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ABSTRACT

XU CAO. Design and Analysis for Two-Phase Studies with Survival Data. (Under
the direction of DR. QINGNING ZHOU)

Large cohort studies under simple random sampling could be prohibitive to conduct

with a limited budget for epidemiological studies seeking to relate a failure time

to some exposure variables that are expensive to obtain. In this case, two-phase

studies are desirable. Failure-time-dependent sampling (FDS) is a commonly used

cost-effective sampling strategy in such studies. To enhance study efficiency upon

FDS, counting the auxiliary information of the expensive variables into both sampling

design and statistical analysis is necessary.

Chapter 2 discusses the semiparametric inference for a two-phase failure-time-

auxiliary-dependent sampling (FADS) design that allows the probability of obtaining

the expensive exposures to depend on both the failure time and cheaply available

auxiliary variables. To account for the sampling bias, we develop a semiparametric

maximum pseudo-likelihood approach for inference and a nonparametric bootstrap

procedure for variance estimation. The proposed estimator of regression coefficients

is shown to be consistent and asymptotically normal. The simulation studies indicate

that the proposed method works well in practical settings and is more efficient than

other competing sampling schemes or methods. The analyses of two real data sets

are provided for illustration.

In survival analysis, it’s commonly assumed that all subjects in a study will even-

tually experience the event of interest. However, this assumption may not hold in

various scenarios. For example, when studying the time until a patient progresses or

relapses from a disease, those who are cured will never experience the event. These

subjects are often labeled as “long-term survivors” or “cured”, and their survival time

is treated as infinite. When survival data include a fraction of long-term survivors,
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censored observations encompass both uncured individuals, for whom the event wasn’t

observed, and cured individuals who won’t experience the event. Consequently, the

cure status is unknown, and survival data comprise a mixture of cured and uncured

individuals that can’t be distinguished beforehand. Cure models are survival models

designed to address this characteristic.

Chapter 3 considers the generalized case-cohort design for studies with a cure frac-

tion. Under this design, the expensive covariates are measured only for a subset of

the study cohort, called subcohort, and for all or a subset of the remaining subjects

outside the subcohort who have experienced the event, called cases. We propose a

two-step estimation procedure under the semiparametric transformation mixture cure

models. We first develop a sieve maximum weighted likelihood method based only

on the complete data and also devise an EM algorithm for implementation. We then

update the resulting estimator via a working model between the outcome and cheap

covariates or auxiliary variables using the full data. We show that the proposed es-

timator is consistent and asymptotically normal, regardless of whether the working

model is correctly specified or not. We also propose a weighted bootstrap procedure

for variance estimation. Extensive simulation studies demonstrate the superior per-

formance of the proposed method in finite-sample. An application to the National

Wilms’ Tumor Study is provided for illustration.

A few directions for future research are discussed in Chapter 4.
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CHAPTER 1: INTRODUCTION

1.1 Survival Analysis

1.1.1 Survival Data

Survival data, also known as failure time data, is pervasive across various fields,

including medicine, social sciences, and finance. This type of data tracks the time

until a specific event occurs, such as death or machine failure. However, in real-

world scenarios, the occurrence of the event of interest may not be observed for all

study subjects due to incomplete follow-up, leading to censoring. Censoring comes in

different forms, with right-censored data being among the most common. In right-

censored data, the event of interest occurs after a certain observation period due

to factors like the end of study or loss of participant follow-up. Another type of

censoring is interval-censoring, where the exact event time is unknown but known

to have occurred within a specific time frame, such as in periodic examinations or

screenings.

One example of right censoring is the data set on incident diabetes from the

Atherosclerosis Risk in Communities (ARIC) study. Each participant in this study

was followed up every three years starting from 1987 and was examined for the events

of interest at the follow-up visits. Subjects who did not develop diabetes before the

end of the study or before they were lost to follow-up are classified as right-censored.

In Chapter 2, we will study the association of high-sensitivity C-Reactive Protein

(hs-CRP) level with time to incident diabetes after adjusting for other risk factors or

confounding variables.

In survival analysis, it’s commonly assumed that all subjects in a study will even-
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tually experience the event of interest. However, this is not always the case. For

example, when studying the time until a patient progresses or relapses from a dis-

ease, those who are cured will never experience the event. These subjects are often

labeled as “long-term survivors” or “cured”, and their survival time is treated as infi-

nite. Since it’s impractical to follow all individuals until they experience the event of

interest, survival data typically involve right censoring, where only a lower bound of

the survival time is known for some individuals. When survival data include a frac-

tion of long-term survivors, censored observations encompass both uncured individu-

als, for whom the event wasn’t observed, and cured individuals who won’t experience

the event. Consequently, the cure status is unknown, and survival data comprise a

mixture of cured and uncured individuals that can’t be distinguished beforehand.

A typical field in which the cure fraction of survival data is usually considered is

cancer studies. One example is that in the National Wilms’ Tumor Study on a rare

childhood kidney cancer, we are aware that a certain number of patients will never

experience a occurrence of the disease. In addition to contextual evidence supporting

the existence of a cured fraction, the presence of a stable plateau in the Kaplan and

Meier (1958) estimator of the survival function, alongside a considerable number of

censored observations, suggests the existence of a cured fraction. Figure 3.1, illus-

trating this estimator for the time to relapse among patients with the kidney cancer

(Breslow and Chatterjee, 1999), provides a compelling illustration of survival data

with a cure fraction. In Chapter 3, we will investigate the relation between histol-

ogy type and time to relapse among this kidney cancer patients with a cure fraction

considered, while accounting for other risk factors or confounding variables.

1.1.2 Survival Models

In the statistical analysis of failure time data, the primary objective often involves

estimating either the cumulative distribution function (CDF) or the survival function

of the failure time. Here, we denote F (t) = P (T ≤ t) as the CDF of the failure time
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T , and S(t) = 1− F (t) as the survival function.

When covariates are present, the primary interest often lies in examining their effect

on the failure time. Regression analysis is commonly employed to quantify this effect

or predict survival probabilities for new individuals. In this section, we will explore

several semiparametric regression models frequently utilized in survival analysis, along

with corresponding inference procedures. In what follows, let Z represent a vector

of covariates, which may include variables such as treatment indicators, age, gender,

and income. Additionally, let β denote the vector of regression parameters.

1.1.2.1 Proportional Hazards Model

The proportional hazards model, first proposed by Cox (1972), commonly known as

the Cox model, describes that effect of covariates acts multiplicatively on the hazard

function of the failure time T , and that the hazard functions under two different sets

of covariates are proportional. Particularly, it assumes that the hazard function takes

the form

λ(t|Z) = λ0(t) exp(z′β)

given Z = z, where λ0(t) is a baseline hazard function.

Over the past three decades, the Cox model has emerged as the most prevalent

regression model in survival analysis. A key factor contributing to its widespread

adoption is the availability of a simple and efficient inference method for β, known

as the partial likelihood approach, tailored specifically for right-censored data (Cox

(1975)). Unlike other methods, the partial likelihood function used in this procedure

involves only β, eliminating the need to handle λ0(t). Andersen and Gill (1982)

offered a simple and elegant proof of the asymptotic properties of the estimator for β

using counting processes and martingale theory. Chapter 2 discusses the regression

analysis of survival data using the Cox model in our studies.



4

1.1.2.2 Proportional Odds Model

The proportional odds (PO) model, first considered by McCullagh (1980), stands

as another prevalent regression model in survival analysis. It can be represented by

the equation:

log(
F (t|z)

1− F (t|z)
) = α0(t) + z′β,

where F (t|z) is the CDF of the failure time T give Z = z, and α0(t) the the unknown

baseline log-odds monotone increasing function. Bennett (1983) provided a non-

parametric maximum likelihood estimation for the survival function. Brant (1990)

proposed an approach to assess the goodness of fit of such models by comparing fits

to the binary logistic models that are subsidiary to the overall model. Fagerland and

Hosmer (2013) examined goodness-of-fit tests for this model. Mao and Wang (2010)

introduced a semiparametric efficient estimation for a class of generalized proportional

odds cure models.

1.1.2.3 Transformation Models

The regression models outlined above represent specific functional forms for the ef-

fect of covariates. However, there are instances where a more flexible model is desired.

One such model is the linear transformation model, which defines the relationship be-

tween the failure time T and the covariates Z as follows:

u(T ) = Z ′β + ε,

where u represents an unknown strictly increasing function, while ε follows a known

distribution. This model results in various semiparametric models, contingent upon

the specification of the distribution of ε. For instance, if ε follows an extreme value dis-

tribution, it leads to the proportional hazards model, whereas if ε follows the standard
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logistic distribution, it yields the proportional odds model. Among other researchers,

Lu and Ying (2004) and Mao and Wang (2010) delved into the transformation model

incorporating a cure fraction, wherein they assumed a class of linear transformation

models for the survival time of uncured individuals.

Another transformation model proposed by Zeng and Lin (2006), offering consid-

erable flexibility, assumes that the cumulative hazard function of T takes the form

Λ(t|z) = G(Λ0(t) exp(z′β))

given Z = z, where G is a prespecified strictly increasing function and Λ0 is an

unspecified nondecreasing function. This model exhibits high flexibility due to the dif-

ferent choices for G, allowing it to encompass numerous commonly employed models

as special cases. For instance, in the Box-cox transformations,

G(x) = [(1 + x)ρ − 1]/ρ, ρ > 0,

where ρ > 0 corresponds toG(x) = log(1+x), or in the logarithmic transformations,

G(x) = log(1 + rx)/r,

where r = 0 corresponds to G(x) = x. By setting ρ = 1 or r = 0, we obtain the

proportional hazards model, while setting ρ = 0 or r = 1 yields the proportional

odds model. Furthermore, it is evident that under this model, T adheres to the linear

transformation model log Λ0(T ) = Z ′β + logG−1( log ε0), where ε0 follows a uniform

distribution over [0, 1]. Zeng and Lin (2006) explored a more generalized version of

this model for counting processes and investigated its maximum likelihood estimation

under right-censoring. In Chapter 3, we incorporate the latter transformation model

into our studies with a cure fraction.
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1.1.2.4 Cure Models

Cure models, including the nonmixture cure model and the mixture cure model,

are often explored in scenarios where survival data contain a mixture of cured and un-

cured individuals that cannot be distinguished beforehand, as detailed in the previous

section.

The mixture cure model stands as a prevalent method for analyzing survival data

that incorporates a cure fraction. It is a mixture of two separate regression models,

one for the cure rate of the nonsusceptible population and another for the survival

function of the susceptible population. Specifically, it is defined as

S(t|z) = p+ (1− p)S0(t|z)

given Z = z, where p is the proportion of “long-term survivors” or “cured patient”

and S0(t|z) the survival function for the susceptible individuals. Various methods

have been considered for the conditional survival function for the uncured subjects.

Farewell (1982) originally proposed parametric models. A semiparametric approach

utilizing a Cox (1972) proportional hazards (PH) model was offered by Kuk and Chen

(1992), Sy and Taylor (2000), and Kuk and Chen (2008).

The nonmixture cure model is an alternative approach for analyzing survival data

with a cure fraction while preserving the proportional hazards structure across the

entire population. It delineates the relationship between the failure time T and the

covariates Z as follows:

S(t|z) = pF0(t|z) = exp[ln(p)F0(t|z)],

where F0(t|z) = 1 − S0(t|z) is the CDF of failure time T give Z = z. It offers a

clear interpretation of how covariates impact the probability of cure, as demonstrated

by Tsodikov (1998) and Tsodikov et al. (2003). Yakovlev and Tsodikov (1996), along
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with Chen et al. (1999), provided a biological derivation of this model. Chapter 3

discusses the semiparametric transformation mixture cure models in our study.

1.2 Two-Phase Sampling Designs

In many epidemiological studies, the outcomes of interest are times to failure events,

such as cancer, heart disease, and HIV infection, and often much of the cost is spent

on obtaining the measurements of the main exposure variables, e.g., biomarkers that

rely on bioassay or genetic analysis to ascertain or medical records that require labor-

intensive chart review. When the exposure variables are difficult or expensive to

obtain, large cohort studies under simple random sampling could be prohibitive to

conduct for investigators with a limited budget. Alternative cost-effective sampling

designs together with efficient and robust inference procedures are desirable. Two-

phase sampling designs are commonly used in practice to reduce cost and enhance

study efficiency. In this section, we introduce several commonly used two-phase sam-

pling designs.

1.2.1 Outcome-Dependent Sampling Designs

1.2.1.1 Case-control Studies

A case-control study is a type of observational study design utilized in epidemi-

ology to explore the connection between exposure variables (such as risk factors or

treatments) and outcomes of interest (such as diseases or health conditions). In such

studies, researchers identify individuals with the outcome of interest (cases) and jux-

tapose them with individuals lacking the outcome (controls). Breslow (1982) delved

into the design and analysis of case-control studies. In Vandenbroucke and Pearce

(2012), case-control studies concerning disease incidence were discussed. Further-

more, Schildcrout and Rathouz (2010) proposed methods for the design and analysis

of case-control and stratified case-control studies for binary outcomes.
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1.2.1.2 ODS for Continuous Outcome

Outcome-dependent sampling (ODS), exemplified by the case-control study, is a

retrospective sampling strategy that enhances study efficiency and reduces costs. It

allows investigators to observe exposure based on value of the outcome as discussed in

Weinberg and Wacholder (1993) and Whittemore (1997). Recent research, like Zhou

et al. (2002) and Chatterjee et al. (2003), has extended ODS to encompass continuous

outcomes. The core concept of this approach is to allocate resources to a subset of the

population that provides the most informative data regarding the exposure-response

relationship (e.g. Song et al. (2009); Zhou et al. (2011b)).

1.2.1.3 Case-cohort Studies

For analyzing failure time outcomes, Prentice (1986) proposed a case-cohort design,

wherein costly exposure variables are gathered only for a randomly selected subset

of the study cohort, termed the subcohort, along with all individuals who experience

the failure event by a specified time, referred to as cases. Since its inception, the case-

cohort design has garnered attention from various researchers, including Chen and

Lo (1999), Cai and Zeng (2004), and Lu and Tsiatis (2006). The original case-cohort

study is mainly used for rare events. When the failure event of interest is non-rare

or moderately rare, Chen (2001), Cai and Zeng (2007), Kang and Cai (2009) among

considered a generalized case-cohort design. This approach involves acquiring expen-

sive exposure measurements for a subcohort and a selected subset, rather than all,

of the remaining cases outside the subcohort. In Chapter 3, we explore a generalized

case-cohort study within the framework of semiparametric transformation mixture

cure models.

1.2.2 Outcome-Auxiliary-Dependent Sampling Designs

In practice, cheap auxiliary variables that are highly correlated with the expen-

sive exposure variable are often available. The auxiliary variable is defined as the
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surrogate information that relates to the expensive variable but provides no addi-

tional information to the regression model when the expensive variable is known.

For example, in the National Wilms’ Tumor Study, it is of interest to evaluate the

association of tumor histological type with time to disease relapse. The histological

type can be examined by a local pathologist or an experienced pathologist from a

central facility. The central examination tends to be more accurate but is more ex-

pensive and time-consuming. Thus, the central histological type can be treated as

the expensive exposure variable, while the local type can serve as a cheap auxiliary

variable. Among others, Wang and Zhou (2006), Wang et al. (2009), Wang and Zhou

(2010), and Zhou et al. (2011a) considered two-phase designs that make use of aux-

iliary information. However, these works were focused on continuous and categorical

outcomes. In Chapter 2, we develop a two-phase failure-time-auxiliary-dependent

sampling (FADS) design.

1.3 Outline of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, we develop

a two-phase failure-time-auxiliary-dependent sampling (FADS) design and propose a

semiparametric maximum pseudo-likelihood method to analyze the resulting data.

The two-phase FADS design allows the probability of obtaining the expensive expo-

sure measurements at the second phase to depend on the values of the failure time

and the auxiliary variable observed at the first phase. In addition, we propose a new

semiparametric maximum pseudo-likelihood estimation method to reap the benefits

gained by the two-phase FADS design, and develop a nonparametric bootstrap proce-

dure for inference. The simulation studies indicate that the proposed method works

well in practical settings and is more efficient than other competing sampling schemes

or methods. The analyses of two real data sets are provided for illustration.

In Chapter 3, we discuss the generalized case-cohort design for studies with a cure

fraction. Under this design, the expensive covariates are measured only for a subset of
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the study cohort, called subcohort, and for all or a subset of the remaining subjects

outside the subcohort who have experienced the event, called cases. We propose

a two-step estimation procedure under the semiparametric transformation mixture

cure models. We first develop a sieve maximum weighted likelihood method based

only on the complete data and also devise an EM algorithm for implementation.

We then update the resulting estimator via a working model between the outcome

and cheap covariates or auxiliary variables using the full data. We show that the

proposed estimator is consistent and asymptotically normal, regardless of whether

the working model is correctly specified or not. We also propose a weighted bootstrap

procedure for variance estimation. Extensive simulation studies demonstrate the

superior performance of the proposed method in finite-sample. An application to

the National Wilms’ Tumor Study is provided for illustration.

In Chapter 4, several directions for future research are described.



CHAPTER 2: SEMIPARAMETRIC INFERENCE FOR A TWO-PHASE

FAILURE-TIME-AUXILIARY-DEPENDENT SAMPLING DESIGN

2.1 Introduction

As discussed in Chapter 1, in many epidemiological studies, when the exposure

variables are difficult or expensive to obtain, large cohort studies under simple random

sampling could be prohibitive to conduct for investigators with a limited budget.

Alternative cost-effective sampling designs together with efficient and robust inference

procedures are desirable. Two-phase study designs are commonly used in practice to

reduce cost and enhance study efficiency. Typically, at the first phase of a two-phase

study, a large random sample is drawn to collect the outcome and cheap covariates

or auxiliary variables; at the second phase, the measurements of expensive covariates

are obtained for a subset of the first-phase sample. There is an extensive literature

on two-phase study designs, particularly on how to draw the second-phase sample.

For the failure time outcome, Prentice (1986) proposed a case-cohort design, where

the expensive exposure variables are collected only for a simple random sample from

the study cohort, called subcohort, and for all subjects who have experienced the

failure event by a specified time, called cases. Since its proposal, the case-cohort

design has been studied by many authors, including Chen and Lo (1999), Cai and

Zeng (2004), Lu and Tsiatis (2006), Breslow and Wellner (2007), and Marti and

Chavance (2011). The original case-cohort design is mainly used for rare events.

When the failure event of interest is non-rare or not so rare, Chen (2001), Cai and Zeng

(2007) and Kang and Cai (2009) among others considered a generalized case-cohort

design, where the expensive exposure measurements are obtained for a subcohort and

for a subset, instead of all, of the remaining cases outside the subcohort. Ding et al.
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(2014) developed an outcome-dependent sampling (ODS) design by enriching a simple

random sample with some selected cases that are believed to be more informative to

the exposure-failure-time relationship based on the values of their observed failure

times. These works did not incorporate auxiliary information into the study designs

and analyses.

In practice, cheap auxiliary variables that are highly correlated with the expensive

exposure variable are often available. In addition to the example of the National

Wilms’ Tumor Study mentioned in Chapter 1, another example arises from the Duke

Lung Cancer Study that evaluates the effect of epidermal growth factor receptor

(EGFR) genetic mutations on tumor response to EGFR-targeted therapy for pa-

tients with nonsmall cell lung cancer. Genetic assay on EGFR mutations is very

expensive. The EGFR mutation score, a composite score indicating the likelihood

of EGFR mutations estimated from patients baseline characteristics, provides auxil-

iary information about EGFR mutations. It is desirable to incorporate such available

auxiliary information in designing and analyzing two-phase studies so as to further re-

duce cost and improve study efficiency. Among others, Wang and Zhou (2006), Wang

et al. (2009), Wang and Zhou (2010), and Zhou et al. (2011a) considered two-phase

designs that make use of auxiliary information. However, these works were focused

on continuous and categorical outcomes.

In this chapter, we develop a two-phase failure-time-auxiliary-dependent sampling

(FADS) design and propose a semiparametric maximum pseudo-likelihood method

to analyze the resulting data. The two-phase FADS design allows the probability of

obtaining the expensive exposure measurements at the second phase to depend on

the values of the failure time and the auxiliary variable observed at the first phase.

This design is innovative in that it allows readily available surrogate or auxiliary

variables to be part of the design of an efficient study. It could play a significant role

in many studies with a limited budget. In addition, we propose a new semiparametric
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maximum pseudo-likelihood estimation method to reap the benefits gained by the two-

phase FADS design, and develop a nonparametric bootstrap procedure for inference.

The proposed method can also be used to analyze data from the two-phase FDS

design where the selection of the second-phase sample depends only on the failure

time. In contrast to Ding et al. (2014), our method makes use of both first-phase and

second-phase samples as well as the auxiliary information, thus yields more efficient

estimation.

The remainder of this chapter is organized as follows. In Section 2.2, we describe the

two-phase FADS design and present the proposed method for analyzing the resulting

data. We also establish the asymptotic properties of the proposed estimator and

develop a nonparametric bootstrap procedure for variance estimation. In Section 2.3,

we conduct simulation studies to investigate the performance of the FADS design

and the proposed method in finite samples and also to compare with the competing

designs or methods. In Section 2.4, we illustrate the proposed design and method

using the ARIC Study and the National Wilms’ Tumor Study. We conclude with brief

discussion in Section 2.5. The proofs of the asymptotic properties of the proposed

estimator are given in the Appendix A.

2.2 Design and Method

2.2.1 Two-Phase FADS Design

Let T̃ denote the failure time, C the censoring time, T = min(T̃ , C) the observed

time, ∆ = I(T̃ ≤ C) the indicator of failure, Y (t) = I(T ≥ t) the at-risk process, X

the expensive covariates, Z the other adjustment covariates that are available, and

W the auxiliary variables of X. Assume that T̃ and C are conditionally independent

given X and Z, and T̃ follows the proportional hazards model with the conditional

cumulative hazard function given X and Z as follows:

Λ(t|X,Z) = Λ(t) exp{β′1X + β′2Z}, (2.1)
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where Λ(t) is an unspecified cumulative baseline hazard function and β = (β1, β
′
2)′ is

a p-dimensional vector of regression coefficients.

Let T ×W denote the domain of (T,W ). We partition T into J mutually exclusive

and exhaustive strata: Aj = (aj−1, aj], j = 1, . . . , J , where a0, a1, . . . , aJ are known

constants such that 0 = a0 < a1 < · · · < aJ−1 < aJ = τ with τ being the length

of study. We also partition W into L mutually exclusive and exhaustive strata:

Bl = (bl−1, bl], l = 1, . . . , L, where b0, b1, . . . , bL are known constants satisfying −∞ =

b0 < b1 < · · · < bL−1 < bL =∞. Thus, we have partitioned T ×W into J×Lmutually

exclusive and exhaustive rectangles Aj × Bl for j = 1, . . . , J and l = 1, . . . , L. For

simplicity, we rewrite these rectangles as Dk for k = 1, . . . , K such that {Dk : k =

1, . . . , K} = {Aj × Bl : j = 1, . . . , J and l = 1, . . . , L} and T × W = ∪Jj=1 ∪Ll=1

Aj × Bl = ∪Kk=1Dk, where K = J × L. According to the failure status, we further

partition the data into (K + 1) strata:

Sk = Dk ∩ {∆ = 1}, k = 1, . . . , K and SK+1 = {∆ = 0}.

The proposed two-phase FADS design is as follows: at the first phase, we take a

cohort of size N from the underlying population on which {T,∆,W, Z} are observed;

at the second phase, we observe X on a simple random sample (SRS), indexed by

Ṽ0, of the first-phase cohort and on supplemental samples, indexed by {Ṽ1, . . . , ṼK},

taken by simple random sampling from theK failure strata {S1, . . . , SK} of the cohort

that are outside Ṽ0, respectively. Note that Ṽj is allowed to be empty, meaning that

no supplemental sample is taken from the stratum Sj. We refer to the data with X

observed as the validation sample, indexed by V = ∪Kk=0Ṽk, and the data without X

observed as the nonvalidation sample, indexed by V̄ . Then the data structure for the
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two-phase FADS design can be written as:

Nonvalidation Sample: (Ti,∆i,Wi, Zi), i ∈ V̄

Validation Sample:

 (Ti,∆i, Xi,Wi, Zi), i ∈ Ṽ0

(Ti,∆i, Xi,Wi, Zi | (Ti,∆i,Wi) ∈ Sk), i ∈ Ṽk, k = 1, . . . , K.

The FADS design allows one to oversample certain segments of the population

that are believed to be more informative to the relationship between T and X, such

as the extreme strata of (T,W ). It provides more flexibility than the FDS design

by allowing the probability of obtaining the second-phase sample to depend on the

auxiliary variable W as well. Figure 2.1 illustrates the proposed FADS design where

J = L = 3 and at the second phase, in addition to SRS, four supplemental samples

are taken from the four “corner” strata S1, S3, S7 and S9 that consist of the extreme

values of (T,W ).

2.2.2 Estimation and Inference

Now we consider the estimation and inference of the regression parameters β in

model (2.1). The likelihood function based on the observed data can be written as

L(β,Λ, G) =


K∏
k=0

∏
i∈Ṽk

fβ,Λ(Ti,∆i|Xi, Zi)g(Xi|Wi, Zi)



K+1∏
k=1

∏
j∈V̄k

fβ,Λ,G(Tj,∆j|Wj, Zj)


=


K∏
k=0

∏
i∈Ṽk

fβ,Λ(Ti,∆i|Xi, Zi)g(Xi|Wi, Zi)



K+1∏
k=1

∏
j∈V̄k

∫
fβ,Λ(Tj,∆j|x, Zj)dG(x|Wj, Zj)

 ,

(2.2)

where for k = 1, . . . , K + 1, V̄k = V̄ ∩ Sk denotes the index set of the portion of the

nonvalidation sample that belongs to the k-th stratum, G(x|W,Z) and g(x|W,Z) are

the conditional distribution and density functions of X given (W,Z), respectively,
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and

fβ,Λ(T,∆|X,Z) = fβ,Λ(T |X,Z)∆F̄β,Λ(T |X,Z)1−∆

with fβ,Λ(t|X,Z) and F̄β,Λ(t|X,Z) being the conditional density and survival func-

tions of T̃ given (X,Z) under the proportional hazards model (2.1), respectively.

We propose a two-step estimation procedure for β. We first obtain estimates of

(G,Λ) and plug them into the likelihood function (2.2), and then estimate β by

maximizing the pseudo-likelihood function. Specifically, let U = (W,Z∗), where Z∗

is an informative subset of Z in the sense that G(x|W,Z) = G(x|U) almost surely.

Without loss of generality, we assume that U is a d-dimensional vector of continuous

variables. If U were discrete, then the kernel estimators below would become the

empirical estimators. Note that we can write

G(x|u) =
K+1∑
k=1

πk(u)Gk(x|u),

where πk(u) = P ((T,∆,W ) ∈ Sk |u) and Gk(x|u) = P (X ≤ x |u, (T,∆,W ) ∈ Sk).

For k = 1, . . . , K + 1, we can estimate πk(u) and Gk(x|u) by

π̂k(u) =

∑N
i=1 I((Ti,∆i,Wi) ∈ Sk)φh(Ui − u)∑N

i=1 φh(Ui − u)

and

Ĝk(x|u) =

∑
i∈Vk I(Xi ≤ x)φh(Ui − u)∑

i∈Vk φh(Ui − u)
,

respectively, where Vk = V ∩ Sk denotes the index set of the validation sample that

belongs to the k-th stratum and φh(·) = φ(·/h) is a d-dimensional kernel function with

bandwidth h. Note that the values of h in π̂k and Ĝk can be different and dependent

on k. We use the same notation only for simplicity. Furthermore, we estimate the

cumulative hazard function Λ(t) by the Breslow-Aalen estimator based on the SRS
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component Ṽ0 of the validation sample,

Λ̂(t) =
∑

Tj≤t,j∈Ṽ0

∆j∑
l∈Ṽ0

Yl(Tj) exp
{
β̂′10Xl + β̂′20Zl

} ,
where Yl(t) = I(Tl ≥ t) and β̂0 = (β̂′10, β̂

′
20)′ is the partial likelihood estimate of β

based on Ṽ0. We then plug π̂k(u), Ĝk(x|u) and Λ̂(t) into the likelihood function (2.2)

and obtain the following pseudo-log-likelihood function

l̂(β, Λ̂, Ĝ) =
K∑
k=0

∑
i∈Ṽk

log fβ,Λ̂(Ti,∆i|Xi, Zi) +
K+1∑
k=1

∑
j∈V̄k

log f̂β,Λ̂,Ĝ(Tj,∆j|Wj, Zj), (2.3)

where

fβ,Λ̂(Ti,∆i|Xi, Zi) =
{
λ̂(Ti) exp{β′1Xi + β′2Zi}

}∆i

exp
{
− Λ̂(Ti) exp{β′1Xi + β′2Zi}

}

with λ̂(t) being the jump size of Λ̂(t) at time t, and

f̂β,Λ̂,Ĝ(Tj,∆j|Wj, Zj) =
K+1∑
r=1

π̂r(Uj)

∑
l∈Vr fβ,Λ̂(Tj,∆j|Xl, Zj)φh(Ul − Uj)∑

l∈Vr φh(Ul − Uj)
.

We then obtain the estimator of β, denoted by β̂, by maximizing the pseudo-log-

likelihood function (2.3). The asymptotic properties of β̂ are established in the fol-

lowing theorems. The proofs of these theorems and the regularity conditions needed

are given in the Appendix. Let (β0,Λ0, G0) denote the true values of (β,Λ, G). Define

nV = |V |, nk = |Ṽk| for k = 0, . . . , K, and Nk = |Sk| for k = 1, . . . , K+1, where |·| de-

notes the size of a set. Assuming that as N →∞, nV /N → ρV > 0, nk/nV → ρk ≥ 0

for k = 1, . . . , K, n0/nV → ρ0 > 0, and Nk/N → γk > 0 for k = 1, · · · , K + 1. The

theorems are stated below.

Theorem 1 (Consistency): Under Conditions (C1)-(C5) in the Appendix A, β̂ is a
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consistent estimator of β0 such that β̂ P−→ β0.

Theorem 2 (Asymptotic Normality): Under Conditions (C1)-(C5) in the Appendix

A, we have
√
N(β̂ − β0)

d−→ N(0,Σ(β0)),

with

Σ(β0) = I−1(β0)

{
I(β0) + ΣG(β0) +

K+1∑
k=1

γ2
k

ρkρV + γkρ0ρV
Σk(β0)

}
I−1(β0),

where I(β) is the information matrix of β with known (Λ0, G0),

ΣG(β) = Var

{∫ τ

0

H(t; β)G(t)dΛ0(t)

}

with G being a mean zero Gaussian process and H(t; β) defined in the Appendix,

Σk(β) = Vark

{
K+1∑
r=1

[
γr(1− ρ0ρV )− ρrρV

]
πr(U)Er

{
MX,U(T,∆,W, Z; β,Λ0)

∣∣U}} ,
in which Er(·|U) denotes the conditional expectation given U and (T,∆,W ) ∈ Sr,

Vark(·) denotes the variance given (T,∆,W ) ∈ Sk, and

MX,U(T,∆,W, Z; β,Λ) =
∂fβ,Λ(T,∆|X,Z)/∂β

fβ,Λ,G0(T,∆|W,Z)
−∂fβ,Λ,G0(T,∆|W,Z)/∂β[

fβ,Λ,G0(T,∆|W,Z)
]2 fβ,Λ(T,∆|X,Z).

2.2.3 Nonparametric Bootstrap

Since the asymptotic covariance matrix Σ(β0) is not easy to compute, we propose

a nonparametric bootstrap procedure for estimating the variance of β̂ (Efron, 1994).

The details are given below. First, we sample N subjects from the original cohort with

replacement to construct the new cohort. Second, we formulate the new validation

sample and nonvalidation sample using subjects in the new cohort as follows: if a
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subject in the new cohort was a member in the SRS component of original validation

sample, then the subject is allocated to the SRS of new validation sample; if a subject

in the new cohort was a member in the supplemental components of original validation

sample, then allocated to the supplements of new validation sample; if a subject in

the new cohort was a member in the original nonvalidation sample, then allocated

to the new nonvalidation sample. Lastly, we calculate the bootstrap estimate of β

using the proposed method based on the new validation sample and nonvalidation

sample. This procedure is repeated B times to obtain B bootstrap estimates of β,

denoted by β̂1, . . . , β̂B, whose sample variance is then used to estimate the variance

of β̂. We provide Figure 2.2 to illustrate the idea of our nonparametric bootstrap

with the cohort size N = 25 and the same sampling scheme as in Figure 2.1.

2.3 Simulation Studies

In this section, we conduct simulation studies to evaluate the finite-sample perfor-

mance of the proposed method and also compare it with some other designs or meth-

ods. We generate the failure time T̃ from the proportional hazards model Λ(t|X,Z) =

Λ(t) exp{β1X + β2Z} with X ∼ N(0, 1), Z ∼ Ber(0.5), (β1, β2) = (log 2,−0.5) and

Λ(t) = t. The censoring time C is simulated from the uniform distribution over (0, τ),

where τ is the length of study determined by the desired rate of event, denoted by

p(event) = 40% or 20%. Also, the auxiliary variable is generated asW = X+e, where

e is independent of X and e ∼ N(0, σ2
e) with σe = 0.8 or 0.5 yielding a correlation

between X andW of 0.78 or 0.90, respectively. In the proposed estimation procedure,

the bandwidth for kernel estimation of Gk and πk are taken as h(k)
N1 = 1

2
σ̂Wkn

−1/3
Vk

and

h
(k)
N2 = 1

2
σ̂WkN

−1/3
k , respectively, where nVk is the size of validation sample in the kth

stratum, Nk is the size of kth stratum, and σ̂Wk denotes the sample standard devia-

tion of W within the k-th stratum, k = 1, . . . , K + 1. The nonparametric bootstrap

for variance estimation is conducted with B = 200 replicates.

Now we describe the study designs considered in the simulation studies. We first
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consider the proposed two-phase FADS design as follows. Recall that N is the cohort

size, n0 is the size of SRS, and nk is the size of kth supplemental sample for k =

1, . . . , K. As shown in Figure 2.1, we partition the domains of T and W into three

mutually exclusive intervals with J = L = 3 and the cutoff points being (30, 70)-th

percentiles of T and W , respectively. At the second phase, besides taking the SRS

of size n0, we draw four supplemental samples of sizes {n1, n3, n7, n9} from the four

“corner” failure strata {S1, S3, S7, S9}, respectively. Then the size of validation sample

is nV = n0 + n1 + n3 + n7 + n9. The proposed method is used to analyze data from

the FADS design. Recall that the auxiliary variable is generated as W = X + e with

e ∼ N(0, σ2
e). We denote the proposed estimators corresponding to σe = 0.8 and 0.5

by β̂FADS1 and β̂FADS2 , respectively.

For comparison, we also consider the two-phase FDS design, where the selection

of the second-phase sample depends only on the failure time T rather than also on

the auxiliary variable W . In particular, at the second phase, after taking the SRS

of size n0, we select two supplemental samples of sizes n1 + n3 and n7 + n9 from

the two “tail” failure strata based on T , that is, S1 ∪ S2 ∪ S3 and S7 ∪ S8 ∪ S9,

respectively. Then the size of the validation sample is nV = n0 + n1 + n3 + n7 + n9,

the same as the size of the validation sample of the FADS design described above.

We compare two methods for estimation under the FDS design. One is the estimated

maximum semiparametric empirical likelihood method given by Ding et al. (2014),

which does not utilize the nonvalidation sample and cannot incorporate the auxiliary

information. The estimator obtained using this method is denoted by β̂ODS, since

this sampling scheme is called outcome-dependent sampling (ODS) in Ding et al.

(2014). Also, we apply the proposed method to analyze data from the FDS design.

Unlike Ding et al. (2014), our method makes use of the nonvalidation sample and

the auxiliary information. We denote the estimators corresponding to σe = 0.8 and

0.5 by β̂FDS1 and β̂FDS2 , respectively. For comparison, we also consider the SRS
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design, where we take a simple random sample of the same size as the validation

sample nV = n0 + n1 + n3 + n7 + n9. The corresponding maximum partial likelihood

estimator is denoted by β̂SRS. In addition, we present the ideal case assuming that the

expensive covariate X is available for the full cohort, and denote the corresponding

maximum partial likelihood estimator as β̂FC . We consider different values of the

sizes N , nV , n0 and nk in the simulation studies. The results based on 500 replicates

are given in Table 2.1.

In Table 2.1, “Bias” is calculated as the average of point estimates minus the true

value, “SD” is the sample standard deviation of point estimates, “SE” is the average

of standard error estimates, and “CP” is the coverage proportion of 95% confidence

intervals, based on 500 simulations. From the results in Table 2.1, we can see that

all estimators considered are virtually unbiased, the variance estimators accurately

reflect the true variability, and the coverage probabilities of 95% confidence intervals

are close to the nominal level. Also, for estimation of the regression coefficient β1 of

X, we observe that β̂FADS2 is more efficient than β̂FADS1 , and β̂FDS2 is more efficient

than β̂FDS1 . This is expected since β̂FADS2 and β̂FDS2 correspond to a higher level

of association between X and W compared with β̂FADS1 and β̂FDS1 . Also, β̂FADS1

and β̂FADS2 are more efficient than β̂FDS1 and β̂FDS2 , respectively, which implies

that using auxiliary information in the study design helps to improve the estimation

efficiency. Moreover, β̂FDS1 and β̂FDS2 are more efficient than β̂ODS, indicating that

our estimation method gains efficiency over the method of Ding et al. (2014) by

additionally utilizing the nonvalidation sample and auxiliary information. Lastly, as

expected, the estimator β̂SRS based on the SRS design is least efficient as it does not

incorporate any information from the first-phase sample when selecting the second-

phase sample. We also conducted simulation studies using the cutoff points at the

(15, 85)-th percentiles of T and W , and the results are similar as above.
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2.4 Real Data Analyses

In this section, we illustrate the two-phase FADS design and the proposed estima-

tion method using two real data sets.

2.4.1 ARIC Study

We first apply the proposed design and method to a data set on incident diabetes

from the Atherosclerosis Risk in Communities (ARIC) study. The ARIC study is a

longitudinal and epidemiological cohort study consisting of 15972 men and women

aged 45-64 at baseline, including both White and African American participants,

recruited from four U.S. field centers: Forsyth County, North Carolina (Center F);

Jackson, Mississippi (Center J); Minneapolis, Minnesota (Center M); and Washing-

ton County, Maryland (Center W) (The ARIC Investigators, 1989). Each participant

was followed up every three years starting from 1987 and was examined for the events

of interest at the follow-up visits. In this study, we are interested in evaluating the as-

sociation of high-sensitivity C-Reactive Protein (hs-CRP) level with time to incident

diabetes after adjusting for other risk factors or confounding variables. Specifically,

the onset of incident diabetes is defined as a fasting glucose level of 140 mg/dL or

above, a non-fasting glucose level of 200 mg/dL or above, self-reported physician

diagnosis diabetes, or use of diabetic medications. We consider a categorical vari-

able hs-CRP with four levels based on the quartiles of the continuous measure with

three indicator variables, hs-CRP(C2), hs-CRP(C3) and hs-CRP(C4), defined for the

second, third and fourth quartiles, respectively, with the first quartile being the ref-

erence level. The other variables considered in the model include race, gender, age,

body mass index (BMI), field center, smoking status, drinking status, high-density

lipoprotein (HDL) cholesterol level, and total cholesterol level. Since only Center W

has both White and African American participants, we combine race and field center

to generate a five-level variable with four indicators, including White in Center F,
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White in Center J, African American in Center M, and African American in Center

W, where White in Center W is chosen as the reference level.

After excluding subjects with diabetes at baseline or having missing values on

covariates, the cohort for analysis consists of 9738 subjects. During the study period,

2135 subjects had developed diabetes, so the censoring rate is about 78%. There is not

a well-defined auxiliary variable for hs-CRP. For illustration, we create an auxiliary

variableW = hs-CRP+e with e ∼ N(0, 52) such that the correlation betweenW and

hs-CRP is around 0.80. The two-phase FADS design is implemented as in Figure 2.1.

At the second phase, we take an SRS of size 800 and four supplemental samples with

each of size 100 from the four “corner” failure strata, respectively. We apply the

proposed method to analyze data from the FADS design and denote the estimator

by FADS. We also consider the two-phase FDS design by selecting two supplemental

samples of size 200 for each from the two “tail” failure strata based on T only. The

estimator based on the proposed method is denoted by FDS. The estimator obtained

using the method of Ding et al. (2014) is denoted by ODS. As in the simulation

studies, for comparison, we also consider the estimator based on the SRS design,

denoted by SRS, and the estimator based on the full cohort, denoted by FC. The

analysis results are presented in Table 2.2. All methods suggest that hs-CRP, BMI,

race-center, and HDL are significantly associated with the risk of diabetes. The FDS,

FADS and FC methods also show that age and smoking status are significant. All

methods except SRS indicate that total cholesterol is significant. The findings from

FDS and FADS are consistent with those from FC. Also, FDS and FADS yield smaller

standard errors than ODS and SRS as expected.

2.4.2 National Wilms’ Tumor Study

We also apply the proposed method to a data set on Wilms’ tumor, a rare child-

hood kidney cancer, from the National Wilms’ Tumor Study (Breslow and Chatterjee,

1999). The data set includes 4028 patients from the third and fourth clinical trials of
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this study. It is of interest to assess the effects of tumor histological type, tumor stage,

and age at diagnosis on time to disease relapse. The censoring rate is about 86%. The

tumor histological type for each patient was examined by both a local pathologist and

an experienced pathologist from a central facility. The latter examination tends to

be more accurate but is more expensive and time-consuming. Although the central

histological types are available for all patients in this data set, if the study investiga-

tors implemented a two-phase design by assessing the central histological types only

on a small set of patients, the study cost would have been largely reduced.

We illustrate the two-phase FADS design and the proposed method using this data

set. The local histological type can be used as the auxiliary variableW for the expen-

sive central histological type X. Both W and X are binary and the missclassification

rate is about 5%. The other adjustment covariates Z include tumor stage and age

at diagnosis, where tumor stage is categorical with four stages and we define three

indicator variables accordingly with the first stage being reference level. Since both X

andW are binary, the kernel estimators π̂k and Ĝk become empirical estimators when

applying our method. We implement the two-phase FADS design as follows. The do-

main of T is partitioned into three mutually exclusive intervals, while the domain of

W is naturally partitioned into two parts as W is binary. At the second phase, we

take a simple random sample of size 400 and four supplemental samples with each

of size 25 from the four “corner” failure strata as in Figure 2.1. We also consider

the two-phase FDS design that selects two supplemental samples of size 50 for each

from the two “tail” failure strata based on T only. We apply the proposed method to

analyze data from the FADS and FDS designs, and denote the estimators by FADS

and FDS, respectively. Similar to the ARIC study, we also consider the estimators

SRS, ODS and FC for comparison. The analysis results are presented in Table 2.3.

The tumor histological type and tumor stage are significantly associated with the risk

of disease relapse based on all methods, while age at diagnosis is significant for FDS,
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FADS and FC but not for SRS or ODS. Thus, FDS and FADS yield the same findings

as FC. Also, for all variables, FDS and FADS have smaller standard errors than SRS

and ODS.

2.5 Conclusions

In this chapter, we developed a two-phase failure-time-auxiliary-dependent sam-

pling (FADS) design for studies with expensive covariates and cheap surrogate or

auxiliary variables. We proposed a new semiparametric maximum pseudo-likelihood

method for inference and a nonparametric bootstrap procedure for variance estima-

tion. The innovation of the proposed FADS design is that it allows the selection of

second-phase sample to depend not only on the failure time but also on the readily

available auxiliary variable, thus it provides more flexibility to oversample segments of

the population that are believed to be more informative to the relationship between

the failure time and the expensive covariate. The proposed method can reap the

benefits gained by the FADS design and provide consistent estimates by accounting

for the sampling bias. This new design and accompanying inference procedure could

play a significant role in the success of many studies with a limited budget.

There are a few directions for future research. One is the selection of design param-

eters, such as the cutoff points and the allocation of sample sizes. In the simulation

studies, we have tried the (15, 85)-th and (30, 70)-th percentiles as the cutoff points,

and also tried allocating the sample sizes as (n0, nk) = (400, 25) and (300, 50). The

estimation results are similar in these settings. Since the asymptotic variance given in

Theorem 2 has a complex form, it is not straightforward to assess the effect of design

parameters on the estimation efficiency in theory. There are also some practical con-

siderations. For instance, if the cutoff points are too extreme and the censoring rate

is high, the “corner” failure strata may not have enough subjects to be selected. The

optimal choice of cutoff points and sample size allocation warrant future research.

Another direction for research is the creation of an auxiliary variable when it is not
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available in practice. One possible way is to fit a predictive model for the expensive

covariate using the SRS component Ṽ0. The theoretical and numerical performance

of this method warrants future research. Lastly, the proportional hazards model con-

sidered in this work, although widely used, may not hold in some applications. The

proposed method can be extended without much effort to other models, such as the

proportional odds model and the semiparametric transformation models.
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Table 2.1: Simulation Results for the Estimation of β1 and β2

β1 = log 2 β2 = −0.5

p(event) N nV (n0, nk) Bias SD SE CP Bias SD SE CP

40% 3000 500 (400, 25) β̂SRS 0.002 0.079 0.077 0.946 -0.009 0.148 0.144 0.954

β̂ODS 0.002 0.073 0.074 0.952 -0.009 0.142 0.144 0.947

β̂FDS1
0.004 0.066 0.064 0.950 0.000 0.112 0.113 0.954

β̂FADS1
0.003 0.063 0.063 0.948 0.000 0.111 0.113 0.950

β̂FDS2 0.008 0.054 0.054 0.954 0.001 0.111 0.112 0.962

β̂FADS2
0.007 0.053 0.053 0.948 -0.001 0.110 0.112 0.954

β̂FC -0.001 0.031 0.031 0.946 -0.004 0.057 0.059 0.968

6000 1000 (800, 50) β̂SRS 0.003 0.053 0.054 0.958 0.000 0.103 0.102 0.948

β̂ODS 0.003 0.049 0.053 0.966 -0.001 0.105 0.102 0.942

β̂FDS1
0.005 0.046 0.044 0.945 0.005 0.079 0.079 0.941

β̂FADS1
0.004 0.044 0.043 0.953 0.006 0.079 0.079 0.949

β̂FDS2 0.007 0.038 0.037 0.937 0.004 0.079 0.079 0.951

β̂FADS2 0.006 0.038 0.037 0.953 0.005 0.079 0.079 0.947

β̂FC -0.001 0.021 0.022 0.952 -0.001 0.042 0.041 0.944

20% 5000 500 (400, 25) β̂SRS 0.008 0.105 0.106 0.948 0.000 0.218 0.207 0.948

β̂ODS 0.000 0.092 0.097 0.958 -0.011 0.185 0.190 0.955

β̂FDS1
0.010 0.088 0.085 0.954 0.006 0.140 0.141 0.950

β̂FADS1
0.009 0.086 0.085 0.956 0.008 0.138 0.141 0.958

β̂FDS2
0.014 0.073 0.072 0.949 0.004 0.141 0.143 0.949

β̂FADS2 0.013 0.074 0.072 0.945 0.005 0.141 0.143 0.954

β̂FC 0.002 0.032 0.033 0.962 0.002 0.066 0.065 0.942

10000 1000 (800, 50) β̂SRS 0.006 0.078 0.075 0.952 -0.007 0.140 0.145 0.960

β̂ODS 0.007 0.064 0.069 0.955 -0.006 0.117 0.135 0.976

β̂FDS1 0.005 0.058 0.058 0.945 0.004 0.095 0.099 0.961

β̂FADS1
0.004 0.058 0.058 0.942 0.004 0.095 0.098 0.966

β̂FDS2
0.008 0.050 0.049 0.949 0.002 0.097 0.100 0.957

β̂FADS2 0.007 0.049 0.049 0.951 0.002 0.097 0.100 0.960

β̂FC 0.001 0.022 0.023 0.958 -0.001 0.045 0.046 0.948

Note: Bias, average estimate minus true value; SD, sample standard deviation; SE, average estimated standard
error; CP, coverage proportion with 95% nominal level; SRS, the maximum partial likelihood method for the SRS
design; ODS, the estimation method of Ding et al. (2014) for the FDS design; FDS, our estimation method for
the FDS design; FADS, our estimation method for the FADS design; FC, the maximum partial likelihood method
using the full cohort; SE, standard error estimates of β̂. FDS1 and FADS1 correspond to σ = 0.8, yielding a
correlation between X and W of 0.78. FDS2 and FADS2 correspond to σ = 0.5, yielding a correlation between X
and W of 0.90.
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Table 2.2: Analysis Results for the ARIC Study

SRS ODS FDS FADS FC

Variables β̂ SE β̂ SE β̂ SE β̂ SE β̂ SE

hs-CRP(C2) 0.037 0.191 0.484 0.171 0.204 0.080 0.193 0.079 0.185 0.071

hs-CRP(C3) 0.548 0.185 0.956 0.173 0.514 0.079 0.543 0.079 0.512 0.068

hs-CRP(C4) 0.174 0.215 0.750 0.194 0.605 0.080 0.614 0.080 0.541 0.072

Gender -0.033 0.154 0.186 0.136 -0.021 0.073 -0.022 0.073 -0.009 0.051

Age 0.017 0.013 0.017 0.009 0.029 0.013 0.029 0.013 0.021 0.004

BMI 0.084 0.012 0.078 0.014 0.074 0.009 0.072 0.009 0.072 0.004

White Center F -0.048 0.202 0.160 0.176 -0.115 0.091 -0.051 0.092 -0.094 0.068

White Center J 0.277 0.188 0.402 0.172 0.158 0.086 0.185 0.085 0.159 0.064

African American Center M 0.636 0.239 0.992 0.196 0.481 0.102 0.506 0.099 0.468 0.073

African American Center W 1.305 0.445 1.608 0.535 0.374 0.180 0.422 0.178 0.343 0.150

Smoking Status 0.189 0.168 0.286 0.153 0.203 0.078 0.194 0.079 0.135 0.056

Drinking Status -0.059 0.148 -0.115 0.135 -0.002 0.065 -0.027 0.065 0.002 0.049

HDL -1.150 0.200 -1.248 0.134 -1.085 0.144 -1.110 0.143 -1.001 0.072

Total Cholesterol 0.045 0.060 0.115 0.051 0.064 0.028 0.075 0.029 0.079 0.020

Note: SRS, the maximum partial likelihood method for the SRS design; ODS, the estimation method of Ding et al. (2014) for
the FDS design; FDS, our estimation method for the FDS design; FADS, our estimation method for the FADS design; FC, the
maximum partial likelihood method using the full cohort; SE, standard error estimates of β̂.

Table 2.3: Analysis Results for the National Wilms’ Tumor Study

SRS ODS FDS FADS FC

Variables β̂ SE β̂ SE β̂ SE β̂ SE β̂ SE

Histology 1.407 0.248 1.601 0.414 1.553 0.108 1.579 0.108 1.584 0.089

Stage II 0.665 0.316 0.991 0.654 0.625 0.268 0.605 0.268 0.667 0.122

Stage III 1.004 0.312 1.291 0.629 0.747 0.260 0.761 0.260 0.817 0.121

Stage IV 1.105 0.376 1.444 0.588 1.093 0.267 1.106 0.267 1.154 0.135

Age 0.052 0.038 0.060 0.051 0.065 0.027 0.061 0.027 0.068 0.015

Note: SRS, the maximum partial likelihood method for the SRS design; ODS, the estimation method
of Ding et al. (2014) for the FDS design; FDS, our estimation method for the FDS design; FADS, our
estimation method for the FADS design; FC, the maximum partial likelihood method using the full cohort;
SE, standard error estimates of β̂.
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Figure 2.1: An illustration of the partitions {S1, . . . , SK+1} and the validation sample
{Ṽ0, Ṽ1, . . . , ṼK} under the two-phase FADS design: the domains of T and W are
divided into three mutually exclusive intervals, respectively, with J = L = 3; four
supplemental samples are selected from the four “corner” failure strata {S1, S3, S7, S9},
respectively.
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Non-validation Sample (8): 
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Figure 2.2: An illustration of the nonparametric bootstrap with the cohort size N =
25 and under the same sampling scheme as in Figure 2.1. Ui represents the ith
subject in the original cohort, i = 1, . . . , 25. The number in the parenthesis is the
corresponding sample size.



CHAPTER 3: IMPROVING ESTIMATION EFFICIENCY FOR CASE-COHORT

STUDIES WITH A CURE FRACTION

3.1 Introduction

As described in Section 1.1.1, in survival analysis, it is often assumed that all

subjects in a study will eventually experience the event of interest. However, this

assumption may not hold in various scenarios. For instance, when examining the

time until a patient progresses or relapses from a disease, those who are cured will

never experience the event. These individuals are frequently referred to as “long-

term survivors” or “cured”, and their survival time is regarded as infinite. Since it is

impractical to track all individuals until they experience the event of interest, survival

data typically involve right-censoring, where only a lower bound of the survival time

is known for some individuals. When survival data include a fraction of long-term

survivors, censored observations encompass both uncured individuals, for whom the

event was not observed, and cured individuals who will not experience the event.

Consequently, the cure status is unknown, and survival data comprise a mixture of

cured and uncured individuals that cannot be distinguished beforehand. Cure models

are survival models specifically designed to address this characteristic.

A typical field in which cure models are used is cancer studies. As the example

given in Section 1.1.1, in the National Wilms’ Tumor Study on a rare childhood

kidney cancer, there is a certain number of patients will never experience the occur-

rence of the disease. Moreover, the presence of a stable plateau in the Kaplan and

Meier (1958) estimator of the survival function, alongside a considerable number of

censored observations, suggests the existence of a cured fraction. This observation,

highlighted by Sy and Taylor (2000), serves as both an indicator and a prerequisite for
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cure models. This estimator for the time to relapse among patients with the kidney

cancer (Breslow and Chatterjee, 1999), as shown in Figure 3.1, provides a compelling

illustration of survival data with a cure fraction.

In the presence of covariate information, the frequently employed cure regression

models are the nonmixture cure model and the mixture cure model. The nonmixture

cure model serves as a common approach in analyzing survival data incorporating a

cure fraction, while maintaining the proportional hazards structure across the entire

population. In addition, it offers a clear interpretation of how covariates impact

the probability of cure, as demonstrated by Tsodikov (1998) and Tsodikov et al.

(2003). Yakovlev and Tsodikov (1996), along with Chen et al. (1999), provided a

biological derivation of this model. The mixture cure model is an alternative approach

for analyzing survival data with a cure fraction. It is a mixture of two separate

regression models, one for the cure rate of the nonsusceptible population and another

for the survival function of the susceptible population. Various models have been

considered for the conditional survival function for the uncured subjects. Farewell

(1982) originally proposed parametric models. A semiparametric approach utilizing a

Cox (1972) proportional hazards (PH) model was offered by Kuk and Chen (1992), Sy

and Taylor (2000), and Kuk and Chen (2008), while a fully nonparametric estimation

approach was presented in Patilea and Van Keilegom (2020). Lu and Ying (2004) and

Mao and Wang (2010) investigated the transformation mixture cure model, wherein

a class of linear transformation models is assumed for the survival time of uncured

individuals. The mixture cure model with missing covariates was studied by Beesley

et al. (2016). The advantage of mixture cure models compared to nonmixture cure

models lies in their ability to account for the presence of both cured and uncured

individuals within the population. While many studies have explored the mixture

cure model, none have yet integrated it with two-phase studies which are desirable

when working within constrained budgets.
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In many epidemiological studies, the focus is on time-to-failure events like cancer,

heart disease, and HIV infection. However, acquiring measurements for important

exposure variables, e.g., biomarkers needing bioassays or genetic analyses, can be

both difficult and expensive. This poses a challenge for investigators working with

limited budgets. Consequently, cost-effective sampling designs and efficient inference

procedures become crucial. To tackle this, two-phase studies are commonly employed

in practice to minimize costs and enhance study efficiency. In the first phase, a large

random sample is drawn to collect outcome data and less expensive covariates or

auxiliary variables. Then, in the second phase, measurements of expensive covariates

are obtained for a subset of the first-phase sample. A wealth of literature exists

on two-phase study designs, with particular emphasis on selecting the second-phase

sample.

For the failure time outcome, Prentice (1986) proposed a case-cohort design, where

the expensive exposure variables are collected only for a simple random sample from

the study cohort, called the subcohort, and for all subjects who have experienced

the failure event by a specified time, called cases. Since its proposal, the case-cohort

design has been extensively studied by many authors, including Chen and Lo (1999),

Cai and Zeng (2004), Lu and Tsiatis (2006), Breslow and Wellner (2007), and Marti

and Chavance (2011). The original case-cohort design is primarily used for rare

events. When the failure event of interest is non-rare or not so rare, Chen (2001), Cai

and Zeng (2007), and Kang and Cai (2009), among others, considered a generalized

case-cohort design. In this design, the expensive exposure measurements are obtained

for a subcohort and for a subset, instead of all, of the remaining cases outside the

subcohort. In the area of the two-phase studies of survival data with a cure fraction,

only Han and Wang (2020) and Xie et al. (2023) have explored the utilization of the

nonmixture cure model within case-cohort studies. The disadvantage of nonmixture

cure models is that they assume all individuals follow the same underlying survival
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function, which may not accurately represent the presence of a cure fraction in the

population. This can lead to biased estimates when there is a substantial portion of

individuals who are cured and will never experience the event of interest. Despite

this, none of the existing two-phase studies have integrated the mixture cure model

into their methodologies.

In this chapter, we consider the semiparametric transformation mixture cure models

under a generalized case-cohort study. First, we create a sieve maximum weighted

likelihood method using complete data and devise an EM algorithm to yield an inverse

probability weighting (IPW) estimator. Then, we update the IPW estimator by

incorporating a working model between the outcome with inexpensive covariates or

auxiliary variables from the entire dataset. The fundamental idea behind the update

approach is to identify a (asymptotically) mean-zero statistic, which is correlated

with the original unbiased estimator. Then, we develop an update estimator by

combining the original estimator with this statistic in an optimal linear manner. It

has been demonstrated that the update estimator remains consistent and is at least

as efficient as the original estimator. This methodology has found application in

various scenarios involving incomplete or imprecise data (Chen and Chen (2000);

Chen (2002); Wang and Wang (2015); Yan et al. (2017); Yang and Ding (2020)). In

this chapter, we propose an update estimation procedure to enhance the efficiency of

the IPW estimator for the semiparametric transformation mixture cure models under

generalized case-cohort studies of survival data with cure fraction. This method is

innovative in that the proposed update estimator is consistent and asymptotically at

least as efficient as the complete data estimator, regardless of whether the working

model is correctly specified or not. Specifically, we assume a working regression model

for failure time given the inexpensive covariates and, if available, auxiliary variables.

Subsequently, we fit this model to both the generalized case-cohort sample and the

entire cohort data, resulting in two estimators with the same mean. By taking the
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difference between these estimators, we obtain a mean-zero statistic, which allows

us to construct an update estimator through an optimal linear combination of the

original IPW estimator with this statistic.

The rest of this chapter is structured as follows. Section 3.2 outlines the data

structure, model assumptions and likelihood. Section 3.3 describes the proposed

two-step estimation method and the asymptotic properties of the update estimator.

Sections 3.4 and 3.5 present simulation studies and a data application, respectively.

Section 3.6 concludes the paper with discussions on potential extensions or directions

for future research.

3.2 Data, Model and Design

Assume that the disease could either be uncured (A = 1) or cured (A = 0). The

time to disease is denoted by T = TA < ∞ if A = 1 and T = TI = ∞ if A = 0.

Let X = (UT, ZT)T denote the vector of predictors, where U is the routine clinical

prognostic factors considered as expensive covariates and Z is novel biologic markers

treated as the other adjustment covariates that are available. Given X = (UT, ZT)T,

we assume the following semiparametric transformation mixture cure models:

π(X) = P (A = 1 | X) = g(λI + αT
IU + γT

I Z), (3.1)

where g(x) = ex/(1 + ex); and

RA,t(X) = P (TA ≤ t | X, A = 1) = 1− exp
{
− Λ(t | X, A = 1)

}
, (3.2)

with the cumulative hazard function of TA given by

Λ(t | X, A = 1) = G
(

ΛA(t) exp
{
αT
AU + γT

AZ
})
,
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where G is a prespecified increasing transformation function with G(0) = 0 and

G(∞) = ∞, and ΛA(t) =
∫ t

0
λA(s) ds with λA(·) > 0 being an unknown function.

Note that G(x) = x yields the proportional hazards model and G(x) = log(1+x) gives

the proportional odds model. Denote the parameters by θ = (αA, γA, λA(·), αI , γI , λI).

Let C be the censoring time, Y = min(T , C) and δ = I(T ≤ C). Then the observed

data for a single subject consists of O = (Y, δ,X). Note that if δ = 1, then A = 1; if

δ = 0, then A is unknown. Thus, the complete data likelihood function based on n

i.i.d. observations O = {O1, . . . , On} can be written as

Ln(θ) =
n∏
i=1

{
π(Xi)λA(Yi | Xi, Ai = 1)SA(Yi | Xi, Ai = 1)

}δi
·
{(

1− π(Xi)
)

+ π(Xi)SA(Yi | Xi, Ai = 1)
}1−δi

,

(3.3)

where the hazard and survival functions of TA are given by

λA(t | Xi, Ai = 1) = G′
(

ΛA(t) exp
{
αT
AUi + γT

AZi
})
λA(t) exp

{
αT
AUi + γT

AZi
}

with G′ being the first derivative of G, and

SA(t | Xi, Ai = 1) = exp
{
−G

(
ΛA(t) exp

{
αT
AUi + γT

AZi
})}

.

A potential problem is that, in practice, the censoring time C is bounded, prevent-

ing the observation of cured subjects in the dataset. To address this issue, researchers

often adopt the concept of “threshold”, where if T is greater than the threshold, it

implies T = +∞ as proposed by Taylor (1995). This widely accepted assumption is

frequently applied in cure models literature. Consequently, when Y is observed to

exceed the threshold, it is inferred that the individual is cured.

The generalized case-cohort study is conducted as follows. In the first phase, we

use Bernoulli sampling to select a subset of the full cohort with a sampling probability
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of q1 ∈ (0, 1). In the second phase, we conduct another Bernoulli sampling among

the cases that were not selected in the first phase, with a sampling probability of

q2 ∈ (0, 1). We use g1 to indicate the non-cases selected at phase I, and g2 to indicate

the cases selected at phase I and phase II. Thus, under our design, the probability of

a subject being selected is

pi = g1i · q1 + g2i · [q1 + (1− q1) · q2], i = 1, · · · , n.

3.3 Proposed Two-Step Estimation Method

3.3.1 Original Estimator

We first propose an EM algorithm and a sieve method for the original estimation.

By treating A as a latent variable, we employ the inverse probability weighting to

construct the complete data likelihood given by

Lcn(θ) =
n∏
i=1

{
π(Xi)

Aiwi
(
1− π(Xi)

)(1−Ai)wi
}

{(
λA(Yi | Xi, Ai = 1)SA(Yi | Xi, Ai = 1)

)δiAiwi · SA(Yi | Xi, Ai = 1)(1−δi)Aiwi
}
,

where the inverse probability weight wi = 1
pi
.

Note that the complete data log-likelihood is a linear function of Ai’s, thus in the

E-step, we calculate the conditional expectation of Ai given the observed data Oi as

follows:

E(Ai | Oi) = P (Ai = 1 | Yi, δi, Xi)

= δi + (1− δi)P (Ai = 1 | Yi, δi = 0, Xi)

= δi + (1− δi)
π(Xi)SA(Yi | Xi, Ai = 1)(

1− π(Xi)
)

+ π(Xi)SA(Yi | Xi, Ai = 1)
.

In the M-step, we maximize the following conditional expectation of the inverse prob-
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ability weighted complete data log-likelihood given the observed data O:

E
(

logLcn(θ) | O
)

=
n∑
i=1

wi

{
E(Ai | Oi) log π(Xi) +

(
1− E(Ai | Oi)

)
log
(
1− π(Xi)

)}
+ wi

{
δi log

(
λA(Yi | Xi, Ai = 1)SA(Yi | Xi, Ai = 1)

)
+ (1− δi)E(Ai | Oi) logSA(Yi | Xi, Ai = 1)

}
.

(3.4)

It is not easy to maximize (3.4) directly as it involves the unknown function λA(·).

To deal with this, we propose a sieve method based on B-splines. In particular,

let b1, . . . , bmn be a set of B-spline basis functions of order l over a knot sequence

0 = t1 = · · · = tl < tl+1 < · · · < tmn < tmn+1 = · · · = tmn+l = τ , where τ is the length

of study. Define the sieve space

Bn =

{
λAn(t) =

mn∑
j=1

ηjbj(t) : M−1
n ≤ ηj ≤Mn for j = 1, . . . ,mn

}

for some diverging sequenceMn. Denote the Euclidean parameters by ϑ = (αA, γA, αI , γI , λI)

and let D be a prespecified compact set in R2p+1 that denotes the parameter space

for ϑ, where p is the dimension of X. The sieve MLE is defined by

θ̂n = (ϑ̂n, λ̂An) = argmaxϑ∈D, λA∈BnLn(ϑ, λA),

where Ln(ϑ, λA) is the observed data likelihood given by (3.3). The sieve MLE can

be obtained via the EM algorithm described above. In the M-step, we employ the

Nelder-Mead simplex algorithm built in the optim function in R to maximize (3.4)

over D×Bn. To ensure positivity of the spline coefficient ηj, we reparameterize it as

exp(η∗j ), for j = 1, . . . ,mn.

A potential issue arises due to the limited information available for distinguishing

between cured and uncured individuals among censored subjects. Estimating the tail
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of the conditional survival function SA(t|X) can be particularly challenging. Specially,

if SA(t|X) remains non-zero after max(T ), it can lead to identifiability concerns.

To address this, Taylor (1995) suggested considering max(T ) as a threshold. They

enforced SA(t|X) to be zero beyond max(T ) by setting E(Ai|Oi) to 0 in the M-step

of the EM algorithm for observations i with δi = 0 and Yi > max(T ). This approach

treats such observations as cured. Recall that when cured observations are present

in survival data, limt→∞ S(t|X) > 0. In practice, this implies the Kaplan-Meier

estimator of the survival function with a large plateau and a leveling-off to a value

greater than 0 for t > max(T ), as illustrated in Fig 2.1. This situation suggests that

a significant number of observations in the plateau can reasonably be considered as

cured, as proposed by Taylor (1995).

The inverse probability weighted (IPW) estimator is commonly known for its inef-

ficiency. To enhance estimation efficiency, we adopt an update method that utilizes

the available information in the full cohort by constructing a model relating inex-

pensive covariates or auxiliary variables to the failure time. This updated approach

guarantees to be, at the very least, asymptotically as efficient as the original IPW

estimator.

3.3.2 Update Estimator

Consider the working models given X∗ = (U∗T , ZT )T , where U∗ is the auxiliary

variable of U , for the semiparametric transformation mixture cure models as follows:

π∗(X) = P (A = 1 | X∗) = g(λ∗I + α∗TI U
∗ + γ∗TI Z), (3.5)

where g(x) = ex/(1 + ex); and

R∗A,t(X) = P (TA ≤ t | X∗, A = 1) = 1− exp
{
− Λ∗(t | X, A = 1)

}
, (3.6)

with the cumulative hazard function of TA given by
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Λ∗(t|X∗, A = 1) = G(Λ∗A(t) exp{α∗TA U∗ + γ∗TA Z}), (3.7)

where Λ∗A(t) =
∫ t

0
λ∗A(s) ds with λ∗A(·) > 0 being an unknown function. Note that

we can consider the working models given Z only, if U∗ is not available. Denote the

proposed update Euclidean estimators of parameters ϑ∗ = (α∗A, γ
∗
A, α

∗
I , γ

∗
I , λ

∗
I).

We first estimate the working semiparametric transformation mixture cure models

(3.5) and (3.6) by using the EM algorithm and sieve method similarly as the above but

with covariates U∗ and Z instead. Let θ̂∗n = (ϑ̂∗n, λ̂
∗
An) denote the sieve MLE of θ∗ =

(ϑ∗, λ∗A) based on the generalized case-cohort sample. Since U∗ and Z are available

for all subjects in the cohort, we can also obtain the sieve MLE of θ∗ = (ϑ∗, λ∗A),

denoted by θ̄∗n = (ϑ̄∗n, λ̄
∗
An), based on the full cohort. Let Σ = [Σ11,Σ12; Σ21,Σ22] be

the covariance matrix of the limiting distribution of (
√
n(ϑ̂n−ϑ0)T ,

√
n(ϑ̂∗n− ϑ̄∗n)T )T ,

and let Σ̂ = [Σ̂11, Σ̂12; Σ̂21, Σ̂22] denote a consistent estimator of Σ. We define the

update estimator of ϑ as

ϑ̄n = ϑ̂n − Σ̂12Σ̂−1
22 (ϑ̂∗n − ϑ̄∗n).

We can show that the asymptotic covariance matrix of
√
n(ϑ̂n − ϑ0) is Σ11, while

the asymptotic covariance matrix of
√
n(ϑ̄n − ϑ0) is Σ11 − Σ12Σ−1

22 Σ21. Thus, ϑ̄n is

asymptotically at least as efficient as ϑ̂n, and the theorem is stated as following.

3.3.3 Asymptotic Properties

Theorem 1: Under Conditions in the Appendix B,

√
n(ϑ̄n − ϑ0) =

√
n(ϑ̂n − ϑ0)− Σ12Σ−1

22

√
n(ϑ̂∗n − ϑ̄∗n) + op(1)→ N(0,Ψ)

in distribution with Ψ = Σ11 − Σ12Σ−1
22 Σ21, where
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Σ11 = I(ϑ0)−1E
{1

p
[l(ϑ0,Λ0;O)]⊗2

}
I(ϑ0)−1,

Σ22 = I∗(ϑ∗0)−1E
{1− p

p
[l∗(ϑ∗0,Λ

∗
0;O∗)]⊗2

}
I∗(ϑ∗0)−1,

Σ12 = ΣT
21 = I(ϑ0)−1E

{1− p
p

l(ϑ0,Λ0;O)l∗(ϑ∗0,Λ
∗
0;O∗)T

}
I∗(ϑ∗0)−1,

and l(ϑ0,Λ0;O), l∗(ϑ∗0,Λ∗0;O∗) and I∗(ϑ∗0) are defined in the Appendix.

The proof of this theorem is sketched in the Appendix B. Note that there is no

closed-form expression for Σ, and we estimate it using weighted bootstrap procedure

as described in the next section.

3.3.4 Variance Estimation

We propose to estimate the covariance matrix Σ by using the weighted bootstrap

method. Particularly, let {u1, · · · , un} denote n independent realizations of a bounded

positive random variable u satisfying E(u) = var(u) = 1. We use the exponential

distribution with mean 1 in the simulation study and data application. Define the

new weights wbi = uiwi for i = 1, · · · , n. Let θ̂bn = (ϑ̂bn, λ̂Abn) be the sieve maxi-

mum weighted likelihood estimator that maximizes the new weighted log-likelihood

function lw
b

n over Bn, where lw
b

m is obtained by replacing wi with wbi in lwn . We gen-

erate B samples of {u1, · · · , un} and obtain the corresponding ϑ̂bn as well as ϑ̂∗bn and

ϑ̄∗bn similarly for b = 1, · · · , B. Then we take Σ̂ as the sample variance matrix of

(
√
n(ϑ̂bn− ϑ0)T ,

√
n(ϑ̂∗bn − ϑ̄∗bn )T )T . The asymptotic covariance matrix of

√
n(ϑ̄n− ϑ0)

can be estimated by Σ̂11 − Σ̂12Σ̂−1
22 Σ̂21.

3.4 Simulation Studies

We conduct simulation studies to investigate the proposed method. We first gen-

erate the predictors from two different settings with cure rate about 60%: (I) (U,Z)T
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follow a bivariate normal distribution with mean zero and covariance matrix [1, 0.5;

0.5, 1], and the auxiliary variable U∗ = U + e with e ∼ N(0, σ2) where σ = 0.8 or 1.7

corresponding to the correlation between U and U∗ of about 77% or 51%, respectively;

(II) U ∼ Ber(0.5), Z ∼ N(0, 1), and U∗ generated from U with misclassfication rate

10% or 30%. Given X = (UT, ZT)T, we generate A and T from the models (3.1) and

(3.2) with the parameter values αA = log(2), γA = −0.5, αI = log(2), γI = −0.5,

λI = −0.5, and λA(t) = t + 1/2. For the transformation function G in the model

(3.2), we consider the class of logarithmic transformations G(x) = log(1 + rx)/r with

r = 0 and 1, corresponding to the proportional hazards (PH) and proportional odds

(PO) models, respectively. We generate the censoring time C from the following set-

tings for the transformation models with r = 0 and 1, respectively, and then obtain

Y = min(T , C), δ = I(T ≤ C) and C = min{Unif(0, 5τ/4), τ} with τ being the

length of study. For the PH model, we set τ to be 4.5 and 11, yielding around cen-

soring rate 66% and 61%, respectively. For the PO model, we set τ to be 11 and 50,

yielding around censoring rate 67% and 62%, respectively. For the sieve estimation,

we take the interior knot of B-spline to be the median of Yi’s and take the degree of

B-spline basis functions to be 1. The subcohort is selected via independent Bernoulli

sampling with success probability q1 = 0.2 at phase I and q2 = 0.5 at phase II.

The weighted bootstrap procedure for variance estimation is based on 500 samples.

We consider the sample size n = 2000. The simulation results are based on 1000

replicates.

Table 3.1 ∼ 3.4 give the estimation results for Euclidean parameters, including

“Bias” calculated as the average point estimate minus the true value, “SSD” the sam-

ple standard deviation of point estimates, “ESE” the average of estimated standard

errors, “CP” the coverage proportion of the 95% confidence interval based on normal

approximation, and “RE” the relative efficiency of the update estimator compared the

original estimator. First, one can see from Table 3.1 ∼ 3.4 that the bias is negligible,
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ESE is close to SSD, and CP is around 95% for both original and update estimators.

Second, the update estimators are more efficient than the original estimators, and

the more U and U∗ are correlated, the better the efficiency gain is. Third, when the

study is not sufficiently long, both the original and updated estimators exhibit greater

efficiency when the threshold is applied compared to when it is not; however, when

the study is sufficiently long, both the original and updated estimators exhibit similar

performance whether the threshold is applied or not. According to the findings, it is

evident that employing a threshold is at least as efficient as not using one. Therefore,

we recommend utilizing the threshold in the data application.

3.5 Wilms’ Tumor Study

We apply the proposed method to a data set on Wilms’ tumor, a rare childhood kid-

ney cancer, from the National Wilms’ Tumor Study (Breslow and Chatterjee, 1999).

The data set includes 4028 patients from the third and fourth clinical trials of this

study. It is of interest to assess the effects of tumor histological type, tumor stage,

and age at diagnosis on time to disease relapse. The censoring rate is about 86%. The

tumor histological type for each patient was examined by both a local pathologist and

an experienced pathologist from a central facility. The latter examination tends to

be more accurate but is more expensive and time-consuming. Although the central

histological types are available for all patients in this data set, if the study investiga-

tors implemented a two-phase design by assessing the central histological types only

on a small set of patients, the study costs would have been largely reduced.

We illustrate the proposed method using this data set. The local histological type

can be used as the auxiliary variable U∗ for the expensive central histological type

U , and the missclassification rate between U and U∗ is about 5%. The adjustment

available covariates Z include tumor stage and age at diagnosis, where tumor stage is

categorical with four stages and we define three indicator variables accordingly with

the first stage being reference level. The generalized case-cohort study is implemented
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as follows. The subcohort is selected via independent Bernoulli sampling with success

probability q1 = 0.2 at phase I and q2 = 0.5 at phase II. The analysis results are

presented in Tables 3.5∼ 3.6. Table 3.5 displays the outcomes obtained solely using

the PH or PO model without considering the cure portion. Tables 3.6 presents the

results derived from the proposed PH mixture cure model and the PO mixture cure

model, respectively, with the threshold applied.

The data application results show that the update estimators are more efficient

than the original estimators. Also, the proposed method yields smaller standard

errors compared to those obtained when the cure fraction is not taken into account,

so it is necessary to consider the cure fraction in the model. Moreover, the tumor

histological type, tumor stage, and age exhibit significant associations with the risk

of disease relapse based on the proposed method. In addition, Fig 2.1 and Fig 2.2

plot the estimated survival functions based on the PH mixture cure model and PO

mixture cure model, respectively, and they confirm the our findings above.

3.6 Discussion

In this paper, we introduce a method to enhance estimation efficiency for case-

cohort studies with a cure fraction. Our approach involves a novel two-step estima-

tion procedure under semiparametric transformation mixture cure models for infer-

ence, coupled with a weighted bootstrap procedure for variance estimation. The key

innovation of our method lies in its efficiency-enhancing update estimation for the

semiparametric transformation mixture cure models under case-cohort studies. By

leveraging information from the full cohort, our proposed method offers consistent

estimates while accounting for sampling bias, and the update estimator is asymptot-

ically at least as efficient as the original IPW estimator.

There are a few directions for future research. One is to theoretically exclude the

“threshold” condition imposed in our study computations. This is prompted by the

observations that the results are similar with or without threshold applied when the
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study is sufficiently long. Secondly, exploring an optimal working model could lead to

further efficiency gains, despite the proposed working model works well in practice.

Furthermore, there is potential for enhancing efficiency through improvements in

sampling design. One promising approach is the adoption of a failure-time-dependent

sampling design, as proposed by Ding et al. (2014). All three directions warrant

further investigation.
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Table 3.1: Simulation results from the PH model with (U,Z) from bivariate normal
distribution

w/o threshold with threshold

τ σ para true Bias SSD ESE CP RE Bias SSD ESE CP RE

4.5 αA log(2) 0.038 0.082 0.080 0.931 1.000 0.005 0.075 0.073 0.943 1.000

γA -0.5 -0.024 0.077 0.076 0.934 1.000 0.000 0.072 0.069 0.937 1.000

αI log(2) -0.033 0.129 0.126 0.939 1.000 0.013 0.119 0.118 0.955 1.000

γI -0.5 0.023 0.119 0.119 0.951 1.000 -0.010 0.115 0.113 0.950 1.000

λI -0.5 0.043 0.102 0.099 0.919 1.000 0.004 0.094 0.092 0.946 1.000

1.7 update αA log(2) 0.037 0.079 0.076 0.923 1.077 0.004 0.072 0.068 0.934 1.085

update γA -0.5 -0.025 0.067 0.067 0.929 1.321 -0.001 0.062 0.060 0.943 1.349

update αI log(2) -0.033 0.125 0.117 0.921 1.065 0.014 0.113 0.109 0.942 1.109

update γI -0.5 0.025 0.092 0.090 0.935 1.673 -0.009 0.085 0.083 0.953 1.830

update λI -0.5 0.038 0.071 0.068 0.906 2.064 -0.003 0.057 0.057 0.956 2.720

0.8 update αA log(2) 0.036 0.076 0.073 0.918 1.164 0.003 0.069 0.065 0.937 1.181

update γA -0.5 -0.024 0.065 0.064 0.931 1.403 -0.001 0.060 0.058 0.938 1.440

update αI log(2) -0.034 0.110 0.104 0.922 1.375 0.012 0.099 0.096 0.938 1.445

update γI -0.5 0.025 0.086 0.083 0.934 1.915 -0.007 0.078 0.077 0.950 2.174

update λI -0.5 0.036 0.068 0.065 0.914 2.250 -0.004 0.056 0.056 0.955 2.818

11 αA log(2) 0.003 0.068 0.065 0.931 1.000 0.003 0.068 0.065 0.930 1.000

γA -0.5 0.001 0.063 0.062 0.955 1.000 0.001 0.063 0.061 0.955 1.000

αI log(2) 0.008 0.113 0.109 0.944 1.000 0.009 0.113 0.109 0.942 1.000

γI -0.5 -0.007 0.108 0.106 0.949 1.000 -0.007 0.108 0.106 0.949 1.000

λI -0.5 0.006 0.089 0.086 0.939 1.000 0.006 0.089 0.086 0.939 1.000

1.7 update αA log(2) 0.003 0.065 0.061 0.929 1.094 0.003 0.065 0.061 0.925 1.094

update γA -0.5 0.000 0.056 0.054 0.946 1.266 0.000 0.056 0.053 0.946 1.266

update αI log(2) 0.008 0.105 0.101 0.943 1.158 0.008 0.105 0.101 0.944 1.158

update γI -0.5 -0.004 0.079 0.076 0.938 1.869 -0.004 0.079 0.076 0.939 1.869

update λI -0.5 0.001 0.054 0.053 0.947 2.716 0.001 0.054 0.053 0.946 2.716

0.8 update αA log(2) 0.004 0.063 0.059 0.932 1.165 0.005 0.063 0.059 0.931 1.165

update γA -0.5 -0.001 0.055 0.052 0.941 1.312 -0.001 0.055 0.052 0.940 1.312

update αI log(2) 0.006 0.092 0.089 0.942 1.509 0.006 0.092 0.089 0.939 1.509

update γI -0.5 -0.002 0.073 0.071 0.936 2.189 -0.002 0.073 0.071 0.937 2.189

update λI -0.5 0.000 0.053 0.052 0.944 2.820 0.000 0.053 0.052 0.947 2.820

Note: Bias, average estimate minus true value; SSD, sample standard deviation; ESE, average estimated
standard error; CP, coverage proportion with 95% nominal level; RE, relative efficiency compared to the
original estimators; τ = 4.5 or 11, yielding around censoring rate 66% or 61%, respectively; σ = 0.8 or 0.7,
corresponding to the correlation between U and U∗ of about 77% or 51%, respectively.
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Table 3.2: Simulation results from the PH model with U ∼ Ber(0.5), Z ∼ N(0, 1)

w/o threshold with threshold

τ rate para true Bias SSD ESE CP RE Bias SSD ESE CP RE

4.5 αA log(2) 0.027 0.110 0.111 0.935 1.000 0.005 0.105 0.104 0.945 1.000

γA -0.5 -0.018 0.059 0.058 0.932 1.000 -0.002 0.056 0.054 0.943 1.000

αI log(2) -0.033 0.190 0.191 0.946 1.000 0.009 0.185 0.185 0.949 1.000

γI -0.5 0.022 0.107 0.103 0.933 1.000 -0.009 0.101 0.099 0.942 1.000

λI -0.5 0.050 0.139 0.136 0.937 1.000 -0.001 0.132 0.129 0.940 1.000

30% update αA log(2) 0.022 0.108 0.104 0.935 1.037 0.001 0.103 0.098 0.935 1.039

update γA -0.5 -0.020 0.051 0.047 0.911 1.338 -0.006 0.047 0.043 0.927 1.420

update αI log(2) -0.031 0.186 0.177 0.930 1.043 0.011 0.178 0.172 0.939 1.080

update γI -0.5 0.027 0.065 0.063 0.919 2.710 -0.004 0.058 0.057 0.945 3.032

update λI -0.5 0.048 0.112 0.107 0.922 1.540 -0.004 0.103 0.098 0.934 1.642

10% update αA log(2) 0.021 0.097 0.094 0.928 1.286 0.000 0.093 0.088 0.933 1.275

update γA -0.5 -0.018 0.049 0.045 0.911 1.450 -0.004 0.046 0.041 0.924 1.482

update αI log(2) -0.033 0.147 0.142 0.938 1.671 0.008 0.143 0.137 0.937 1.674

update γI -0.5 0.027 0.063 0.061 0.918 2.885 -0.003 0.056 0.055 0.949 3.253

update λI -0.5 0.045 0.096 0.095 0.919 2.096 -0.005 0.088 0.086 0.939 2.250

11 αA log(2) 0.004 0.093 0.094 0.957 1.000 0.003 0.093 0.094 0.957 1.000

γA -0.5 -0.005 0.053 0.049 0.934 1.000 -0.005 0.053 0.049 0.934 1.000

αI log(2) 0.004 0.177 0.175 0.950 1.000 0.004 0.177 0.175 0.950 1.000

γI -0.5 -0.006 0.094 0.093 0.945 1.000 -0.006 0.093 0.093 0.944 1.000

λI -0.5 0.003 0.125 0.120 0.940 1.000 0.002 0.125 0.120 0.940 1.000

30% update αA log(2) 0.000 0.090 0.089 0.949 1.068 0.001 0.091 0.089 0.947 1.044

update γA -0.5 -0.006 0.043 0.040 0.931 1.519 -0.007 0.043 0.040 0.932 1.519

update αI log(2) 0.005 0.172 0.163 0.933 1.059 0.004 0.173 0.163 0.931 1.047

update γI -0.5 -0.001 0.053 0.053 0.954 3.146 -0.002 0.053 0.053 0.954 3.079

update λI -0.5 0.001 0.100 0.092 0.920 1.563 0.001 0.100 0.092 0.924 1.563

10% update αA log(2) 0.000 0.082 0.081 0.947 1.286 0.001 0.082 0.081 0.947 1.286

update γA -0.5 -0.006 0.042 0.039 0.927 1.592 -0.006 0.042 0.038 0.924 1.592

update αI log(2) 0.001 0.136 0.130 0.929 1.694 0.000 0.137 0.130 0.929 1.669

update γI -0.5 -0.001 0.052 0.052 0.953 3.268 -0.001 0.052 0.052 0.955 3.199

update λI -0.5 0.001 0.086 0.080 0.923 2.113 0.001 0.086 0.080 0.918 2.113

Note: Bias, average estimate minus true value; SSD, sample standard deviation; ESE, average estimated
standard error; CP, coverage proportion with 95% nominal level; RE, relative efficiency compared to the
original estimators; τ = 4.5 or 11, yielding around censoring rate 66% or 61%, respectively; rate, the
missclassification rate between U and U∗.
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Table 3.3: Simulation results from the PO model with (U,Z) from bivariate normal
distribution

w/o threshold with threshold

τ σ para true Bias SSD ESE CP RE Bias SSD ESE CP RE

11 αA log(2) 0.008 0.116 0.120 0.952 1.000 -0.011 0.112 0.113 0.939 1.000

γA -0.5 -0.001 0.109 0.114 0.953 1.000 0.012 0.106 0.109 0.945 1.000

αI log(2) -0.001 0.123 0.151 0.956 1.000 0.109 0.117 0.114 0.947 1.000

γI -0.5 -0.001 0.118 0.142 0.955 1.000 -0.016 0.114 0.110 0.942 1.000

λI -0.5 0.034 0.111 0.211 0.953 1.000 -0.017 0.093 0.090 0.930 1.000

1.7 update αA log(2) 0.008 0.115 0.114 0.941 1.017 -0.008 0.112 0.107 0.934 1.000

update γA -0.5 -0.001 0.095 0.097 0.944 1.316 0.009 0.093 0.091 0.939 1.299

update αI log(2) -0.001 0.118 0.142 0.954 1.087 0.016 0.112 0.106 0.945 1.091

update γI -0.5 -0.002 0.092 0.115 0.962 1.645 -0.011 0.082 0.080 0.947 1.933

update λI -0.5 0.018 0.106 0.183 0.961 1.097 -0.021 0.056 0.056 0.934 2.758

0.8 update αA log(2) 0.009 0.109 0.107 0.944 1.133 -0.007 0.105 0.100 0.929 1.138

update γA -0.5 -0.001 0.094 0.093 0.943 1.345 0.009 0.090 0.087 0.940 1.387

update αI log(2) -0.003 0.104 0.129 0.951 1.399 0.015 0.097 0.093 0.942 1.455

update γI -0.5 0.000 0.085 0.106 0.965 1.927 -0.009 0.076 0.074 0.942 2.250

update λI -0.5 0.018 0.103 0.173 0.957 1.161 -0.022 0.055 0.055 0.929 2.859

50 αA log(2) 0.001 0.108 0.106 0.947 1.000 0.005 0.106 0.104 0.951 1.000

γA -0.5 0.003 0.098 0.102 0.956 1.000 0.001 0.097 0.101 0.957 1.000

αI log(2) -0.001 0.115 0.111 0.943 1.000 0.007 0.112 0.107 0.942 1.000

γI -0.5 0.000 0.106 0.106 0.953 1.000 -0.005 0.105 0.103 0.952 1.000

λI -0.5 0.030 0.096 0.102 0.949 1.000 0.005 0.086 0.084 0.943 1.000

1.7 update αA log(2) 0.004 0.107 0.102 0.940 1.019 0.006 0.105 0.100 0.937 1.019

update γA -0.5 0.002 0.084 0.086 0.957 1.361 0.000 0.083 0.085 0.957 1.366

update αI log(2) -0.001 0.107 0.104 0.941 1.155 0.006 0.104 0.099 0.938 1.160

update γI -0.5 0.003 0.079 0.079 0.945 1.800 -0.002 0.077 0.075 0.944 1.860

update λI -0.5 0.021 0.080 0.085 0.949 1.440 -0.001 0.053 0.052 0.952 2.633

0.8 update αA log(2) 0.002 0.099 0.095 0.940 1.190 0.005 0.098 0.093 0.942 1.170

update γA -0.5 0.003 0.082 0.083 0.956 1.428 0.001 0.081 0.082 0.960 1.434

update αI log(2) -0.002 0.094 0.092 0.948 1.497 0.005 0.090 0.087 0.935 1.549

update γI -0.5 0.004 0.074 0.073 0.946 2.052 -0.001 0.071 0.069 0.949 2.187

update λI -0.5 0.019 0.079 0.084 0.951 1.477 -0.001 0.051 0.051 0.949 2.844

Note: Bias, average estimate minus true value; SSD, sample standard deviation; ESE, average estimated
standard error; CP, coverage proportion with 95% nominal level; RE, relative efficiency compared to the
original estimators; τ = 11 or 50, yielding around censoring rate 67% or 62%, respectively; σ = 0.8 or 0.7,
corresponding to the correlation between U and U∗ of about 77% or 51%, respectively.
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Table 3.4: Simulation results from the PO model with U ∼ Ber(0.5), Z ∼ N(0, 1)

w/o threshold with threshold

τ rate para true Bias SSD ESE CP RE Bias SSD ESE CP RE

11 αA log(2) 0.019 0.175 0.174 0.944 1.000 -0.002 0.168 0.167 0.943 1.000

γA -0.5 -0.012 0.092 0.090 0.938 1.000 0.002 0.089 0.086 0.939 1.000

αI log(2) -0.010 0.191 0.214 0.948 1.000 0.014 0.183 0.181 0.940 1.000

γI -0.5 0.006 0.102 0.107 0.943 1.000 -0.012 0.097 0.096 0.945 1.000

λI -0.5 0.055 0.146 0.166 0.931 1.000 -0.022 0.130 0.125 0.937 1.000

30% update αA log(2) 0.017 0.169 0.166 0.937 1.072 -0.002 0.163 0.160 0.947 1.062

update γA -0.5 -0.013 0.073 0.069 0.929 1.588 0.000 0.070 0.066 0.941 1.617

update αI log(2) -0.007 0.184 0.197 0.949 1.078 0.015 0.174 0.169 0.938 1.106

update γI -0.5 0.008 0.062 0.063 0.955 2.707 -0.008 0.056 0.056 0.958 3.000

update λI -0.5 0.047 0.120 0.128 0.916 1.480 -0.022 0.101 0.096 0.931 1.657

10% update αA log(2) 0.018 0.148 0.147 0.946 1.398 -0.001 0.143 0.142 0.947 1.380

update γA -0.5 -0.013 0.073 0.068 0.932 1.588 0.000 0.070 0.065 0.935 1.617

update αI log(2) -0.011 0.153 0.159 0.950 1.558 0.010 0.139 0.135 0.944 1.733

update γI -0.5 0.009 0.061 0.060 0.954 2.796 -0.007 0.055 0.054 0.961 3.110

update λI -0.5 0.048 0.104 0.111 0.918 1.971 -0.022 0.086 0.084 0.934 2.285

50 αA log(2) 0.002 0.157 0.157 0.950 1.000 -0.001 0.156 0.156 0.949 1.000

γA -0.5 -0.004 0.084 0.081 0.937 1.000 -0.003 0.084 0.080 0.937 1.000

αI log(2) 0.004 0.169 0.173 0.964 1.000 0.007 0.168 0.172 0.964 1.000

γI -0.5 -0.004 0.093 0.091 0.943 1.000 -0.006 0.092 0.091 0.944 1.000

λI -0.5 0.010 0.122 0.119 0.945 1.000 0.000 0.121 0.118 0.944 1.000

30% update αA log(2) 0.000 0.158 0.150 0.941 0.987 -0.001 0.150 0.149 0.943 1.082

update γA -0.5 -0.006 0.068 0.062 0.923 1.526 -0.004 0.067 0.062 0.922 1.572

update αI log(2) 0.003 0.162 0.161 0.950 1.088 0.006 0.162 0.161 0.943 1.075

update γI -0.5 -0.001 0.053 0.052 0.952 3.079 -0.003 0.053 0.052 0.951 3.079

update λI -0.5 0.008 0.097 0.091 0.937 1.582 -0.002 0.094 0.090 0.940 1.657

10% update αA log(2) 0.006 0.134 0.134 0.946 1.373 0.003 0.133 0.133 0.948 1.376

update γA -0.5 -0.005 0.067 0.062 0.926 1.572 -0.004 0.066 0.061 0.922 1.620

update αI log(2) -0.001 0.133 0.128 0.945 1.615 0.001 0.132 0.128 0.946 1.620

update γI -0.5 0.000 0.051 0.051 0.950 3.325 -0.002 0.051 0.051 0.948 3.254

update λI -0.5 0.008 0.085 0.079 0.928 2.060 -0.002 0.083 0.078 0.933 2.125

Note: Bias, average estimate minus true value; SSD, sample standard deviation; ESE, average estimated
standard error; CP, coverage proportion with 95% nominal level; RE, relative efficiency compared to the
original estimators; τ = 11 or 50, yielding around censoring rate 67% or 62%, respectively; rate, the
missclassification rate between U and U∗.
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Table 3.5: Analysis results for the National Wilms’ Tumor Study under the PH or
PO model assuming that there is not a cure fraction

PH Model PO Model

Variables β̂ SE p-value update β̂ SE p-value β̂ SE p-value update β̂ SE p-value

Histology 1.517 0.135 0.000 1.554 0.109 0.000 1.809 0.185 0.000 1.854 0.156 0.000

Stage II 0.787 0.175 0.000 0.686 0.124 0.000 0.874 0.200 0.000 0.773 0.143 0.000

Stage III 0.844 0.186 0.000 0.852 0.129 0.000 0.922 0.213 0.000 0.931 0.149 0.000

Stage IV 1.304 0.211 0.000 1.201 0.149 0.000 1.470 0.244 0.000 1.337 0.169 0.000

Age 0.041 0.026 0.117 0.076 0.016 0.000 0.053 0.029 0.064 0.087 0.019 0.000

Note: SE, standard error estimates of β̂.

Table 3.6: Analysis results for the National Wilms’ Tumor Study under the PH or
PO mixture cure model with threshold applied

PH Model Cure Portion

Variables β̂ SE p-value update β̂ SE p-value β̂ SE p-value update β̂ SE p-value

Intercept – – – – – – -3.014 0.173 0.000 -3.062 0.135 0.000

Histology 0.356 0.138 0.010 0.332 0.115 0.004 1.669 0.165 0.000 1.734 0.136 0.000

Stage II -0.062 0.179 0.728 0.096 0.143 0.502 0.852 0.195 0.000 0.730 0.140 0.000

Stage III 0.029 0.184 0.873 0.126 0.159 0.428 0.861 0.202 0.000 0.857 0.142 0.000

Stage IV 0.500 0.186 0.007 0.560 0.146 0.000 1.290 0.229 0.000 1.152 0.156 0.000

Age -0.047 0.023 0.041 -0.037 0.017 0.034 0.071 0.028 0.012 0.103 0.018 0.000

PO Model Cure Portion

Variables β̂ SE p-value update β̂ SE p-value β̂ SE p-value update β̂ SE p-value

Intercept – – – – – – -3.016 0.174 0.000 -3.065 0.136 0.000

Histology 0.743 0.230 0.001 0.678 0.198 0.001 1.675 0.167 0.000 1.734 0.138 0.000

Stage II -0.150 0.251 0.549 -0.011 0.207 0.957 0.858 0.197 0.000 0.757 0.140 0.000

Stage III 0.185 0.261 0.479 0.293 0.215 0.174 0.855 0.203 0.000 0.858 0.142 0.000

Stage IV 0.694 0.308 0.024 0.673 0.247 0.006 1.294 0.231 0.000 1.166 0.157 0.000

Age -0.107 0.034 0.002 -0.103 0.026 0.000 0.073 0.028 0.010 0.107 0.019 0.000

Note: SE, standard error estimates of β̂.
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Figure 3.1: Kaplan-Meier estimators for the subjects of Wilms’ Tumor Study
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Figure 3.2: Estimated survival functions under the PH mixture cure model
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Figure 3.3: Estimated survival functions under the PO mixture cure model



CHAPTER 4: Future Research

In the context of the design and analysis of two-phase studies with survival data

explored in this dissertation, several unresolved issues persist or demand more ad-

vanced methodologies. Within this chapter, we offer a concise overview of some of

these issues, particularly those relevant to the investigations outlined in Chapters 2

and 3. Additionally, we highlight various directions for future research exploration.

In Chapter 2, we introduced a two-phase failure-time-auxiliary-dependent sampling

(FADS) design for studies with expensive covariates and cheap surrogate or auxil-

iary variables. Additionally, we proposed a new semiparametric maximum pseudo-

likelihood method for inference. While our simulations yielded promising results,

several directions for future research merit exploration. One is the selection of design

parameters, such as the cutoff points and the allocation of sample sizes. The com-

plex form of the asymptotic variance provided in Theorem 2 renders it challenging

to theoretically assess the impact of these parameters on estimation efficiency. The

optimal choice of cutoff points and sample size allocation warrant future research.

Another area ripe for exploration is the creation of auxiliary variables when unavail-

able in practice. One potential approach involves fitting a predictive model for the

expensive covariate using the SRS component. Assessing the theoretical and numer-

ical performance of this method represents a promising direction for future research.

Lastly, while the proportional hazards model considered in this work is commonly em-

ployed, its applicability may be limited in certain scenarios. Extending the proposed

method to alternative models, such as the proportional odds model and semipara-

metric transformation models, presents an opportunity for further advancement with

minimal effort.
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In Chapter 3, we presented a novel method aimed at enhancing estimation ef-

ficiency for case-cohort studies with a cure fraction. Our approach entails a two-

step estimation procedure under semiparametric transformation mixture cure models,

complemented by a weighted bootstrap procedure for variance estimation. Several

directions for future research emerge. One such direction is to theoretically con-

sider the exclusion of the “threshold" condition imposed in our study computations.

This is motivated by the observation that similar results are obtained whether the

threshold is applied or not, particularly in studies of sufficient duration. Additionally,

exploring an optimal working model could potentially yield further efficiency gains,

even though the proposed working model performs well in practice. Moreover, there is

room for enhancing efficiency through advancements in sampling design. A promising

approach in this regard is the adoption of a failure-time-dependent sampling design,

as proposed by Ding et al. (2014). All three directions merit further investigation.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 2

This appendix includes the proofs of Theorems 1 and 2 in chapter 2. In the follow-

ing, we first present the regularity conditions and a useful lemma for the proofs.

A.1 Regularity Conditions

As in Section 2, we denote the true values of (β,Λ, G) by (β0,Λ0, G0) and define

nV = |V |, nk = |Ṽk| for k = 0, . . . , K, and Nk = |Sk| for k = 1, . . . , K + 1. The

following conditions are needed to establish the asymptotic properties of β̂.

(C1) β0 lies in the interior of a known compact set B in Rp, and Λ0(·) is twice

continuously differentiable with positive derivatives in [0, τ ], where τ is the

length of study.

(C2) The support of (X ′, Z ′)′ is bounded and not a proper subset of Rp.

(C3) T̃ and C are conditionally independent given X and Z. Also, P (T ≥ τ) > 0.

(C4) As N → ∞, nV /N → ρV > 0, nk/nV → ρk ≥ 0 for k = 1, . . . , K, n0/nV →

ρ0 > 0, and Nk/N → γk > 0 for k = 1, · · · , K + 1.

(C5) φ(·) is a d-dimensional α-th order bounded and symmetric kernel function with

bounded support and
∫
φ2 < ∞, where d and α are positive integers. Also,

Nh2α → 0 and Nh2d →∞ as N →∞.
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A.2 A Useful Lemma

Lemma 1. Suppose that F = {ξ(y, z, w, x; β,Λ) : β ∈ B, Λ ∈ A} is a Donsker

class of functions. Then

sup
β∈B

sup
Λ∈A

∣∣∣∣∣∣∣∣
∑
i∈Vk

ξ(y, z, w,Xi; β,Λ)φh(Ui − u)∑
i∈Vk

φh(Ui − u)
−
∫
X
ξ(y, z, w, x; β,Λ)G(dx|u, (y, w) ∈ Sk)

∣∣∣∣∣∣∣∣ = OP (ηN),

where ηN =
[
Nh2α + (Nh2d)−1

]1/2
.

Proof: First we define

µk(y, z, w, u; β,Λ) =
1

hd nVk

∑
i∈Vk

ξ(y, z, w,Xi; β,Λ)φh(Ui − u)

and

νk(u) =
1

hd nVk

∑
i∈Vk

φh(Ui − u).

Since ξ(y, z, w, x; β,Λ) belongs to a Donsker class, we have

µk(y, z, w, u; β,Λ)→
∫
X
ξ(y, z, w, x; β,Λ) q(x, u|(y, w) ∈ Sk) dx,

almost surely, uniformly for all β ∈ B and Λ ∈ A, where q(x, u|(y, w) ∈ Sk) is the

joint density function of (X,U) given (Y,W ) = (y, w) ∈ Sk. By taking ξ ≡ 1, we

have

νk(u)→
∫
X
q(x, u|(y, w) ∈ Sk) dx,

almost surely. Hence, by the Slutsky’s Theorem,

sup
β∈B

sup
Λ∈A

∣∣∣∣µk(y, z, w, u; β,Λ)

νk(u)
−
∫
X
ξ(y, z, w, x; β,Λ)G(dx|u, (y, w) ∈ Sk)

∣∣∣∣→ 0,
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almost surely. By the kernel estimation theory and Lemma 1 in Wang and Wang

(2001), we can derive that

sup
β∈B

sup
Λ∈A

∣∣∣∣µk(y, z, w, u; β,Λ)

νk(u)
−
∫
X
ξ(y, z, w, x; β,Λ)G(dx|u, (y, w) ∈ Sk)

∣∣∣∣ = Op(ηN),

which completes the proof.

A.3 Proof of Theorem 1

The full log-likelihood function based on data from the two-phase FADS design is

given by

l(β,Λ, G) =
K∑
k=0

∑
i∈Ṽk

[
log fβ,Λ(Ti,∆i|Xi, Zi) + log g(Xi|Wi, Zi)

]

+
K+1∑
k=1

∑
j∈V̄k

log fβ,Λ,G(Tj,∆j|Wj, Zj)

=
K∑
k=0

∑
i∈Ṽk

[
log fβ,Λ(Ti,∆i|Xi, Zi) + log g(Xi|Wi, Zi)

]

+
K+1∑
k=1

∑
j∈V̄k

log

[ ∫
fβ,Λ(Tj,∆j|x, Zj) dG(x|Wj, Zj)

]
.

The pseudo-log-likelihood function obtained by replacing G with its estimator Ĝ in

the full log-likelihood can be written as

l̂(β,Λ, Ĝ) =
K∑
k=0

∑
i∈Ṽk

log fβ,Λ(Ti,∆i|Xi, Zi) +
K+1∑
k=0

∑
j∈V̄k

log f̂β,Λ,Ĝ(Tj,∆j|Wj, Zj)

=
K∑
k=0

∑
i∈Ṽk

[
∆i

{
log λ(Ti) + (β′1Xi + β′2Zi)

}
− Λ(Ti) exp(β′1Xi + β′2Zi)

]

+
K+1∑
k=1

∑
j∈V̄k

log

[
K+1∑
r=1

π̂r(Uj)

∑
l∈Vr fβ,Λ(Tj,∆j|Xl, Zj)φh(Ul − Uj)∑

l∈Vr φh(Ul − Uj)

]
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Then the score function for β based on the full log-likelihood is given by

UF (β,Λ, G) =
∂l(β,Λ, G)

∂β

=
K∑
k=0

∑
i∈Ṽk

{
∆i [X

′
i, Z

′
i]
′ − Λ(Ti) exp(β′1Xi + β′2Zi) [X ′i, Z

′
i]
′
}

+
K+1∑
k=1

∑
j∈V̄k

∫ [
∂fβ,Λ(Tj,∆j|x, Zj)/∂β

]
dG(x|Wj, Zj)∫

fβ,Λ(Tj,∆j|x, Zj) dG(x|Wj, Zj)
.

The pseudo-score function for β based on the pseudo-log-likelihood has the form

UF (β,Λ, Ĝ) =
∂l̂(β,Λ, Ĝ)

∂β

=
K∑
k=0

∑
i∈Ṽk

{
∆i [X

′
i, Z

′
i]
′ − Λ(Ti) exp(β′1Xi + β′2Zi) [X ′i, Z

′
i]
′
}

+
K+1∑
k=1

∑
j∈V̄k

∑K+1
r=1 π̂r(Uj)

∑
l∈Vr

[
∂fβ,Λ(Tj ,∆j |Xl,Zj)/∂β

]
φh(Ul−Uj)∑

l∈Vr φh(Ul−Uj)∑K+1
r=1 π̂r(Uj)

∑
l∈Vr fβ,Λ(Tj ,∆j |Xl,Zj)φh(Ul−Uj)∑

l∈Vr φh(Ul−Uj)

.

Note that

1

N
UF (β, Λ̂, Ĝ)− 1

N
UF (β,Λ0, G0) =

{
1

N
UF (β, Λ̂, Ĝ)− 1

N
UF (β, Λ̂, G0)

}
(A.1)

+

{
1

N
UF (β, Λ̂, G0)− 1

N
UF (β,Λ0, G0)

}
.

We will show that both of the two terms on the right-hand side of (A.1) converge to

0. For the first term, by selecting a suitable function ξ in Lemma 1, we can prove

that

1

N
UF (β, Λ̂, Ĝ)− 1

N
UF (β, Λ̂, G0)

p−→ 0, (A.2)
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uniformly for all β ∈ B. In fact, define the class of functions

Fω =

{
fβ,Λ(T,∆|X,Z) : β ∈ B, Λ ∈ BVω[0, τ ]

}
=

{[
λ(T ) exp(β′1X + β′2Z)

]∆
exp{−Λ(T ) exp(β′1X + β′2Z)} : β ∈ B, Λ ∈ BVω[0, τ ]

}
,

where BVω[0, τ ] denotes the class of functions with the total variation in [0, τ ] bounded

by a given constant ω. Since X and Z are bounded, Fω is a Donkser class by Example

19.11 in van der Vaart (1998). Similarly, we can show that

F ′ω =

{
∂fβ,Λ(T,∆|X,Z)

∂β
: β ∈ B, Λ ∈ BVω[0, τ ]

}
,

is also a Donsker class. Note that π̂r(u) is a consistent estimator of πr(u) and Λ̂ ∈

BVω[0, τ ], then (A.2) follows from Lemma 1.

For the second term on the right-hand side of (A.1), since Λ̂ is a consistent estimator

of Λ, by the continuous mapping theorem, we have

1

N
UF (β, Λ̂, G0)− 1

N
UF (β,Λ0, G0)

p−→ 0,

uniformly for β ∈ B. Thus, we have shown that (A.1) converges to 0 uniformly for

β ∈ B. Furthermore, by the strong law of large numbers,

1

N
UF (β,Λ0, G0) =ρ0ρVE

{
∂fβ,Λ0(T,∆|X,Z)/∂β

fβ,Λ0(T,∆|X,Z)

}
+

K∑
k=1

ρkρVEk

{
∂fβ,Λ0(T,∆|X,Z)/∂β

fβ,Λ0(T,∆|X,Z)

}

+
K+1∑
k=1

[
γk(1− ρ0ρV )− ρkρV

]
Ek

{
∂fβ,Λ0,G0(T,∆|W,Z)/∂β

fβ,Λ0,G0(T,∆|W,Z)

}
+ op(1).

It then follows that 1
N
UF (β0,Λ0, G0)

p−→ 0. Since (A.1) converges to 0, we have

1

N
UF (β0, Λ̂, Ĝ)

p−→ 0. (A.3)
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Similarly as showing that (A.1) converges to 0, we can prove that

1

N

∂UF (β, Λ̂, Ĝ)

∂β
− 1

N

∂UF (β,Λ0, G0)

∂β

p−→ 0,

uniformly for all β ∈ B, as N →∞. Further note that uniformly for β ∈ B,

− 1

N

∂UF (β,Λ0, G0)

∂β

p−→ I(β),

where I(β) is the information matrix of β with known (Λ0, G0), given by

I(β) =− ρ0ρVE

{
∂2 log fβ,Λ0(T,∆|X,Z)

∂β∂β′

}
−

K∑
k=1

ρkρVEk

{
∂2 log fβ,Λ0(T,∆|X,Z)

∂β∂β′

}

−
K+1∑
k=1

[
γk(1− ρ0ρV )− ρkρV

]{∂2 log fβ,Λ0,G0(T,∆|Z,W )

∂β∂β′

}
.

Then we have

− 1

N

∂UF (β, Λ̂, Ĝ)

∂β

p−→ I(β), (A.4)

uniformly for β ∈ B. Therefore, combining (A.3) and (A.4), it follows from Foutz

(1977) and Weaver and Zhou (2005) that β̂ is a consistent estimator of β0.

A.4 Proof of Theorem 2

To account for the variability induced by using Λ̂ and Ĝ in the pseudo-likelihood

function, we decompose the pseudo-score function UF (β, Λ̂, Ĝ) into three terms as

1√
N
UF (β, Λ̂, Ĝ) =

1√
N
UF (β,Λ0, G0) (A.5)

+

{
1√
N
UF (β, Λ̂, G0)− 1√

N
UF (β,Λ0, G0)

}
+

{
1√
N
UF (β, Λ̂, Ĝ)− 1√

N
UF (β, Λ̂, G0)

}
.
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In the following, we will derive the limiting distribution for each of the three terms

on the right-hand side of (A.5) and also show that the three terms are asymptotically

independent.

The first term of (A.5) is given by

1√
N
UF (β,Λ0, G0) =

1√
N

K∑
k=0

∑
i∈Ṽk

∂
∂β
fβ,Λ0(Ti,∆i|Xi, Zi)

fβ,Λ0(Ti,∆i|Xi, Zi)
+

1√
N

K+1∑
k=1

∑
j∈V̄k

∂
∂β
fβ,Λ0,G0(Tj,∆j|Zj,Wj)

fβ,Λ0,G0(Tj,∆j|Zj,Wj)
.

(A.6)

It is easy to show that

1√
N
UF (β0,Λ0, G0)

d−→ N (0, I(β0)), (A.7)

where I(β) is the information matrix of β with known (Λ0, G0) and is defined in the

proof of Theorem 1.
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For the second term of (A.5), note that

1√
N
UF (β, Λ̂, G0)− 1√

N
UF (β,Λ0, G0)

=
1√
N

{
K∑
k=0

∑
i∈Ṽk

[
∂

∂β
log fβ,Λ̂(Ti,∆i|Xi, Zi)−

∂

∂β
log fβ,Λ0(Ti,∆i|Xi, Zi)

]

+
K+1∑
k=1

∑
j∈V̄k

∫
X

[
∂

∂β
log fβ,Λ̂(Tj,∆j|x, Zj)−

∂

∂β
log fβ,Λ0(Tj,∆j|x, Zj)

]
dG0(x|Wj, Zj)

}

=
1√
N

{
K∑
k=0

∑
i∈Ṽk

{[
−Λ̂(Ti) + Λ0(Ti)

]
exp(β′1Xi + β′2Zi) [X ′i, Z

′
i]
′

}

+
K+1∑
k=1

∑
j∈V̄k

∫
X

[
−Λ̂(Tj) + Λ0(Tj)

]
exp(β′1x+ β′2Zj)

[
x′, Z ′j

]′
dG0(x|Wj, Zj)

}

=
1√
N

{
K∑
k=0

∑
i∈Ṽk

{∫ τ

0

−I(t ≤ Ti) d(Λ̂(t)− Λ0(t)) exp(β′1Xi + β′2Zi) [X ′i, Z
′
i]
′

}

+
K+1∑
k=1

∑
j∈V̄k

∫
X

∫ τ

0

−I(t ≤ Tj) d(Λ̂(t)− Λ0(t)) exp(β′1x+ β′2Zj)
[
x′, Z ′j

]′
dG0(x|Wj, Zj)

}

=

∫ τ

0

− |V |√
N · n0

K∑
k=0

nk
|V |

1

nk

∑
i∈Ṽk

{
I(t ≤ Ti) exp(β′1Xi + β′2Zi) [X ′i, Z

′
i]
′

}

− |V̄ |√
N · n0

K+1∑
k=1

Nk − nk
|V̄ |

1

Nk − nk

∑
j∈V̄k

I(t ≤ Tj)

{∫
X

exp(β′1x+ β′2Zj)
[
x′, Z ′j

]′
dG0(x|Wj, Zj)

}
d
√
n0(Λ̂(t)− Λ0(t))

=

∫ τ

0

− ρV√
ρ0

K∑
k=0

ρkEk

{
I(t ≤ T ) exp(β′1X + β′2Z) [X ′, Z ′]

′

}

− 1− ρV√
ρ0

∫ τ

0

K+1∑
k=1

γk − ρV ρk
1− ρV

Ek

{
I(t ≤ T )

∫
X

exp(β′1x+ β′2Z) [x′, Z ′]
′
dG0(x|W,Z)

}

d
√
n0(Λ̂(t)− Λ0(t)) + op(1).
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Let H(t; β) denote the integrand in the last equation above. Then we have

1√
N
UF (β, Λ̂, G0)− 1√

N
UF (β,Λ0, G0)

=

∫ τ

0

H(t; β) d
√
n0(Λ̂(t)− Λ0(t)) + op(1)

=
√
n0

{
ζ(Λ̂; β)− ζ(Λ0; β)

}
+ op(1).

(A.8)

where

ζ(Λ; β) =

∫ τ

0

H(t; β) dΛ(t).

As shown in Tsiatis (1981),
√
n0(Λ̂− Λ0) converges weakly to a mean zero Gaussian

process G. Then by Theorem 20.8 (Delta method) in van der Vaart (1998), we have

√
n0

{
ζ(Λ̂; β)− ζ(Λ0; β)

}
d−→ ζ ′Λ0

(G; β),

where

ζ ′Λ0
(G; β) =

∂

∂ε

∫ τ

0

H(t; β) (1 + εG(t)) dΛ0(t)

∣∣∣∣
ε=0

=

∫ τ

0

H(t; β)G(t) dΛ0(t).

Then by (A.8) and Slutsky’s Theorem, we obtain

1√
N
UF (β0, Λ̂, G0)− 1√

N
UF (β0,Λ0, G0)

d−→ N (0,ΣG(β0)), (A.9)

where

ΣG(β) = Var

{∫ τ

0

H(t; β)G(t) dΛ0(t)

}
.
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For the third term of (A.5), similar to Zhou et al. (2011a), we have

1√
N
UF (β, Λ̂, Ĝ)− 1√

N
UF (β, Λ̂, G0)

=
1√
N

K+1∑
k=1

∑
j∈V̄k

{ ∂
∂β
f̂β,Λ̂,Ĝ(Tj,∆j|Wj, Zj)

f̂β,Λ̂,Ĝ(Tj,∆j|Wj, Zj)
−

∂
∂β
fβ,Λ̂,G0

(Tj,∆j|Wj, Zj)

fβ,Λ̂,G0
(Tj,∆j|Wj, Zj)

}

=
1√
N

K+1∑
k=1

∑
j∈V̄k

{ ∂
∂β
f̂β,Λ̂,Ĝ(Tj,∆j|Wj, Zj)

fβ,Λ̂,G0
(Tj,∆j|Wj, Zj)

−
∂
∂β
fβ,Λ̂,G0

(Tj,∆j|Wj, Zj)

[fβ,Λ̂,G0
(Tj,∆j|Wj, Zj)]2

f̂β,Λ̂,Ĝ(Tj,∆j|Wj, Zj)

}
×
{
fβ,Λ̂,G0

(Tj,∆j|Wj, Zj)

f̂β,Λ̂,Ĝ(Tj,∆j|Wj, Zj)

}

=
1√
N

K+1∑
k=1

∑
j∈V̄k

{ ∂
∂β
f̂β,Λ̂,Ĝ(Tj,∆j|Wj, Zj)

fβ,Λ̂,G0
(Tj,∆j|Wj, Zj)

−
∂
∂β
fβ,Λ̂,G0

(Tj,∆j|Wj, Zj)

[fβ,Λ̂,G0
(Tj,∆j|Wj, Zj)]2

f̂β,Λ̂,Ĝ(Tj,∆j|Wj, Zj)

}
+Op(ηN)

=
1√
N
DF (β, Λ̂, Ĝ) +Op(ηN),

where the second last equality can be shown by Lemma 1 as in the proof of consistency

and the summation in the second last equation is denoted by DF (β, Λ̂, Ĝ). We will

establish the weak convergence of 1√
N
DF (β, Λ̂, Ĝ). Note that

1√
N
DF (β, Λ̂, Ĝ)

=
1√
N

K+1∑
k=1

∑
j∈V̄k

K+1∑
r=1

π̂r(Uj)

∑
i∈Vr

MXi,Ui(Tj,∆j,Wj, Zj; β, Λ̂)φh(Ui − Uj)∑
i∈Vr

φh(Ui − Uj)

=
1√
N

K+1∑
r=1

∑
i∈Vr

K+1∑
k=1

∑
j∈V̄k

Nr(Uj)

nVr(Uj)

nV̄k(Uj)

N(Uj)

MXi,Ui(Tj,∆j,Wj, Zj; β, Λ̂)φh(Ui − Uj)
nV̄k(Uj)

=
1√
N

K+1∑
r=1

γr
ρrρV + γrρ0ρV

∑
i∈Vr

K+1∑
k=1

[
γk(1− ρ0ρV )− ρ0ρV

]
πk(Ui)Ek

{
MXi,Ui(T,∆,W, Z; β,Λ0)

∣∣Ui}
+ op(1)
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where

N(Uj) =
N∑
i=1

φh(Ui − Uj), Nr(Uj) =
∑
i∈Sr

φh(Ui − Uj),

nVr(Uj) =
∑
i∈Vr

φh(Ui − Uj), nV̄k(Uj) =
∑
i∈V̄k

φh(Ui − Uj),

MXi,Ui(T,∆,W, Z; β,Λ) =

∂
∂β
fβ,Λ(T,∆|Xi, Z)

fβ,Λ,G0(T,∆|W,Z)
−

∂
∂β
fβ,Λ,G0(T,∆|W,Z)

[fβ,Λ,G0(T,∆|W,Z)]2
fβ,Λ(T,∆|Xi, Z).

By Liapounov’s Central Limit Theroem and Cramér-Wold Theorem, we have

1√
N
DF (β0, Λ̂, Ĝ)

d−→ N

(
0,

K+1∑
k=1

γ2
k

ρkρV + γkρ0ρV
Σk(β0)

)
, (A.10)

where

Σk(β) = Vark

{
K+1∑
r=1

[
γr(1− ρ0ρV )− ρrρV

]
πr(U)Er

{
MX,U(T,∆,W, Z; β)

∣∣U}} .
We have derived the limiting distribution for each of the three terms on the right-

hand side of (A.5). Now we will show that the three terms are asymptotically in-

dependent of each other. Since 1√
N
DF (β0, Λ̂, Ĝ) can be considered as a function of

{Xi, Ui; i ∈ V } for large N , it is asymptotically independent of the second term in

(A.6) that is based on the nonvalidation sample V̄ . We use 1√
N
U1
F (β,Λ0, G0) to denote
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the first term of (A.6). Then

Cov
(

1√
N
DF (β0, Λ̂, Ĝ),

1√
N
U1
F (β0,Λ0, G0)

)

=
1

N
Cov

K+1∑
r=1

γr
ρrρV + γrρ0ρV

∑
i∈Vr

g1(Xi, Ui; β0,Λ0),
K∑
k=0

∑
i∈Ṽk

g2(Ti,∆i, Xi, Zi; β0,Λ0)


=

1

N

K∑
r=1

γr
ρrρV + γrρ0ρV

∑
i∈Vr

Cov

(
g1(Xi, Ui; β0,Λ0), g2(Ti,∆i, Xi, Zi; β0,Λ0)

)

=
1

N

K∑
r=1

γr
ρrρV + γrρ0ρV

∑
i∈Vr

{
E
(
g1(Xi, Ui; β0,Λ0)g2(Ti,∆i, Xi, Zi; β0,Λ0)

)
− E

(
g1(Xi, Ui; β0,Λ0)

)
E
(
g2(Ti,∆i, Xi, Zi; β0,Λ0)

)}
=

1

N

K∑
r=1

γr
ρrρV + γrρ0ρV

∑
i∈Vr

{
E
[
E(g1(Xi, Ui; β0,Λ0)g2(Ti,∆i, Xi, Zi; β0,Λ0)|Xi, Zi,Wi)

]
− E

(
g1(Xi, Ui; β0,Λ0)

)
E
[
E(g2(Ti,∆i, Xi, Zi; β0,Λ0)|Xi, Zi)

]}
=

1

N

K∑
r=1

γr
ρrρV + γrρ0ρV

∑
i∈Vr

{
E
[
g1(Xi, Ui; β0,Λ0)E(g2(Ti,∆i, Xi, Zi; β0,Λ0)|Xi, Zi))

]
− E(g1(Xi, Ui; β0,Λ0))E

[
E(g2(Ti,∆i, Xi, Zi; β0,Λ0)|Xi, Zi)

]}
,

where

g1(Xi, Ui; β,Λ) =
K+1∑
k=1

[
γk(1− ρ0ρV )− ρ0ρV

]
πk(Ui)Ek

{
MXi,Ui(T,∆,W, Z; β,Λ)

∣∣Ui}
and

g2(Ti,∆i, Xi, Zi; β,Λ) =

∂
∂β
fβ,Λ(Ti,∆i|Xi, Zi)

fβ,Λ(Ti,∆i|Xi, Zi)
.

Since E
(
g2(Ti,∆i, Xi, Zi; β0,Λ0)|Xi, Zi

)
= 0, we have 1√

N
DF (β0, Λ̂, Ĝ) and 1√

N
U1
F (β0,Λ0, G0)

are asymptotically uncorrelated and, since they are asymptotically normal, thus in-

dependent. Hence, 1√
N
DF (β0, Λ̂, Ĝ) and 1√

N
UF (β0,Λ0, G0) are asymptotically inde-

pendent. Similarly, we can also prove that 1√
N
DF (β0, Λ̂, Ĝ) and 1√

N
UF (β0, Λ̂, G0) −
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1√
N
UF (β0,Λ0, G0) are asymptotically independent. In addition,

Cov

(
1√
N
UF (β0,Λ0, G0),

1√
N
UF (β0, Λ̂, G0)− 1√

N
UF (β0,Λ0, G0)

)
(A.11)

=
1

N
Cov

(
UF (β0,Λ0, G0), UF (β0, Λ̂, G0)

)
− 1

N
Cov

(
UF (β0,Λ0, G0), UF (β0,Λ0, G0)

)

By the convergence of Λ̂ shown in Tsiatis (1981) and the Delta method, (A.11) is

equal to zero. Hence, 1√
N
UF (β0,Λ0, G0) and 1√

N
UF (β0, Λ̂, G0)− 1√

N
UF (β0,Λ0, G0) are

asymptotically independent.

We have shown that the three terms in (A.5) are asymptotically independent.

Combining (A.7), (A.9) and (A.10), we obtain

1√
N
UF (β0, Λ̂, Ĝ)

d−→ N

(
0, I(β0) + ΣG(β0) +

K+1∑
k=1

γ2
k

ρkρV + γkρ0ρV
Σk(β0)

)
. (A.12)

Using the first-order Taylor series expansion of the pseudo-score function UF (β0, Λ̂, Ĝ)

around the true parameter β0, we have

√
N(β̂ − β0) =

[
− 1

N

∂UF (β∗, Λ̂, Ĝ)

∂β′

]−1[
1√
N
UF (β0, Λ̂, Ĝ)

]
, (A.13)

where β∗ is on the line segment between β̂ and β0. By (A.4) and consistency of β̂, it

is easy to show that as N →∞,

[
− 1

N

∂UF (β∗, Λ̂, Ĝ)

∂β′

]−1
p−→ I−1(β0). (A.14)

Combining (A.12), (A.13) and (A.14), we have

√
N(β̂ − β0)

d−→ N (0,Σ(β0)),

which completes the proof.



APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 3

Let θ0 = (ϑ0,Λ0) denote the true value of θ = (ϑ,Λ) in models (3.1) and (3.2). We

first present consistency and asymptotic normality for the orginal estimator θ̂n. The

regularity conditions needed are described as follows:

(C1) Let τ be a time point satisfying E(δI{Y ≥ τ}) > 0.

(C2) Suppose that
∫∞

0
P (C > t)dΛ0(t) <∞.

(C3) ϑ0 is an interior point of a compact set D in R2p+1 that denotes the parameter

space for ϑ, where p is the dimension of X.

(C4) Λ0(·) is continuously differentiable up to order d, where d is positive integer,

with strictly positive derivative λ0(·) on [0, τ ] and Λ′0(t) > 0 for t ∈ [0, τ ].

(C5) Let X = (UT , ZT )T . The distribution of X has a bounded support in R2p+1.

If aX + b = 0, then a = 0 and b = 0. For some κ > 0, aTvar(X)a ≥ κaTE(XXT )a

for all a ∈ R2p+1.

(C6) The transformation function G is three-times continuously differently with

G(0) = 0, G′(0) > 0 and {1 + G′(x)}e−G(x) ≤ c1(1 + x)−ν0 for some constant ν0 > 0

and c1 > 0.

(C7) The degree of Bernstein polynomials satisfies m = o(nν) with 1/(2d) < ν <

1/2, and Mn = O(na) with a > 0 controlling the size of the sieve space Bn.

(C8) θ∗0 is the unique value of θ∗ that minimizes KL(θ∗), and ϑ∗0 is an interior point

of a compact set D∗ in R2p+1∗ . Λ∗0(·) is continuously differentiable up to order d with

strictly positive derivative λ∗0(·) and Λ∗0(τ) <∞.

(C9) Let X∗ = (U∗T , ZT )T . The distribution of X∗ has a bounded support in

R2p+1∗ . If aX∗ + b = 0, then a = 0 and b = 0. For some κ∗ > 0, aTvar(X∗)a ≥

κ∗aTE(X∗X∗T )a for all a ∈ R2p+1∗ .
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Once the conditions (C1)-(C7) hold, according to Fang et al. (2005), Zeng and Lin

(2007) and Zhou et al. (2017) ϑ̂n is a consistent and asymptotically normal estimator

of ϑ such as

ϑ̂n → ϑ0

in probability, and
√
n(ϑ̂n − ϑ0)→ N(0,Σ11)

in distribution.

Next, we prove the consistency and asymptotic normality for the update estimator

ϑ̄n. Let θ∗0 = (ϑ∗0,Λ
∗
0) be the value of θ∗ = (ϑ∗,Λ∗) that minimizes the Kullback-Leibler

divergence given by

KL(θ∗) = E
{

log
( L(O∗)
L(θ∗|O∗)

)}
,

where L(θ∗|O∗) denotes the likelihood function at θ∗ under the working models (3.5)

and (3.6) based on the data O∗ = {Y1, · · · , Yn, δ1, · · · , δn, X∗}, and L(O∗) denotes

the true likelihood of O∗. According to Zhou and Wong (2023), the consistency and

asymptotic normality of ϑ̄n can be established.
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