1
2 )
)
Dγ,i(t) dt+ op(1).

= n−1
n∑
i=1

∫ τ

a

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)ψi(θ0)Dγ,i(t) dt

+(θ̂ − θ0)× n−1
n∑
i=1

∫ τ

a

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)Ai(θ0)Dγ,i(t) dt

+op(n
− 1

2 )× n−1
n∑
i=1

∫ τ

a

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)Dγ,i(t) dt

+op(1).

= n−1
n∑
i=1

∫ τ

a

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)ψi(θ0)Dγ,i(t) dt+ op(1).

followed by sums of the last three terms in second equality is equal to op(1).

Let

Iγ(θ0) = n−1
n∑
i=1

∫ τ

a

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)ψi(θ0)Dγ,i(t) dt.

Therefore, we have

n−1 Iγ(θ̂) = n−1 Iγ(θ0) + op(1).

Let

Q(θ0) = E

{∫ τ

a

[
DT
γ,i(t)− k(t, θ0)DT

η,i(t)
]
wi(t)ψi(θ0)Dγ,i(t) dt

}
.
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By the law of large numbers,

n−1 Iγ(θ0)
p→ Qγ(θ0).

Proof of 4.34 We consider the third term of (4.33). By the law of large numbers,

n−1
n∑
i=1

DT
η,i(t)wi(t)Ai(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}

has mean zero.

By (4.10) and (A.1), we have

n−
1
2

n∑
i=1

DT
η,i(t)wi(t)(ψi(θ̂)−ψi(θ0))

{
∆iNi(t)

G(Ti)
− F 1i(t)

}

= n−
1
2

n∑
i=1

DT
η,i(t)wi(t)

(
Ai(θ0)(θ̂ − θ0) + op(n

− 1
2 )
){∆iNi(t)

G(Ti)
− F 1i(t)

}

= n
1
2 (θ̂ − θ0)× n−1

n∑
i=1

DT
η,i(t)wi(t)Ai(θ0)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}

+ op(1)× n−1
n∑
i=1

DT
η,i(t)wi(t)

{
∆iNi(t)

G(Ti)
− F 1i(t)

}
= Op(1)× op(1) + op(1)

= op(1).

(A.10)

Proof of 4.35

With similar argument, the fourth term of (4.33) is

n−
1
2

n∑
i=1

DT
η,i(t)wi(t)(ψi(θ̂)−ψi(θ0))

{
∆iNi(t)

Ĝ(Ti)
− ∆iNi(t)

G(Ti)

}

= n−
1
2

n∑
i=1

DT
η,i(t)wi(t)

(
Ai(θ0)(θ̂ − θ0) + op(n

− 1
2 )
)

∆iNi(t)

{
G(Ti)− Ĝ(Ti)

Ĝ(Ti)G(Ti)

}

= n
1
2 (θ̂ − θ0)× n−1

n∑
i=1

DT
η,i(t)wi(t)Ai(θ0)∆iNi(t)

{
G(Ti)− Ĝ(Ti)

Ĝ(Ti)G(Ti)

}

+ op(1)× n−1
n∑
i=1

DT
η,i(t)wi(t)∆iNi(t)

{
G(Ti)− Ĝ(Ti)

Ĝ(Ti)G(Ti)

}
(A.11)
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Similar to (4.13), by the consistency of Ĝ(t), the fourth term of (4.33) is equal to op(1) uniformly

in t ∈ [0, τ ]

Proof of 4.40

Let

Iη(t, θ0) =

n∑
i=1

DT
η,i(t)wi(t)ψi(θ0)Dη,i(t).

By using (4.10) and the consistency of θ̂, we have

n−1Iη(t, θ̂) = n−1
n∑
i=1

DT
η,i(t)wi(t)ψi(θ0)Dη,i(t)

+(θ̂ − θ0)× n−1
n∑
i=1

DT
η,i(t)wi(t)Ai(θ0)Dη,i(t) + op(n

− 1
2 )

= n−1
n∑
i=1

DT
η,i(t)wi(t)ψi(θ0)Dη,i(t) + op(1) + op(n

− 1
2 ). (A.12)

Therefore, we have

n−1Iη(t, θ̂) = n−1Iη(t, θ0) + op(1).

Let

Qη(t, θ0) = E{DT
η,i(t)wi(t)ψi(θ0)Dη,i(t)}.

By the law of the large numbers, we have

n−1Iη(t, θ0)
p→ Qη(t, θ0).

Proof of (4.58)

By the theory of Robins, Rotnizky and Zhao (1994), we have the fact that η̂(t) is consistent estima-

tor of η0(t). By the missing at random assumption, n−1
∫ τ

0

∑n
i=1{

∂g(γ0,Zi,t)
∂γ0

}Twi(t)(1−ψi(θ0))Vx,i dt

has mean zero. Then, by the central limit theorem and Lemma A.1, we have

n−
1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0))Vx,i dt = Op(1).
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It follows by Slutsky’s theorem that

− n−
1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0))Vx,i {η̂(t)− η0(t)} dt

= −{η̂(t)− η0(t)}n− 1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0))Vx,i dt

= op(1)×Op(1)

= op(1). (A.13)

Proof of (4.59)

With similar argument in the proof of (4.58), we have

n−
1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0))

{
∂g(γ0, Zi, t)

∂γ

}
dt = Op(1)

n−1

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0)) dt = op(1).

and also have the fact that γ̂ is consistent estimator of γ0.

By the taylor expansion of g(γ̂, Zi, t) around the true value γ0, we have

−n− 1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0)) {g(γ̂, Zi, t)− g(γ0, Zi, t)} dt

= −n− 1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0))

{
∂g(γ0, Zi, t)

∂γ
(γ̂ − γ0) + op(n

− 1
2 )

}
dt

= −(γ̂ − γ0)× n− 1
2

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0))

{
∂g(γ0, Zi, t)

∂γ

}
dt

− op(1)× n−1

∫ τ

0

n∑
i=1

{∂g(γ0, Zi, t)

∂γ0
}Twi(t)(1− ψi(θ0)) dt

= op(1)×Op(1) + op(1)

= op(1)

Proof of (4.66)
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With similar argument in the proof of (4.59), we have

−n− 1
2

n∑
i=1

V Tx,iwi(t)(1− ψi(θ0)){∂g(γ0, Zi, t)

∂γ0
} = Op(1).

(A.14)

It follows that

−n− 1
2

n∑
i=1

V Tx,iwi(t)(1− ψi(θ0)) {g(γ̂, Zi, t)− g(γ0, Zi, t)}

= −n− 1
2

n∑
i=1

V Tx,iwi(t)(1− ψi(θ0))

{
∂g(γ0, Zi, t)

∂γ0
(γ̂ − γ0) + op(n

− 1
2 )

}

= −(γ̂ − γ0)× n− 1
2

n∑
i=1

V Tx,iwi(t)(1− ψi(θ0)){∂g(γ0, Zi, t)

∂γ0
}+ op(1)

= op(1)×Op(1) + op(1)

= op(1). (A.15)

Proof of (4.67)

With similar argument to (4.58), it can be proven to be equal to op(1).


