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Introduction

A question of considerable importance in statistics is that of the degree of dependence between
two random variables, or the amount of information one random variable contains about another.
Mutual information gives an answer to this question, however it can certainly be improved upon.
Mutual information is always nonnegative, yet it does not have a uniform upper bound. This can
make it difficult to interpret the strength of the association of the two random variables based
on mutual information alone. It begs the question: just how high of a number must mutual
information be for the two random variables to be considered to depend significantly, or even
completely, on each other? In this paper we will consider a possible solution to this matter by
defining a standardized mutual information κ that has the asset of being strictly between zero
and one inclusive. This κ has the desirable trait of being equal to zero if and only if the two
random variables are independent and equal to one if and only if the two random variable have a
one-to-one correspondence. We will also consider the estimation of κ and the asymptotic proper-
ties of the estimators we develop.

Background

We begin by properly setting the scene and giving some necessary framework definitions.
Let X and Y be two random variables on the following finite alphabets:

X = {xi; i = 1, · · · ,K1} and Y = {yj ; j = 1, · · · ,K2} (1)

with cardinalities K1 <∞ and K2 <∞ respectively. Also consider the Cartesian product X × Y
with a corresponding joint probability distribution pX,Y = {pi,j}:

X × Y = {(xi, yj); i = 1, · · · ,K1; j = 1, · · · ,K2} (2)

Let the two marginal distributions be respectively denoted by

pX =
{
pi,· =

K2∑
j=1

pi,j ; i = 1, · · ·K1

}
(3)
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and

pY =
{
p·,j =

K1∑
i=1

pi,j ; j = 1, · · ·K2

}
(4)

For notation simplicity,
∑

i =
∑K1

i=1,
∑

j =
∑K2

j=1, and
∑

i,j =
∑K1

i=1

∑K2
j=1 will be observed

throughout the text unless otherwise specified.

Also consider the conditional probability distributions, respectively, of X on X given Y = yj
where j ≥ 1 is a specific index value, and of Y on Y given X = xi where i ≥ 1 is a specific index
value. In other words,

pX| yj =
{
pxi|yj =

pi,j∑
k pk,j

; i ≥ 1
}

(5)

pY| xi =
{
pyj |xi =

pi,j∑
k pi,k

; j ≥ 1
}

(6)

In order to build toward the concept of the standardized mutual information κ, we introduce
first the definitions of Kullback-Leibler Divergence, Shannon’s Entropies, and Mutual Information,
and also some relevant theorems.

Definition 1. Shannon’s entropies for X , Y , and X × Y are defined as

GX(v) = H(X) = −
∑

i pi,· ln pi,·

GY(v) = H(Y ) = −
∑

j p·,j ln p·,j

GXY(v) = H(X,Y ) = −
∑

i

∑
j pi,j ln pi,j

GX|Y= yj(v) = H(X | Y = yj) = −
∑

i pxi|yj ln pxi|yj

GY|X= xi(v) = H(Y | X = xi) = −
∑

j pyj |xi ln pyj |xi .

(7)

Definition 2. Given a joint probability distribution pX,Y on X × Y , the (expected) conditional
entropy of Y given X is

H(Y | X) =
∑
i≥1

pi,·H(Y | X = xi) (8)

similarly, the (expected) conditional entropy of X given Y is

H(X | Y ) =
∑
j≥1

p·,jH(X | Y = yj) (9)

Lemma 1. Given a joint probability distribution pX,Y = {pi,j ; i ≥ 1, j ≥ 1} on X × Y ,

1) H(X,Y ) = H(X) +H(Y |X), and

2) H(X,Y ) = H(Y ) +H(X|Y )
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Corollary 1. Given a joint probability distribution pX,Y = {pi,j ; i ≥ 1, j ≥ 1} on X × Y ,

1) H(X) ≤ H(X,Y )

2) H(Y ) ≤ H(X,Y ), and

3) H(X) +H(Y )−H(X,Y ) ≤ H(X,Y )

Definition 3. For two probability distributions p and q on the same alphabet X , the relative
entropy or the Kullback-Leibler divergence of p and q is defined as

D(p||q) =
∑K

k=1 pk ln
(pk
qk

)
(10)

observing that, for each summand p ln(p/q),

1) If p = 0, p ln
(p
q

)
= 0, and

2) If p > 0 and q = 0, then p ln
(p
q

)
= +∞.

Theorem 1. Given two probability distributions p and q on a same alphabet X ,

D(p||q) ≥ 0 (11)

Moreover, the equality holds if and only if p = q.

Kullback-Leibler divergence is a measure of the difference between two distributions on a
common alphabet. So, one measure of the degree of dependence between two random variables X
and Y with a joint distribution pX,Y is the Kullback-Leibler divergence between pX,Y and pXY on
X × Y . This is reasonable and intuitive because D(p||q) = 0 if and only if p = q (by Theorem
1) and correspondingly, X and Y are independent if and only if pX,Y = pXY. We call this measure
mutual information.

Definition 4. The mutual information of random elements, (X,Y ) ∈ X × Y with joint proba-
bility distribution pX,Y is defined as

MI(X,Y ) = D(pX,Y||pXY) =
∑
i≥1

∑
j≥1

pi,j ln
( pi,j
pi,.p.,j

)
(12)

Lemma 2. For any joint distribution pX,Y on X × Y ,

MI(X,Y ) ≥ 0 (13)

Moreover, the equality holds if and only if X and Y are independent.

Lemma 3. Suppose H(X,Y ) <∞ for a joint distribution pX,Y on X × Y . Then

MI(X,Y ) = H(X) +H(Y )−H(X,Y ) (14)
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Standardized Mutual Information

At this point, the reader may be beginning to understand how mutual information is a meaningful
tool to measure the degree of dependence between two random variables. However, as noted above,
it may not be the best one. Observe that mutual information is unbounded above, since entropies
can be arbitrarily large. This makes it difficult to convey the strength of the association between X
and Y , even when it is known to be positive. We now have given enough background information
to introduce the following alleviation of this issue: a standardized mutual information between X
and Y , κ.

Definition 5. Let X and Y be two random variables on finite alphabets X and Y . Then the
standardized mutual information is given by

κ =
MI(X,Y )

H(X,Y )
=
H(X) +H(Y )−H(X,Y )

H(X,Y )
=
H(X) +H(Y )

H(X,Y )
− 1. (15)

Definition 6. Random elements X ∈X and Y ∈ Y are said to have a one-to-one correspondence
under a joint probability distribution pX,Y on X × Y , if

1) For every i satisfying P (X = xi) > 0, there exists a unique j such that P (Y = yj |X = xi) = 1,
and

2) For every j satisfying P (Y = yj) > 0, there exists a unique i such that P (X = xi|Y = yj) = 1.

Lemma 4. Random elements X ∈ X and Y ∈ Y have a one-to-one correspondence under a
joint probability distribution pX,Y on X × Y if and only if H(X) = H(Y ) = H(X,Y ).

Proof. If X and Y have a one-to-one correspondence, then for each i satisfying P (X = xi) > 0
there is a unique j such that P (Y = yj |X = xi) = 1. Let the unique corresponding j be denoted
by ji. Noting that, because X and Y have a one-to-one correspondence, pi,ji = pi,· and therefore
pi,ji/pi,· = 1,

H(X,Y ) = −
∑

i≥1,j≥1
pi,j ln pi,j

= −
∑
j≥1

∑
i≥1

pi,·

(
pi,j
pi,·

)
ln

[
pi,·

(
pi,j
pi,·

)]

= −
∑
j≥1

∑
i≥1

pi,·

(
pi,j
pi,·

)
ln pi,· −

∑
j≥1

∑
i≥1

pi,·

(
pi,j
pi,·

)
ln

(
pi,j
pi,·

)

= −
∑
i≥1

pi,·

(
pi,ji
pi,·

)
ln pi,· −

∑
i≥1

pi,·

(
pi,ji
pi,·

)
ln

(
pi,ji
pi,·

)
= −

∑
i≥1

pi,· ln pi,·

= H(X)

(16)

Similarly, H(X,Y ) = H(Y ).
On the other hand, if H(X) = H(X,Y ) and H(Y ) = H(X,Y ), Lemma 1 implies that H(X|Y ) = 0
and H(Y |X) = 0.
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By Definition 2, H(Y |X) = 0 suggests that H(Y |X = xi) = 0 for every i satisfying P (X =
xi) > 0, which in turn implies that the conditional probability distribution of Y given X = xi
puts a probability of mass one on a single point in Y . By symmetry, H(X|Y ) = 0 implies that
the conditional probability distribution of X given Y = yj also puts a probability of mass one on
a single point X . Thus X and Y have a one-to-one correspondence.

Theorem 2. Let X and Y be two random variables on finite alphabets X and Y . Then

0 ≤ κ ≤ 1. (17)

Moreover

1) κ = 0 if and only if X and Y are independent, and

2) κ = 1 if and only if X and Y have a one-to-one correspondence.

Proof. By Lemma 2 and Corollary 1,

0 ≤MI ≤ H(X,Y ) (18)

Dividing all three parts above by H(X,Y ) gives (17). Since κ = 0 if and only if MI = 0, by
Lemma 2, κ = 0 if and only if X and Y are independent.

Assume that X and Y have a one-to-one correspondence. By Lemma 4, H(X) = H(Y ) =
H(X,Y ) and therefore H(X) +H(Y ) = 2H(X,Y ). This implies that

κ =
H(X) +H(Y )

H(X,Y )
− 1 = 2− 1 = 1.

Now suppose that κ = 1. Then H(X) +H(Y ) = 2H(X,Y ) and therefore

(H(X)−H(X,Y )) + (H(Y )−H(X,Y )) = 0.

However, by Corollary 1, both of the above additive terms are non-positive, which implies

H(X) = H(X,Y ) and H(Y ) = H(X,Y )

By Lemma 4, this implies that X and Y have a one-to-one correspondence.

To get an intuitive feel of how specific values of κ may be interpreted, the following ten figures
compare κ to ρ, Pearson’s correlation coefficient. For each figure, the κ is calculated for a uniform
distribution on X × Y .
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ρ = 1
κ = 1, pk = 1

10 for each k

ρ = 0.9565217
κ = 0.3753753, pk = 1

28 for each k
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ρ = 0.8664495
κ = 0.2076463, pk = 1

44 for each k

ρ = 0.7363752
κ = 0.1238315, pk = 1

58 for each k
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ρ = 0.5811518
κ = 0.07423127, pk = 1

70 for each k

ρ = 0.4196429
κ = 0.04372635, pk = 1

80 for each k

8



ρ = 0.2694704
κ = 0.02454567, pk = 1

88 for each k

ρ = 0.1438499
κ = 0.01198232, pk = 1

94 for each k

9



ρ = 0.05162524
κ = 0.004035177, pk = 1

98 for each k

ρ = 0
κ = 0, pk = 1

100 for each k

It may be of interest to note that the decrease in κ is very steep compared to that of ρ. When
using κ as a measure in applied settings, the fact that κ decreases very sharply may be helpful to
keep in mind.

The κ described above is not the only measure that has such desirable properties. For fi-
nite alphabets, H(X,Y ) < ∞, so the following may also be considered as standardized mutual
information

κ1 =
MI(X,Y )

min{H(X), H(Y )}

κ2 =
MI(X,Y )√
H(X)H(Y )
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κ3 =
MI(X,Y )

(H(X) +H(Y ))/2

κ4 =
MI(X,Y )

max{H(X), H(Y )}
.

Lemma 5. Given that H(X,Y ) <∞ for finite alphabets,

0 ≤MI(X,Y ) ≤ min{H(X), H(Y )} ≤
√
H(X)H(Y ) ≤ H(X) +H(Y )

2
≤ max{H(X), H(Y )} ≤ H(X,Y )

Proof. By Lemma 2, Lemma 3, and Corollary 1, we have

0 ≤MI(X,Y ) = H(X) +H(Y )−H(X,Y ) ≤ H(X) +H(Y )−H(X) = H(Y )

and

0 ≤MI(X,Y ) = H(X) +H(Y )−H(X,Y ) ≤ H(X) +H(Y )−H(Y ) = H(X)

Thus
0 ≤MI(X,Y ) ≤ min{H(X), H(Y )}. (19)

Note that

0 ≤MI(X,Y ) ≤ min{H(X), H(Y )} ≤ H(X)

and

0 ≤MI(X,Y ) ≤ min{H(X), H(Y )} ≤ H(Y )

And therefore

(min{H(X), H(Y )})2 ≤ H(X)H(Y )

which implies that
min{H(X), H(Y )} ≤

√
H(X)H(Y ). (20)

To show that
√
H(X)H(Y ) ≤ (H(X) + H(Y ))/2, consider the following. The first inequality is

clearly always true. Each of the subsequent inequalities follows directly from the previous one.

0 ≤ (H(X)−H(Y ))2

0 ≤ H2(X)− 2H(X)H(Y ) +H2(Y )

0 ≤ H2(X) + 2H(X)H(Y ) +H2(Y )− 4H(X)H(Y )

4H(X)H(Y ) ≤ (H(X) +H(Y ))2

2
√
H(X)H(Y ) ≤ H(X) +H(Y )√
H(X)H(Y ) ≤ (H(X) +H(Y ))/2

Thus we have √
H(X)H(Y ) ≤ H(X) +H(Y )

2
(21)

Finally, suppose that max{H(X), H(Y )} = H(Y ), in other words H(X) ≤ H(Y ). Then H(X) +
H(Y ) ≤ 2H(Y ), which implies that
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H(X) +H(Y )

2
≤ H(Y ) = max{H(X), H(Y )}.

A similar argument would show that

H(X) +H(Y )

2
≤ max{H(X), H(Y )}. (22)

if H(X) is the maximum. This proves our last inequality.

Corollary 2. Assuming that H(X,Y ) <∞, for i = 1, 2, 3, 4,

0 ≤ κi ≤ 1

And

1) For i = 1, 2, 3, 4, κi = 0 if and only if X and Y are independent, and

2) For i = 2, 3, 4, κi = 1 if and only if X and Y have a one-to-one correspondence.

Proof. For i = 1, 2, 3, 4, κi = 0 if and only if MI = 0. So by (2), for each i, κi = 0 if and only if
X and Y are independent.

By Lemma 5,

0 ≤MI(X,Y ) ≤ min{H(X), H(Y )}

and so

0 ≤ MI(X,Y )

min{H(X), H(Y )}
≤ 1

ie,

0 ≤ κ1 ≤ 1.

Next we consider κ2. By Lemma 5,

0 ≤MI(X,Y ) ≤
√
H(X)H(Y )

and so

0 ≤ MI(X,Y )√
H(X)H(Y )

≤ 1

ie,

0 ≤ κ2 ≤ 1.

By Lemma 4, if X and Y have a one-to-one correspondence, H(X) = H(Y ) = H(X,Y ) and thus

κ2 =
H(X) +H(Y )−H(X,Y )√

H(X)H(Y )
=

H(X,Y )√
H(X,Y )H(X,Y )

=
H(X,Y )

H(X,Y )
= 1.

Now suppose κ2 = 1. Then H(X) +H(Y )−H(X,Y ) =
√
H(X)H(Y ). Squaring both sides, we

obtain

H2(X) +H2(Y ) +H2(X,Y ) + 2H(X)H(Y )− 2H(X)H(X,Y )− 2H(Y )H(X,Y ) = H(X)H(Y )
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Doing some algebra, we find that this is equivalent to

0 = (H(X) +H(Y )−H(X,Y ))(H(X)−H(X,Y )) +H(Y )(H(Y )−H(X,Y ))

By Corollary 1, H(X) − H(X,Y ) ≤ 0 and H(Y ) − H(X,Y ) ≤ 0. By Lemma 2 and the fact
that MI(X,Y ) 6= 0 if κ2 = 1, H(X) + H(Y ) − H(X,Y ) = MI(X,Y ) > 0. It is safe to
assume that H(X) 6= 0, and thus that H(X) > 0. This means that each additive term is
non-positive, and since the sum is equal to 0, this implies that each term must be zero. Hence
H(X)−H(X,Y ) = H(Y )−H(X,Y ) = 0, and therefore H(X) = H(X,Y ) and H(Y ) = H(X,Y ).
By Lemma 4, this implies that X and Y have a one-to-one correspondence.

Next, consider κ3. By Lemma 5,

0 ≤MI(X,Y ) ≤ H(X)H(Y )

2

and so

0 ≤ MI(X,Y )

(H(X)H(Y ))/2
≤ 1

ie,

0 ≤ κ3 ≤ 1.

By Lemma 4, if X and Y have a one-to-one correspondence, H(X) = H(Y ) = H(X,Y ) and thus

κ3 =
H(X) +H(Y )−H(X,Y )

(H(X) +H(Y ))/2
=

2(H(X,Y ) +H(X,Y )−H(X,Y ))

H(X,Y ) +H(X,Y )
=

2H(X,Y )

2H(X,Y )
= 1.

Now suppose κ3 = 1. Then

2(H(X) +H(Y )−H(X,Y )) = H(X) +H(Y )

H(X) +H(Y )− 2H(X,Y ) = 0

H(X) +H(Y ) = 2H(X,Y )

By the same argument used in the proof of Theorem 2, H(X) +H(Y ) = 2H(X,Y ) implies that
H(X) = H(Y ) = H(X,Y ). By Lemma 4, this means that X and Y have a one-to-one correspon-
dence.

Lastly, consider κ4. By Lemma 5,

0 ≤MI(X,Y ) ≤ max{H(X), H(Y )}

and so

0 ≤ MI(X,Y )

max{H(X), H(Y )}
≤ 1

ie,

0 ≤ κ4 ≤ 1.

By Lemma 4, if X and Y have a one-to-one correspondence, H(X) = H(Y ) = H(X,Y ) and thus

κ4 =
H(X) +H(Y )−H(X,Y )

max{H(X), H(Y )}
=
H(X,Y )

H(X,Y )
= 1.
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If κ4 = 1, then H(X) + H(Y ) − H(X,Y ) = max{H(X), H(Y )}. Without loss of generality,
assume that the maximum is H(Y ), ie that H(X) ≤ H(Y ). Then

H(X) +H(Y )−H(X,Y ) = H(Y )

H(X)−H(X,Y ) = 0

H(X) = H(X,Y )

By Corollary 1, H(Y ) ≤ H(X,Y ). By assumption and the above equation, H(Y ) ≥ H(X) =
H(X,Y ). Thus H(Y ) = H(X,Y ). Since we already have H(X) = H(X,Y ), by Lemma 4, X and
Y have a one-to-one correspondence. By symmetry, the argument also holds if the maximum is
H(X).

Estimation and Asymptotic Normality

In this section, we consider the plug-in estimation of the standardized mutual information indices
κ, κ1, κ2, κ3, and κ4, and explore their asymptotic distributions.

For every pair of (i, j), let fi,j be the observed frequency of the random pair (X,Y ) taking
value (xi, yj) for all 1 ≤ i ≤ K1 and all 1 ≤ j ≤ K2 in an iid sample of size n from X × Y . Let
p̂i,j = fi,j/n be the corresponding relative frequency. Thus we have p̂X,Y = {p̂i,j}, p̂X = {p̂i,·},
and p̂Y = {p̂·,j} as the sets of observed joint and marginal relative frequencies.

Let K = K1K2 be the number of positive joint probabilities in {pi,j} for every pair of (i, j)
satisfying 1 ≤ i ≤ K1 and 1 ≤ j ≤ K2. That is,

K =
∑
i,j

1[pi,j > 0] (23)

First consider the case of K = K1K2, which means pi,j > 0 for every pair (i, j) for all
1 ≤ i ≤ K1 and all 1 ≤ j ≤ K2.

Let p be a specifically arranged pi,j as follows.

p = (p1,1, p1,2, · · · , p1,K2 , p2,1, p2,2, · · · , p2,K2 , · · · , pK1,1, · · · , pK1,K2−1)
τ .

Accordingly let

p̂ = (p̂1,1, p̂1,2, · · · , p̂1,K2 , p̂2,1, p̂2,2, · · · , p̂2,K2 , · · · , p̂K1,1, · · · , p̂K1,K2−1)
τ .

For notation convenience, for that specific arrangement of pi,js in p, we may also re-enumerate
them by a single index k, as in

v = (p1, · · · , pK−1)τ (24)

and
v̂ = (p̂1, · · · , p̂K−1)τ (25)

where K = K1K2.
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By the multivariate central limit theorem we know that

√
n (v̂ − v)

L−→MVN(0,Σ) (26)

where

Σ =


p1(1− p1) −p1p2 · · · −p1pK−1
−p1p2 p2(1− p2) · · · −p2pK−1
· · · · · · · · · · · ·
· · · · · · · · · · · ·

−pK−1p1 −pK−1p2 · · · pK−1(1− pK−1)


(K−1)×(K−1)

. (27)

Let Ĥ(X), Ĥ(Y ) and Ĥ(X,Y ) be the plug-in estimators of H(X), H(Y ) and H(X,Y ) re-
spectively:

Ĥ(X) = −
∑
i

p̂i,· ln p̂i,· (28)

Ĥ(Y ) = −
∑
j

p̂·,j ln p̂·,j (29)

Ĥ(X,Y ) = −
∑
i

∑
j

p̂i,j ln p̂i,j = −
∑
k

p̂k ln p̂k (30)

The respective gradients for GX(v), GY(v) and GXY(v), as in (7) are

gX(v) = 5GX(v) =

(
∂

∂p1
GX(v), · · · , ∂

∂pK−1
GX(v)

)τ

gY(v) = 5GY(v) =

(
∂

∂p1
GX(v), · · · , ∂

∂pK−1
GY(v)

)τ

gXY(v) = 5GXY(v) =

(
∂

∂p1
GXY(v), · · · , ∂

∂pK−1
GXY(v)

)τ
For every k, 1 ≤ k ≤ K − 1 such that pk = pi,j , the following facts can be verified.

∂

∂pk
GX(v) =

∂H(X)

∂pk
= ln pK1,· − ln pi,· (31)

∂

∂pk
GY(v) =

∂H(Y )

∂pk
= ln p·,K2 − ln p·,j (32)

∂

∂pk
GXY(v) =

∂H(X,Y )

∂pk
= ln pK − ln pk (33)

Let

A =


∂
∂p1

GX(v) · · · ∂
∂pK−1

GX(v)
∂
∂p1

GY(v) · · · ∂
∂pK−1

GY(v)
∂
∂p1

GXY(v) · · · ∂
∂pK−1

GXY(v)


3×(K−1)

(34)

An application of the multivariate delta method yields the following lemma.
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Lemma 6. Let X and Y be as in (1), let pX,Y = {pi,j} be a joint probability distribution on
X × Y , and let v and v̂ be as in (24) and (25).

√
n

[( Ĥ(X)

Ĥ(Y )

Ĥ(X,Y )

)
−

( H(X)
H(Y )
H(X,Y )

)]
L−→MVN(0,ΣH) (35)

where

ΣH = AΣAτ

Σ is as in (27) and A is as in (34).

More generally, we can consider the case where K ≤ K1K2, which by (23) means that pi,j may
be zero for some pairs of (i, j). We will derive a result corresponding to Lemma 6 for this case.
For any arbitrary but fixed re-enumeration of the K positive probabilities in {pi,j}, denoted as

{pk; k = 1, · · · ,K} (36)

consider the following two partitions

{S1, · · · , SK1} and {T1, · · · , TK2}

of the index set {1, 2, · · · ,K} such that

1. {pk; k ∈ Ss} is the collection of all positive probabilities in {pi,j ; i = s} for each s, s =
1, · · · ,K1; and

2. {pk; k ∈ Tt} is the collection of all positive probabilities in {pi,j ; j = t} for each t, t =
1, · · · ,K2.

By construction of the partitions,∑
k∈Si pk = pi,· and

∑
k∈Tj pk = p·,j .

Without loss of generality, it may be assumed that K ∈ SK1 ∩ TK2 . If not, then K ∈ Si0 ∩ Tj0
for some i0 and j0, by a re-arrangement of the indices (i, j), K ∈ SK1 ∩ TK2 will be true.
Letting

v = (p1, · · · , pK−1)τ and v̂ = (p̂1, · · · , p̂K−1)τ (37)

an application of multivariate central limit theorem gives

√
n (v̂ − v)

L−→MVN(0,Σ) (38)

where Σ is the covariance matrix given by

Σ =


p1(1− p1) −p1p2 · · · −p1pK−1
−p1p2 p2(1− p2) · · · −p2pK−1
· · · · · · · · · · · ·
· · · · · · · · · · · ·

−pK−1p1 −pK−1p2 · · · pK−1(1− pK−1)


(K−1)×(K−1)

. (39)

Referring to (7), the following facts can be verified.
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∂GX

∂pk
=
∂H(X)

∂pk
=

{
ln pK1,· − ln pi,· if k ∈ Si 6= SK1

0 if k ∈ SK1

(40)

∂GY

∂pk
=
∂H(Y )

∂pk
=

{
ln p·,K2 − ln p·,j if k ∈ Tj 6= TK2

0 if k ∈ TK2

(41)

∂GXY

∂pk
=
∂H(X,Y )

∂pk
= ln pK − ln pk, for 1 ≤ k ≤ K − 1. (42)

For any arbitrary but fixed enumeration of the positive terms of {pi,j} in (36), we can apply
the multivariate delta method based on (38) to give the following lemma.

Lemma 7. Let X and Y be as in (1), let pX,Y = {pi,j} be a joint probability distribution on
X × Y , and let v and v̂ be as in (37).

√
n

[( Ĥ(X)

Ĥ(Y )

Ĥ(X,Y )

)
−

( H(X)
H(Y )
H(X,Y )

)]
L−→MVN(0,ΣH) (43)

where
ΣH = AΣAτ (44)

with Σ as in (39) and A is as in (34) according to (40), (41) and (42).

Note that

MI(X,Y ) = (1, 1,−1)

( H(X)
H(Y )

H(X,Y )

)

and let

M̂I(X,Y ) = (1, 1,−1)

( Ĥ(X)

Ĥ(Y )

Ĥ(X,Y )

)
(45)

be the plug-in estimator for mutual information. Then an application of the multivariate delta
method based on (43) gives the following theorem.

Theorem 3. Suppose that
σ2 = (1, 1,−1)Σ(1, 1,−1)τ > 0 (46)

where Σ is as in (39). Then under the conditions of Lemma 7,

√
n(M̂I −MI)

L−→ N(0, σ2) (47)
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Let

Σ̂ = Σ(v̂) =


p̂1(1− p̂1) −p̂1p̂2 · · · −p̂1p̂K−1
−p̂1p̂2 p̂2(1− p̂2) · · · −p̂2p̂K−1
· · · · · · · · · · · ·
· · · · · · · · · · · ·

−p̂K−1p̂1 −p̂K−1p̂2 · · · p̂K−1(1− p̂K−1)


(K−1)×(K−1)

(48)

Â = A(v̂) =


∂
∂p1

GX(v̂) · · · ∂
∂pK−1

GX(v̂)
∂
∂p1

GY(v̂) · · · ∂
∂pK−1

GY(v̂)
∂
∂p1

GXY(v̂) · · · ∂
∂pK−1

GXY(v̂)


3×(K−1)

(49)

Σ̂H = ÂΣ̂Âτ (50)

σ̂2 = (1, 1,−1)Σ̂H(1, 1,−1)τ (51)

Having shown the above lemma and theorem, we are now at the point where we can show the
asymptotic normality of the estimators for κ, κ2 and κ3. For this purpose, consider the following
functions, with the same domain: 0 < x1 <∞, 0 < x2 <∞ and 0 < x3 <∞.

κ(x1, x2, x3) =
x1 + x2
x3

− 1,

κ2(x1, x2, x3) =
x1 + x2 − x3√

x1x2
,

κ3(x1, x2, x3) =2

(
1− x3

x1 + x2

)
.

The gradients of these functions are, respectively

gκ(x1, x2, x3) =

(
1

x3
,

1

x3
,−x1 + x2

x23

)τ
,

gκ2(x1, x2, x3) =

(
1

(x1x2)1/2
− x2(x1 + x2 − x3)

2(x1x2)3/2
,

1

(x1x2)1/2
− x1(x1 + x2 − x3)

2(x1x2)3/2
,− 1
√
x1x2

)τ
,

gκ3(x1, x2, x3) =

(
− 2x3

(x1 + x2)2
,− 2x3

(x1 + x2)2
,− 2

x1 + x2
,

)τ
.

Let the following be the plug-in estimators (MLEs) of κ, κ2 and κ3.

κ̂ =
Ĥ(X) + Ĥ(Y )

Ĥ(X,Y )
− 1 =

Ĥ(X) + Ĥ(Y )− Ĥ(X,Y )

Ĥ(X,Y )
, (52)

κ̂2 =
Ĥ(X) + Ĥ(Y )− Ĥ(X,Y )√

Ĥ(X)Ĥ(Y )
, (53)
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κ̂3 = 2

(
1− Ĥ(X,Y )

Ĥ(X) + Ĥ(Y )

)
=
Ĥ(X) + Ĥ(Y )− Ĥ(X,Y )

(Ĥ(X) + Ĥ(Y ))/2
. (54)

Here, we can apply the multivariate delta method directly using (43) to obtain the following
theorem.

Theorem 4. Under the conditions of Lemma 7,

1.
√
n(κ̂− κ)

L−→ N(0, σ2κ̂),

2.
√
n(κ̂2 − κ2)

L−→ N(0, σ2κ̂2),

3.
√
n(κ̂3 − κ3)

L−→ N(0, σ2κ̂3),

where

σ2κ̂ =gτκ(H(X), H(Y ), H(X,Y ))ΣHgκ(H(X), H(Y ), H(X,Y )),

σ2κ̂2 =gτκ2(H(X), H(Y ), H(X,Y ))ΣHgκ2(H(X), H(Y ), H(X,Y )),

σ2κ̂3 =gτκ3(H(X), H(Y ), H(X,Y ))ΣHgκ3(H(X), H(Y ), H(X,Y )).

with ΣH is as in (44).

Corollary 3. Under the conditions of Theorem 4,

1.
√
n(κ̂−κ)
σ̂κ̂

L−→ N(0, 1),

2.
√
n(κ̂2−κ2)
σ̂κ̂2

L−→ N(0, 1),

3.
√
n(κ̂3−κ3)
σ̂κ̂3

L−→ N(0, 1),

where Σ̂H is such that every pi,j in ΣH is substituted by p̂i,j and

σ̂2κ̂ =gτκ(Ĥ(X), Ĥ(Y ), Ĥ(X,Y ))Σ̂Hgκ(Ĥ(X), Ĥ(Y ), Ĥ(X,Y )),

σ̂2κ̂2 =gτκ2(Ĥ(X), Ĥ(Y ), Ĥ(X,Y ))Σ̂Hgκ2(Ĥ(X), Ĥ(Y ), Ĥ(X,Y )),

σ̂2κ̂3 =gτκ3(Ĥ(X), Ĥ(Y ), Ĥ(X,Y ))Σ̂Hgκ3(Ĥ(X), Ĥ(Y ), Ĥ(X,Y )).

Finding the asymptotic distributions for κ1 and κ4 turns out to be a bit more complex than
in the other cases. This is because of the sharp edge that occurs for both of these indices where
H(X) = H(Y ), and so the respective gradients are different depending on whether H(X) < H(Y )
or H(X) > H(Y ). Let us define the following functions for x1, x2, and x3 with the constraints
that 0 < x1 ≤ x3 <∞ and 0 < x2 ≤ x3 <∞.

κ1(x1, x2, x3) =



x1 + x2 − x3
x1

x1 < x2

x1 + x2 − x3
x2

x1 > x2

x1 + x2 − x3
(x1 + x2)/2

= 2

(
1− x3

x1 + x2

)
x1 = x2

(55)
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κ4(x1, x2, x3) =



x1 + x2 − x3
x1

x1 > x2

x1 + x2 − x3
x2

x1 < x2

x1 + x2 − x3
(x1 + x2)/2

= 2

(
1− x3

x1 + x2

)
x1 = x2

(56)

Note that (55) and (56) are equivalent to the following:

κ1(x1, x2, x3) =
x1 + x2 − x3
min{x1, x2}

κ4(x1, x2, x3) =
x1 + x2 − x3
max{x1, x2}

The gradients of these functions are, respectively

gκ1,x1<x2(x1, x2, x3) =

(
x3 − x2
x21

,
1

x1
,− 1

x1

)τ
gκ1,x1>x2(x1, x2, x3) =

(
1

x2
,
x3 − x1
x22

,− 1

x2

)τ
gκ4,x1<x2(x1, x2, x3) =

(
1

x2
,
x3 − x1
x22

,− 1

x2

)τ
gκ4,x1>x2(x1, x2, x3) =

(
x3 − x2
x21

,
1

x1
,− 1

x1

)τ
Let the following be the plug-in estimators (MLEs) of κ1 and κ4.

κ̂1 =
Ĥ(X) + Ĥ(Y )− Ĥ(X,Y )

min{Ĥ(X), Ĥ(Y )}
, (57)

κ̂4 =
Ĥ(X) + Ĥ(Y )− Ĥ(X,Y )

max{Ĥ(X), Ĥ(Y )}
, (58)

Theorem 5. Suppose H(X) 6= H(Y ). Then under the conditions of Lemma 7,

1.
√
n(κ̂1 − κ1)

L−→ N(0, σ2κ̂1),

2.
√
n(κ̂4 − κ4)

L−→ N(0, σ2κ̂4)

where, if H(X) < H(Y ),
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σ2κ̂1 =gτκ1,x1<x2(H(X), H(Y ), H(X,Y ))ΣHgκ1,x1<x2(H(X), H(Y ), H(X,Y )),

σ2κ̂4 =gτκ4,x1<x2(H(X), H(Y ), H(X,Y ))ΣHgκ4,x1<x2(H(X), H(Y ), H(X,Y ))

and if H(X) > H(Y ), then

σ2κ̂1 =gτκ1,x1>x2(H(X), H(Y ), H(X,Y ))ΣHgκ1,x1>x2(H(X), H(Y ), H(X,Y )),

σ2κ̂4 =gτκ4,x1>x2(H(X), H(Y ), H(X,Y ))ΣHgκ4,x1>x2(H(X), H(Y ), H(X,Y ))

with ΣH is as in (44).

Corollary 4. Under the conditions of Theorem 5,

1.
√
n(κ̂1−κ1)
σ̂κ̂1

L−→ N(0, 1),

2.
√
n(κ̂4−κ4)
σ̂κ̂4

L−→ N(0, 1)

where Σ̂H is such that every pi,j in ΣH is substituted by p̂i,j. If H(X) < H(Y ),

σ̂2κ̂1 =gτκ1,x1<x2(Ĥ(X), Ĥ(Y ), Ĥ(X,Y ))Σ̂Hgκ1,x1<x2(Ĥ(X), Ĥ(Y ), Ĥ(X,Y )),

σ̂2κ̂4 =gτκ4,x1<x2(Ĥ(X), Ĥ(Y ), Ĥ(X,Y ))Σ̂Hgκ4,x1<x2(Ĥ(X), Ĥ(Y ), Ĥ(X,Y )).

and if H(X) > H(Y ),

σ̂2κ̂1 =gτκ1,x1>x2(Ĥ(X), Ĥ(Y ), Ĥ(X,Y ))Σ̂Hgκ1,x1>x2(Ĥ(X), Ĥ(Y ), Ĥ(X,Y )),

σ̂2κ̂4 =gτκ4,x1>x2(Ĥ(X), Ĥ(Y ), Ĥ(X,Y ))Σ̂Hgκ4,x1>x2(Ĥ(X), Ĥ(Y ), Ĥ(X,Y )).

Estimation and Asymptotic Normality from Turing’s Perspective

As an alternative to the plug-in estimators, there are a set of estimators of κ, κ1, κ2, κ3 and κ4
that approach the problem through the perspective of Alan Turing.
Let

Z1,v =
n1+v[n− (1 + v)]!

n!

∑
k≤1

p̂k v−1∏
j=0

(
1− p̂k −

j

n

)
Then an estimator of entropy based on Turing’s perspective is

Ĥz =
n−1∑
v=1

1

v
Z1,v (59)

This naturally extends to an estimator of mutual information based on Turing’s perspective.
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M̂Iz(X,Y ) = Ĥz(X) + Ĥz(Y )− Ĥz(X,Y ) =

n−1∑
v=1

1

v

{
nv+1[n− (v + 1)]!

n!

K1∑
i=1

[
p̂i,·

v−1∏
k=0

(
1− p̂i,· −

k

n

)]}

+

n−1∑
v=1

1

v

nv+1[n− (v + 1)]!

n!

K2∑
j=1

[
p̂·,j

v−1∏
k=0

(
1− p̂·,j −

k

n

)]
−
n−1∑
v=1

1

v

nv+1[n− (v + 1)]!

n!

K1∑
i=1

K2∑
j=1

[
p̂i,j

v−1∏
k=0

(
1− p̂i,j −

k

n

)]
(60)

Corollary 5. Under the conditions of Lemma 7,

√
n

[( Ĥz(X)

Ĥz(Y )

Ĥz(X,Y )

)
−

( H(X)
H(Y )
H(X,Y )

)]
L−→MVN(0,ΣH) (61)

where

ΣH = AΣAτ

with Σ as in (39) and A is as in (34) according to (40), (41) and (42).

Lemma 8. Suppose {pk} is a non-uniform distribution on L = {`k}. Then

√
n
(
Ĥz − Ĥ

)
p−→ 0 (62)

From this we can also derive the asymptotic normality of
√
n
(
M̂Iz −MI

)
. Note that

√
n
(
M̂Iz − M̂I

)
=
√
n
(
Ĥz(X)− Ĥ(X)

)
+
√
n
(
Ĥz(Y )− Ĥ(Y )

)
−
√
n
(
Ĥz(X,Y )− Ĥ(X,Y )

)
By Lemma 8, each of the three additive terms in the above equation converge to zero in

probability. This means that
√
n
(
M̂Iz − M̂I

)
p−→ 0. Applying Slutsky’s Theorem and Theorem

3 immediately gives the following theorem.

Theorem 6. Suppose that X and Y are not independent. Under the conditions of Theorem 3,

√
n
(
M̂Iz −MI

)
L−→ N(0, σ2) (63)

where σ is as in (46).

We can directly apply Theorem 6 and Slutsky’s Theorem to give the following corollary.
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Corollary 6. Under the conditions of Theorem 6,

√
n
(
M̂Iz −MI

)
σ̂

L−→ N(0, 1) (64)

where σ̂ is as given in (51).

Let Ĥz(X), Hz(Y ) and Ĥz(X,Y ) be as in (59). Let

κ̂z =
Ĥz(X) + Ĥz(Y )− Ĥz(X,Y )

Ĥz(X,Y )
(65)

κ̂1z =
Ĥz(X) + Ĥz(Y )− Ĥz(X,Y )

min{Ĥz(X), Ĥz(Y )}
(66)

κ̂2z =
Ĥz(X) + Ĥz(Y )− Ĥz(X,Y )√

Ĥz(X)Ĥz(Y )
(67)

κ3z =
Ĥz(X) + Ĥz(Y )− Ĥz(X,Y )

(Ĥz(X) + Ĥz(Y ))/2
(68)

κ̂4z =
Ĥz(X) + Ĥz(Y )− Ĥz(X,Y )

max{Ĥz(X), Ĥz(Y )}
(69)

Theorem 7. Under the conditions of Corollary 5,

1.
√
n(κ̂z − κ)

L−→ N(0, σ2κ̂z),

2.
√
n(κ̂2z − κ2)

L−→ N(0, σ2κ̂2z),

3.
√
n(κ̂3z − κ3)

L−→ N(0, σ2κ̂3z),

where

σ2κ̂z =gτκ(H(X), H(Y ), H(X,Y ))ΣHgκ(H(X), H(Y ), H(X,Y )),

σ2κ̂2z =gτκ2(H(X), H(Y ), H(X,Y ))ΣHgκ2(H(X), H(Y ), H(X,Y )),

σ2κ̂3z =gτκ3(H(X), H(Y ), H(X,Y ))ΣHgκ3(H(X), H(Y ), H(X,Y )).

with ΣH is as in (44).

Corollary 7. Under the conditions of Theorem 7,

1.
√
n(κ̂z−κ)
σ̂κ̂z

L−→ N(0, 1),

2.
√
n(κ̂2z−κ2)
σ̂κ̂2z

L−→ N(0, 1),

3.
√
n(κ̂3z−κ3)
σ̂κ̂3z

L−→ N(0, 1),
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where Σ̂H is such that every pi,j in ΣH is substituted by p̂i,j and

σ̂2κ̂z =gτκ(Ĥz(X), Ĥz(Y ), Ĥz(X,Y ))Σ̂Hgκ(Ĥz(X), Ĥz(Y ), Ĥz(X,Y )),

σ̂2κ̂2z =gτκ2(Ĥz(X), Ĥz(Y ), Ĥz(X,Y ))Σ̂Hgκ2(Ĥz(X), Ĥz(Y ), Ĥz(X,Y )),

σ̂2κ̂3z =gτκ3(Ĥz(X), Ĥz(Y ), Ĥz(X,Y ))Σ̂Hgκ3(Ĥz(X), Ĥz(Y ), Ĥz(X,Y )).

Theorem 8. Suppose H(X) 6= H(Y ). Then under the conditions of Corollary 5,

1.
√
n(κ̂1z − κ1)

L−→ N(0, σ2κ̂1z),

2.
√
n(κ̂4z − κ4)

L−→ N(0, σ2κ̂4z)

where, if H(X) < H(Y ),

σ2κ̂1z =gτκ1,x1<x2(H(X), H(Y ), H(X,Y ))ΣHgκ1,x1<x2(H(X), H(Y ), H(X,Y )),

σ2κ̂4z =gτκ4,x1<x2(H(X), H(Y ), H(X,Y ))ΣHgκ4,x1<x2(H(X), H(Y ), H(X,Y ))

and if H(X) > H(Y ), then

σ2κ̂1z =gτκ1,x1>x2(H(X), H(Y ), H(X,Y ))ΣHgκ1,x1>x2(H(X), H(Y ), H(X,Y )),

σ2κ̂4z =gτκ4,x1>x2(H(X), H(Y ), H(X,Y ))ΣHgκ4,x1>x2(H(X), H(Y ), H(X,Y ))

with ΣH is as in (44).

Corollary 8. Under the conditions of Theorem 8,

1.
√
n(κ̂1z−κ1)
σ̂κ̂1z

L−→ N(0, 1),

2.
√
n(κ̂4z−κ4)
σ̂κ̂4z

L−→ N(0, 1)

where Σ̂H is such that every pi,j in ΣH is substituted by p̂i,j. If H(X) < H(Y ),

σ̂2κ̂1z =gτκ1,x1<x2(Ĥz(X), Ĥz(Y ), Ĥz(X,Y ))Σ̂Hgκ1,x1<x2(Ĥz(X), Ĥz(Y ), Ĥz(X,Y )),

σ̂2κ̂4z =gτκ4,x1<x2(Ĥz(X), Ĥz(Y ), Ĥz(X,Y ))Σ̂Hgκ4,x1<x2(Ĥz(X), Ĥz(Y ), Ĥz(X,Y )).

and if H(X) > H(Y ),

σ̂2κ̂1z =gτκ1,x1>x2(Ĥz(X), Ĥz(Y ), Ĥz(X,Y ))Σ̂Hgκ1,x1>x2(Ĥz(X), Ĥz(Y ), Ĥz(X,Y )),

σ̂2κ̂4z =gτκ4,x1>x2(Ĥz(X), Ĥz(Y ), Ĥz(X,Y ))Σ̂Hgκ4,x1>x2(Ĥz(X), Ĥz(Y ), Ĥz(X,Y )).
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Hypothesis Testing

By Theorem 3, a necessary condition for the asymptotic normality of mutual information is that

σ2 = (1, 1,−1)Σ(1, 1,−1)τ > 0 (70)

Since the asymptotic normality of κ, κ1, κ2, κ3, and κ4 are derived from the asymptotic nor-
mality of mutual information, (70) is therefore a necessary condition for the asymptotic normality
of these as well. If X and Y are independent random elements on the joint alphabet X × Y ,
then MI(X,Y ) = κ = κ2 = κ3 = 0, and (70) is not satisfied. If (70) holds, then the asymptotic
normality is satisfied and a large sample hypothesis test is valid for κ, κ2 and κ3.

However, large sample hypothesis tests of the form H0 : κ = ε, H0 : κ2 = ε, and H0 : κ3 = ε
can be performed. We must have ε > 0 because when ε = 0, the underlying asymptotic normality
does not hold. Under the previous null hypotheses, the following test statistics are approximately
standard normal random variables and may be used:

Z =

√
n(κ̂− ε)
σ̂κ̂

Z =

√
n(κ̂2 − ε)
σ̂κ̂2

Z =

√
n(κ̂3 − ε)
σ̂κ̂3

The corresponding test statistics from Turing’s perspective may also be used, and are approxi-
mately distributed standard normal under each the null hypotheses:

Z =

√
n(κ̂z − ε)
σ̂κ̂z

Z =

√
n(κ̂2z − ε)
σ̂κ̂2z

Z =

√
n(κ̂3z − ε)
σ̂κ̂3z

If one is interested in testing whether or not κ = κ2 = κ3 = 0, by Theorem 2 this is a test
of independence of X and Y on X × Y . Since the asymptotic normality does not hold, one
must conduct another test for independence. The Pearson chi-square statistic for independence
in two-way contingency tables is

Q =
∑K1

i=1

∑K2
j=1

(Fi,j − np̂i,·p̂·,j)2

np̂i,·p̂·,j

where Fi,j is the observed frequency of (xi, yj) ∈X ×Y in an iid sample of size n; p̂i,j = Fi,j/n,

p̂i,· =
∑K2

j=1 p̂i,j , and
∑K1

i=1. Under H0 : κ = κ2 = κ3 = 0, Q is asymptotically a chi-square random
variable with degrees of freedom (K1 − 1)(K2 − 1). One would reject H0 if Q takes a large value,
say greater than χ2

α((K1− 1)(K2− 1)), the (1−α)× 100th quantile of the chi-square distribution
with degrees of freedom (K1 − 1)(K2 − 1).

Another possible test of hypotheses that may be of interest is that of whether or not the
standardized mutual information κ of a population changes from one time period to another.
This would mean testing

H0 : κt1 − κt2 = 0 vs. Ha : κt1 − κt2 6= 0

where κt1 is standardized mutual information at time t1 and κt2 is standardized mutual informa-
tion at time t2. Because the two samples would be independent from each other, κt1 and κt2 are
independent. In order to find the test statistic for this hypothesis, we need to mention a corollary.
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Corollary 9. If κt1 is standardized mutual information at time t1 and κt2 is standardized mutual
information at time t2, and as long as κt1 6= 0 and κt2 6= 0, then

√
n((κ̂t1 − κ̂t2)− (κt1 − κt2))√

σ̂2κ̂t1 + σ̂2κ̂t2

L−→ N(0, 1) (71)

Thus, the appropriate test statistic for this hypothesis test would be

Z =

√
n(κ̂t1 − κ̂t2)√
σ̂2κ̂t1 + σ̂2κ̂t2

(72)

and is approximately distributed standard normal under H0 when n is sufficiently large.

It is to be noted that, with κ1 and κ4, the asymptotic normality only holds if H(X) 6= H(Y ),
and the convergence tends toward two different distributions, dependent on whether H(X) <
H(Y ) or H(X) > H(Y ). The question of which of these, or H(X) = H(Y ), is true, is impossible
to determine unless the underlying distributions of X and Y are completely known. In this case
there is no purpose in hypothesis testing, and so for κ1 and κ4 large sample hypothesis testing is
not viable.

An Illustrative Example

The Religious Landscape Study done by the Pew Research Center in 2014 consisted of a nationally
representative sample of adults in the United States, of size n = 33, 538. For each individual in
the selected group, among other things, the religion and the ethnicity was noted. There were
K1 = 12 choices for religion, and K2 = 5 choices for ethnicity. The survey resulted in the data
set in Table 1. Let X be the religion and Y be the ethnicity of a randomly selected individual.
Then i takes values in {1, · · · , 12 = K1} corresponding to religions Buddhist through Unaffiliated
in the given vertical order in Table 1, and j takes values in {1, · · · , 5 = K2} corresponding to
ethnic groups White to Other/Mixed in the given horizontal order of the same table. We also
have K = K1K2 = 12 ∗ 5 = 60, assuming pi,j > 0 for every pair (i, j).

In the same configuration as that of Table 1, the observed point and marginal distributions
are given in Table 2.

According to (28), (29), (30) and (45),

Ĥ(X) = 1.817290539452137
Ĥ(Y ) = 1.0233818418002496
Ĥ(X,Y ) = 2.6385505772306845

M̂I(X,Y ) = 0.202121804

and according to (59) and (60),

Ĥz(X) = 1.8174545984818056
Ĥz(Y ) = 1.0234414810331058
Ĥz(X,Y ) = 2.6394424808941004

M̂Iz(X,Y ) = 0.201453599
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White Black Asian Latino Other/Mixed Total

Buddhist 115 8 87 31 21 262
Catholic 4197 213 213 2419 71 7113

Evangelical Protestant 6444 509 169 933 424 8479
Hindu 8 4 179 2 4 197

Historically Black Protestant 38 1798 1 57 19 1913
Jehovah’s Witness 86 64 1 77 14 242

Jewish 754 17 17 33 17 838
Mainline Protestant 5156 180 60 359 240 5995

Mormon 558 7 6 52 33 656
Muslim 88 64 64 9 7 232

Orthodox Christian 149 15 5 11 4 184
Unaffiliated 5050 669 371 966 371 7427

Total 22,643 3548 1173 4949 1225 33,538

Table 1: Frequency Data of Ethnicity and Religion

Also, by (52), (57), (53), (54), (58) we have

κ̂ = 0.076603346
κ̂1 = 0.197503801
κ̂2 = 0.148211577
κ̂3 = 0.142305607
κ̂4 = 0.111221513.

and by (65), (66), (67), (68) and (69)

κ̂z = 0.0763243
κ̂1z = 0.196839392
κ̂2z = 0.147710625
κ̂3z = 0.141823983
κ̂4z = 0.110843814
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p̂i,j j = 1 j = 2 j = 3 j = 4 j = 5 p̂i,·
i = 1 0.003428946 0.000238535 0.002594072 0.000924325 0.000626155 0.007812034
i = 2 0.12514163 0.006351005 0.006351005 0.072127139 0.002117002 0.212087781
i = 3 0.192140259 0.015176814 0.00503906 0.02781919 0.012642376 0.252817699
i = 4 0.000238535 0.000119268 0.005337229 0.000059633848 0.000119268 0.005873934
i = 5 0.001133043 0.05361083 0.000029816924 0.001699565 0.000566522 0.057039776
i = 6 0.002564255 0.001908283 0.000029816924 0.002295903 0.000417437 0.007215696
i = 7 0.022481961 0.000506888 0.000506888 0.000983958 0.000506888 0.024986582
i = 8 0.153736061 0.005367046 0.001789015 0.010704276 0.007156062 0.17875246
i = 9 0.016637844 0.000208718 0.000178902 0.00155048 0.000983958 0.019559902
i = 10 0.002623889 0.001908283 0.001908283 0.000268352 0.000208718 0.006917526
i = 11 0.004442722 0.000447254 0.000149085 0.000327986 0.000119268 0.005486314
i = 12 0.150575467 0.019947522 0.011062079 0.028803149 0.011062079 0.221450295

p̂·,j 0.675144612 0.105790447 0.034975252 0.147563957 0.036525732 1

Table 2: Relative Frequency Data of Ethnicity and Religion
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